1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
|
//===-- X86ShuffleDecode.cpp - X86 shuffle decode logic -------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Define several functions to decode x86 specific shuffle semantics into a
// generic vector mask.
//
//===----------------------------------------------------------------------===//
#include "X86ShuffleDecode.h"
#include "llvm/IR/Constants.h"
#include "llvm/CodeGen/MachineValueType.h"
//===----------------------------------------------------------------------===//
// Vector Mask Decoding
//===----------------------------------------------------------------------===//
namespace llvm {
void DecodeINSERTPSMask(unsigned Imm, SmallVectorImpl<int> &ShuffleMask) {
// Defaults the copying the dest value.
ShuffleMask.push_back(0);
ShuffleMask.push_back(1);
ShuffleMask.push_back(2);
ShuffleMask.push_back(3);
// Decode the immediate.
unsigned ZMask = Imm & 15;
unsigned CountD = (Imm >> 4) & 3;
unsigned CountS = (Imm >> 6) & 3;
// CountS selects which input element to use.
unsigned InVal = 4+CountS;
// CountD specifies which element of destination to update.
ShuffleMask[CountD] = InVal;
// ZMask zaps values, potentially overriding the CountD elt.
if (ZMask & 1) ShuffleMask[0] = SM_SentinelZero;
if (ZMask & 2) ShuffleMask[1] = SM_SentinelZero;
if (ZMask & 4) ShuffleMask[2] = SM_SentinelZero;
if (ZMask & 8) ShuffleMask[3] = SM_SentinelZero;
}
// <3,1> or <6,7,2,3>
void DecodeMOVHLPSMask(unsigned NElts, SmallVectorImpl<int> &ShuffleMask) {
for (unsigned i = NElts/2; i != NElts; ++i)
ShuffleMask.push_back(NElts+i);
for (unsigned i = NElts/2; i != NElts; ++i)
ShuffleMask.push_back(i);
}
// <0,2> or <0,1,4,5>
void DecodeMOVLHPSMask(unsigned NElts, SmallVectorImpl<int> &ShuffleMask) {
for (unsigned i = 0; i != NElts/2; ++i)
ShuffleMask.push_back(i);
for (unsigned i = 0; i != NElts/2; ++i)
ShuffleMask.push_back(NElts+i);
}
void DecodeMOVSLDUPMask(MVT VT, SmallVectorImpl<int> &ShuffleMask) {
unsigned NumElts = VT.getVectorNumElements();
for (int i = 0, e = NumElts / 2; i < e; ++i) {
ShuffleMask.push_back(2 * i);
ShuffleMask.push_back(2 * i);
}
}
void DecodeMOVSHDUPMask(MVT VT, SmallVectorImpl<int> &ShuffleMask) {
unsigned NumElts = VT.getVectorNumElements();
for (int i = 0, e = NumElts / 2; i < e; ++i) {
ShuffleMask.push_back(2 * i + 1);
ShuffleMask.push_back(2 * i + 1);
}
}
void DecodeMOVDDUPMask(MVT VT, SmallVectorImpl<int> &ShuffleMask) {
unsigned VectorSizeInBits = VT.getSizeInBits();
unsigned ScalarSizeInBits = VT.getScalarSizeInBits();
unsigned NumElts = VT.getVectorNumElements();
unsigned NumLanes = VectorSizeInBits / 128;
unsigned NumLaneElts = NumElts / NumLanes;
unsigned NumLaneSubElts = 64 / ScalarSizeInBits;
for (unsigned l = 0; l < NumElts; l += NumLaneElts)
for (unsigned i = 0; i < NumLaneElts; i += NumLaneSubElts)
for (unsigned s = 0; s != NumLaneSubElts; s++)
ShuffleMask.push_back(l + s);
}
void DecodePSLLDQMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask) {
unsigned VectorSizeInBits = VT.getSizeInBits();
unsigned NumElts = VectorSizeInBits / 8;
unsigned NumLanes = VectorSizeInBits / 128;
unsigned NumLaneElts = NumElts / NumLanes;
for (unsigned l = 0; l < NumElts; l += NumLaneElts)
for (unsigned i = 0; i < NumLaneElts; ++i) {
int M = SM_SentinelZero;
if (i >= Imm) M = i - Imm + l;
ShuffleMask.push_back(M);
}
}
void DecodePSRLDQMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask) {
unsigned VectorSizeInBits = VT.getSizeInBits();
unsigned NumElts = VectorSizeInBits / 8;
unsigned NumLanes = VectorSizeInBits / 128;
unsigned NumLaneElts = NumElts / NumLanes;
for (unsigned l = 0; l < NumElts; l += NumLaneElts)
for (unsigned i = 0; i < NumLaneElts; ++i) {
unsigned Base = i + Imm;
int M = Base + l;
if (Base >= NumLaneElts) M = SM_SentinelZero;
ShuffleMask.push_back(M);
}
}
void DecodePALIGNRMask(MVT VT, unsigned Imm,
SmallVectorImpl<int> &ShuffleMask) {
unsigned NumElts = VT.getVectorNumElements();
unsigned Offset = Imm * (VT.getVectorElementType().getSizeInBits() / 8);
unsigned NumLanes = VT.getSizeInBits() / 128;
unsigned NumLaneElts = NumElts / NumLanes;
for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
for (unsigned i = 0; i != NumLaneElts; ++i) {
unsigned Base = i + Offset;
// if i+offset is out of this lane then we actually need the other source
if (Base >= NumLaneElts) Base += NumElts - NumLaneElts;
ShuffleMask.push_back(Base + l);
}
}
}
/// DecodePSHUFMask - This decodes the shuffle masks for pshufd, and vpermilp*.
