1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
|
//===-- X86ShuffleDecode.cpp - X86 shuffle decode logic -------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Define several functions to decode x86 specific shuffle semantics into a
// generic vector mask.
//
//===----------------------------------------------------------------------===//
#include "X86ShuffleDecode.h"
//===----------------------------------------------------------------------===//
// Vector Mask Decoding
//===----------------------------------------------------------------------===//
namespace llvm {
void DecodeINSERTPSMask(unsigned Imm, SmallVectorImpl<unsigned> &ShuffleMask) {
// Defaults the copying the dest value.
ShuffleMask.push_back(0);
ShuffleMask.push_back(1);
ShuffleMask.push_back(2);
ShuffleMask.push_back(3);
// Decode the immediate.
unsigned ZMask = Imm & 15;
unsigned CountD = (Imm >> 4) & 3;
unsigned CountS = (Imm >> 6) & 3;
// CountS selects which input element to use.
unsigned InVal = 4+CountS;
// CountD specifies which element of destination to update.
ShuffleMask[CountD] = InVal;
// ZMask zaps values, potentially overriding the CountD elt.
if (ZMask & 1) ShuffleMask[0] = SM_SentinelZero;
if (ZMask & 2) ShuffleMask[1] = SM_SentinelZero;
if (ZMask & 4) ShuffleMask[2] = SM_SentinelZero;
if (ZMask & 8) ShuffleMask[3] = SM_SentinelZero;
}
// <3,1> or <6,7,2,3>
void DecodeMOVHLPSMask(unsigned NElts,
SmallVectorImpl<unsigned> &ShuffleMask) {
for (unsigned i = NElts/2; i != NElts; ++i)
ShuffleMask.push_back(NElts+i);
for (unsigned i = NElts/2; i != NElts; ++i)
ShuffleMask.push_back(i);
}
// <0,2> or <0,1,4,5>
void DecodeMOVLHPSMask(unsigned NElts,
SmallVectorImpl<unsigned> &ShuffleMask) {
for (unsigned i = 0; i != NElts/2; ++i)
ShuffleMask.push_back(i);
for (unsigned i = 0; i != NElts/2; ++i)
ShuffleMask.push_back(NElts+i);
}
void DecodePSHUFMask(unsigned NElts, unsigned Imm,
SmallVectorImpl<unsigned> &ShuffleMask) {
for (unsigned i = 0; i != NElts; ++i) {
ShuffleMask.push_back(Imm % NElts);
Imm /= NElts;
}
}
void DecodePSHUFHWMask(unsigned Imm,
SmallVectorImpl<unsigned> &ShuffleMask) {
ShuffleMask.push_back(0);
ShuffleMask.push_back(1);
ShuffleMask.push_back(2);
ShuffleMask.push_back(3);
for (unsigned i = 0; i != 4; ++i) {
ShuffleMask.push_back(4+(Imm & 3));
Imm >>= 2;
}
}
void DecodePSHUFLWMask(unsigned Imm,
SmallVectorImpl<unsigned> &ShuffleMask) {
for (unsigned i = 0; i != 4; ++i) {
ShuffleMask.push_back((Imm & 3));
Imm >>= 2;
}
ShuffleMask.push_back(4);
ShuffleMask.push_back(5);
ShuffleMask.push_back(6);
ShuffleMask.push_back(7);
}
void DecodePUNPCKLBWMask(unsigned NElts,
SmallVectorImpl<unsigned> &ShuffleMask) {
DecodeUNPCKLPMask(MVT::getVectorVT(MVT::i8, NElts), ShuffleMask);
}
void DecodePUNPCKLWDMask(unsigned NElts,
SmallVectorImpl<unsigned> &ShuffleMask) {
DecodeUNPCKLPMask(MVT::getVectorVT(MVT::i16, NElts), ShuffleMask);
}
void DecodePUNPCKLDQMask(unsigned NElts,
SmallVectorImpl<unsigned> &ShuffleMask) {
DecodeUNPCKLPMask(MVT::getVectorVT(MVT::i32, NElts), ShuffleMask);
}
void DecodePUNPCKLQDQMask(unsigned NElts,
SmallVectorImpl<unsigned> &ShuffleMask) {
DecodeUNPCKLPMask(MVT::getVectorVT(MVT::i64, NElts), ShuffleMask);
}
void DecodePUNPCKLMask(EVT VT,
SmallVectorImpl<unsigned> &ShuffleMask) {
DecodeUNPCKLPMask(VT, ShuffleMask);
}
void DecodePUNPCKHMask(unsigned NElts,
SmallVectorImpl<unsigned> &ShuffleMask) {
for (unsigned i = 0; i != NElts/2; ++i) {
ShuffleMask.push_back(i+NElts/2);
ShuffleMask.push_back(i+NElts+NElts/2);
}
}
void DecodeSHUFPSMask(unsigned NElts, unsigned Imm,
SmallVectorImpl<unsigned> &ShuffleMask) {
// Part that reads from dest.