/// VT indicates the type of the vector allowing it to handle different
/// datatypes and vector widths.
void DecodePSHUFMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask) {
unsigned NumElts = VT.getVectorNumElements();
unsigned NumLanes = VT.getSizeInBits() / 128;
unsigned NumLaneElts = NumElts / NumLanes;
unsigned NewImm = Imm;
for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
for (unsigned i = 0; i != NumLaneElts; ++i) {
ShuffleMask.push_back(NewImm % NumLaneElts + l);
NewImm /= NumLaneElts;
}
if (NumLaneElts == 4) NewImm = Imm; // reload imm
}
}
void DecodePSHUFHWMask(MVT VT, unsigned Imm,
SmallVectorImpl<int> &ShuffleMask) {
unsigned NumElts = VT.getVectorNumElements();
for (unsigned l = 0; l != NumElts; l += 8) {
unsigned NewImm = Imm;
for (unsigned i = 0, e = 4; i != e; ++i) {
ShuffleMask.push_back(l + i);
}
for (unsigned i = 4, e = 8; i != e; ++i) {
ShuffleMask.push_back(l + 4 + (NewImm & 3));
NewImm >>= 2;
}
}
}
void DecodePSHUFLWMask(MVT VT, unsigned Imm,
SmallVectorImpl<int> &ShuffleMask) {
unsigned NumElts = VT.getVectorNumElements();
for (unsigned l = 0; l != NumElts; l += 8) {
unsigned NewImm = Imm;
for (unsigned i = 0, e = 4; i != e; ++i) {
ShuffleMask.push_back(l + (NewImm & 3));
NewImm >>= 2;
}
for (unsigned i = 4, e = 8; i != e; ++i) {
ShuffleMask.push_back(l + i);
}
}
}
/// DecodeSHUFPMask - This decodes the shuffle masks for shufp*. VT indicates
/// the type of the vector allowing it to handle different datatypes and vector
/// widths.
void DecodeSHUFPMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask) {
unsigned NumElts = VT.getVectorNumElements();
unsigned NumLanes = VT.getSizeInBits() / 128;
unsigned NumLaneElts = NumElts / NumLanes;
unsigned NewImm = Imm;
for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
// each half of a lane comes from different source
for (unsigned s = 0; s != NumElts*2; s += NumElts) {
for (unsigned i = 0; i != NumLaneElts/2; ++i) {
ShuffleMask.push_back(NewImm % NumLaneElts + s + l);
NewImm /= NumLaneElts;
}
}
if (NumLaneElts == 4) NewImm = Imm; // reload imm
}
}
/// DecodeUNPCKHMask - This decodes the shuffle masks for unpckhps/unpckhpd
/// and punpckh*. VT indicates the type of the vector allowing it to handle
/// different datatypes and vector widths.
void DecodeUNPCKHMask(MVT VT, SmallVectorImpl<int> &ShuffleMask) {
unsigned NumElts = VT.getVectorNumElements();
// Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
// independently on 128-bit lanes.
unsigned NumLanes = VT.getSizeInBits() / 128;
if (NumLanes == 0 ) NumLanes = 1; // Handle MMX
unsigned NumLaneElts = NumElts / NumLanes;
for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
for (unsigned i = l + NumLaneElts/2, e = l + NumLaneElts; i != e; ++i) {
ShuffleMask.push_back(i); // Reads from dest/src1
ShuffleMask.push_back(i+NumElts); // Reads from src/src2
}
}
}
/// DecodeUNPCKLMask - This decodes the shuffle masks for unpcklps/unpcklpd
/// and punpckl*. VT indicates the type of the vector allowing it to handle
/// different datatypes and vector widths.
void DecodeUNPCKLMask(MVT VT, SmallVectorImpl<int> &ShuffleMask) {
unsigned NumElts = VT.getVectorNumElements();
// Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
// independently on 128-bit lanes.
unsigned NumLanes = VT.getSizeInBits() / 128;
if (NumLanes == 0 ) NumLanes = 1; // Handle MMX
unsigned NumLaneElts = NumElts / NumLanes;
for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
for (unsigned i = l, e = l + NumLaneElts/2; i != e; ++i) {
ShuffleMask.push_back(i); // Reads from dest/src1
ShuffleMask.push_back(i+NumElts); // Reads from src/src2
}
}
}
void DecodeVPERM2X128Mask(MVT VT, unsigned Imm,
SmallVectorImpl<int> &ShuffleMask) {
if (Imm & 0x88)
return; // Not a shuffle
unsigned HalfSize = VT.getVectorNumElements()/2;
for (unsigned l = 0; l != 2; ++l) {
unsigned HalfBegin = ((Imm >> (l*4)) & 0x3) * HalfSize;
for (unsigned i = HalfBegin, e = HalfBegin+HalfSize; i != e; ++i)
ShuffleMask.push_back(i);
}
}
void DecodePSHUFBMask(const Constant *C, SmallVectorImpl<int> &ShuffleMask) {
Type *MaskTy = C->getType();
// It is not an error for the PSHUFB mask to not be a vector of i8 because the
// constant pool uniques constants by their bit representation.
// e.g. the following take up the same space in the constant pool:
// i128 -170141183420855150465331762880109871104
//
// <2 x i64> <i64 -9223372034707292160, i64 -9223372034707292160>
//
// <4 x i32> <i32 -2147483648, i32 -2147483648,
// i32 -2147483648, i32 -2147483648>
unsigned MaskTySize = MaskTy->getPrimitiveSizeInBits();
if (MaskTySize != 128 && MaskTySize != 256) // FIXME: Add support for AVX-512.
return;
// This is a straightforward byte vector.
if (MaskTy->isVectorTy() && MaskTy->getVectorElementType()->isIntegerTy(8)) {
int NumElements = MaskTy->getVectorNumElements();
ShuffleMask.reserve(NumElements);
for (int i = 0; i < NumElements; ++i) {
// For AVX vectors with 32 bytes the base of the shuffle is the 16-byte
// lane of the vector we're inside.
int Base = i < 16 ? 0 : 16;
Constant *COp = C->getAggregateElement(i);
if (!COp) {
ShuffleMask.clear();
return;
} else if (isa<UndefValue>(COp)) {
ShuffleMask.push_back(SM_SentinelUndef);
continue;
}
uint64_t Element = cast<ConstantInt>(COp)->getZExtValue();
// If the high bit (7) of the byte is set, the element is zeroed.
if (Element & (1 << 7))
ShuffleMask.push_back(SM_SentinelZero);
else {
// Only the least significant 4 bits of the byte are used.
int Index = Base + (Element & 0xf);
ShuffleMask.push_back(Index);
}
}
}
// TODO: Handle funny-looking vectors too.
}
void DecodePSHUFBMask(ArrayRef<uint64_t> RawMask,
SmallVectorImpl<int> &ShuffleMask) {
for (int i = 0, e = RawMask.size(); i < e; ++i) {
uint64_t M = RawMask[i];
if (M == (uint64_t)SM_SentinelUndef) {
ShuffleMask.push_back(M);
continue;
}
// For AVX vectors with 32 bytes the base of the shuffle is the half of
// the vector we're inside.
int Base = i < 16 ? 0 : 16;
// If the high bit (7) of the byte is set, the element is zeroed.
if (M & (1 << 7))
ShuffleMask.push_back(SM_SentinelZero);
else {
// Only the least significant 4 bits of the byte are used.