for (unsigned i = 0; i != NElts/2; ++i) {
ShuffleMask.push_back(Imm % NElts);
Imm /= NElts;
}
// Part that reads from src.
for (unsigned i = 0; i != NElts/2; ++i) {
ShuffleMask.push_back(Imm % NElts + NElts);
Imm /= NElts;
}
}
void DecodeUNPCKHPMask(unsigned NElts,
SmallVectorImpl<unsigned> &ShuffleMask) {
for (unsigned i = 0; i != NElts/2; ++i) {
ShuffleMask.push_back(i+NElts/2); // Reads from dest
ShuffleMask.push_back(i+NElts+NElts/2); // Reads from src
}
}
void DecodeUNPCKLPSMask(unsigned NElts,
SmallVectorImpl<unsigned> &ShuffleMask) {
DecodeUNPCKLPMask(MVT::getVectorVT(MVT::i32, NElts), ShuffleMask);
}
void DecodeUNPCKLPDMask(unsigned NElts,
SmallVectorImpl<unsigned> &ShuffleMask) {
DecodeUNPCKLPMask(MVT::getVectorVT(MVT::i64, NElts), ShuffleMask);
}
/// DecodeUNPCKLPMask - This decodes the shuffle masks for unpcklps/unpcklpd
/// etc. VT indicates the type of the vector allowing it to handle different
/// datatypes and vector widths.
void DecodeUNPCKLPMask(EVT VT,
SmallVectorImpl<unsigned> &ShuffleMask) {
unsigned NumElts = VT.getVectorNumElements();
// Handle vector lengths > 128 bits. Define a "section" as a set of
// 128 bits. AVX defines UNPCK* to operate independently on 128-bit
// sections.
unsigned NumSections = VT.getSizeInBits() / 128;
if (NumSections == 0 ) NumSections = 1; // Handle MMX
unsigned NumSectionElts = NumElts / NumSections;
unsigned Start = 0;
unsigned End = NumSectionElts / 2;
for (unsigned s = 0; s < NumSections; ++s) {
for (unsigned i = Start; i != End; ++i) {
ShuffleMask.push_back(i); // Reads from dest/src1
ShuffleMask.push_back(i+NumSectionElts); // Reads from src/src2
}
// Process the next 128 bits.
Start += NumSectionElts;
End += NumSectionElts;
}
}
void DecodeVPERMILPSMask(unsigned NElts, unsigned Imm,
SmallVectorImpl<unsigned> &ShuffleMask) {
DecodeVPERMILMask(MVT::getVectorVT(MVT::i32, NElts), Imm, ShuffleMask);
}
void DecodeVPERMILPDMask(unsigned NElts, unsigned Imm,
SmallVectorImpl<unsigned> &ShuffleMask) {
DecodeVPERMILMask(MVT::getVectorVT(MVT::i64, NElts), Imm, ShuffleMask);
}
// DecodeVPERMILMask - Decodes VPERMIL permutes for any 128-bit
// with 32/64-bit elements. For 256-bit vectors, it's considered
// as two 128 lanes and the mask of the first lane should be
// identical of the second one.
void DecodeVPERMILMask(EVT VT, unsigned Imm,
SmallVectorImpl<unsigned> &ShuffleMask) {
unsigned NumElts = VT.getVectorNumElements();
unsigned NumLanes = VT.getSizeInBits()/128;
for (unsigned l = 0; l != NumLanes; ++l) {
for (unsigned i = 0; i != NumElts/NumLanes; ++i) {
unsigned Idx = (Imm >> (i*2)) & 0x3 ;
ShuffleMask.push_back(Idx+(l*NumElts/NumLanes));
}
}
}
} // llvm namespace
|