int Index = Base + (M & 0xf);
ShuffleMask.push_back(Index);
}
}
}
void DecodeBLENDMask(MVT VT, unsigned Imm, SmallVectorImpl<int> &ShuffleMask) {
int ElementBits = VT.getScalarSizeInBits();
int NumElements = VT.getVectorNumElements();
for (int i = 0; i < NumElements; ++i) {
// If there are more than 8 elements in the vector, then any immediate blend
// mask applies to each 128-bit lane. There can never be more than
// 8 elements in a 128-bit lane with an immediate blend.
int Bit = NumElements > 8 ? i % (128 / ElementBits) : i;
assert(Bit < 8 &&
"Immediate blends only operate over 8 elements at a time!");
ShuffleMask.push_back(((Imm >> Bit) & 1) ? NumElements + i : i);
}
}
/// DecodeVPERMMask - this decodes the shuffle masks for VPERMQ/VPERMPD.
/// No VT provided since it only works on 256-bit, 4 element vectors.
void DecodeVPERMMask(unsigned Imm, SmallVectorImpl<int> &ShuffleMask) {
for (unsigned i = 0; i != 4; ++i) {
ShuffleMask.push_back((Imm >> (2*i)) & 3);
}
}
void DecodeVPERMILPMask(const Constant *C, SmallVectorImpl<int> &ShuffleMask) {
Type *MaskTy = C->getType();
assert(MaskTy->isVectorTy() && "Expected a vector constant mask!");
assert(MaskTy->getVectorElementType()->isIntegerTy() &&
"Expected integer constant mask elements!");
int ElementBits = MaskTy->getScalarSizeInBits();
int NumElements = MaskTy->getVectorNumElements();
assert((NumElements == 2 || NumElements == 4 || NumElements == 8) &&
"Unexpected number of vector elements.");
ShuffleMask.reserve(NumElements);
if (auto *CDS = dyn_cast<ConstantDataSequential>(C)) {
assert((unsigned)NumElements == CDS->getNumElements() &&
"Constant mask has a different number of elements!");
for (int i = 0; i < NumElements; ++i) {
int Base = (i * ElementBits / 128) * (128 / ElementBits);
uint64_t Element = CDS->getElementAsInteger(i);
// Only the least significant 2 bits of the integer are used.
int Index = Base + (Element & 0x3);
ShuffleMask.push_back(Index);
}
} else if (auto *CV = dyn_cast<ConstantVector>(C)) {
assert((unsigned)NumElements == C->getNumOperands() &&
"Constant mask has a different number of elements!");
for (int i = 0; i < NumElements; ++i) {
int Base = (i * ElementBits / 128) * (128 / ElementBits);
Constant *COp = CV->getOperand(i);
if (isa<UndefValue>(COp)) {
ShuffleMask.push_back(SM_SentinelUndef);
continue;
}
uint64_t Element = cast<ConstantInt>(COp)->getZExtValue();
// Only the least significant 2 bits of the integer are used.
int Index = Base + (Element & 0x3);
ShuffleMask.push_back(Index);
}
}
}
void DecodeZeroExtendMask(MVT SrcVT, MVT DstVT, SmallVectorImpl<int> &Mask) {
unsigned NumDstElts = DstVT.getVectorNumElements();
unsigned SrcScalarBits = SrcVT.getScalarSizeInBits();
unsigned DstScalarBits = DstVT.getScalarSizeInBits();
unsigned Scale = DstScalarBits / SrcScalarBits;
assert(SrcScalarBits < DstScalarBits &&
"Expected zero extension mask to increase scalar size");
assert(SrcVT.getVectorNumElements() >= NumDstElts &&
"Too many zero extension lanes");
for (unsigned i = 0; i != NumDstElts; i++) {
Mask.push_back(i);
for (unsigned j = 1; j != Scale; j++)
Mask.push_back(SM_SentinelZero);
}
}
void DecodeZeroMoveLowMask(MVT VT, SmallVectorImpl<int> &ShuffleMask) {
unsigned NumElts = VT.getVectorNumElements();
ShuffleMask.push_back(0);
for (unsigned i = 1; i < NumElts; i++)
ShuffleMask.push_back(SM_SentinelZero);
}
void DecodeScalarMoveMask(MVT VT, bool IsLoad, SmallVectorImpl<int> &Mask) {
// First element comes from the first element of second source.
// Remaining elements: Load zero extends / Move copies from first source.
unsigned NumElts = VT.getVectorNumElements();
Mask.push_back(NumElts);
for (unsigned i = 1; i < NumElts; i++)
Mask.push_back(IsLoad ? static_cast<int>(SM_SentinelZero) : i);
}
} // llvm namespace
|