1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
|
//===-- X86FixupLEAs.cpp - use or replace LEA instructions -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the pass which will find instructions which
// can be re-written as LEA instructions in order to reduce pipeline
// delays for some models of the Intel Atom family.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "x86-fixup-LEAs"
#include "X86.h"
#include "X86InstrInfo.h"
#include "X86Subtarget.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
using namespace llvm;
STATISTIC(NumLEAs, "Number of LEA instructions created");
namespace {
class FixupLEAPass : public MachineFunctionPass {
enum RegUsageState { RU_NotUsed, RU_Write, RU_Read };
static char ID;
/// \brief Loop over all of the instructions in the basic block
/// replacing applicable instructions with LEA instructions,
/// where appropriate.
bool processBasicBlock(MachineFunction &MF, MachineFunction::iterator MFI);
virtual const char *getPassName() const { return "X86 Atom LEA Fixup";}
/// \brief Given a machine register, look for the instruction
/// which writes it in the current basic block. If found,
/// try to replace it with an equivalent LEA instruction.
/// If replacement succeeds, then also process the the newly created
/// instruction.
void seekLEAFixup(MachineOperand& p, MachineBasicBlock::iterator& I,
MachineFunction::iterator MFI);
/// \brief Given a memory access or LEA instruction
/// whose address mode uses a base and/or index register, look for
/// an opportunity to replace the instruction which sets the base or index
/// register with an equivalent LEA instruction.
void processInstruction(MachineBasicBlock::iterator& I,
MachineFunction::iterator MFI);
/// \brief Determine if an instruction references a machine register
/// and, if so, whether it reads or writes the register.
RegUsageState usesRegister(MachineOperand& p,
MachineBasicBlock::iterator I);
/// \brief Step backwards through a basic block, looking
/// for an instruction which writes a register within
/// a maximum of INSTR_DISTANCE_THRESHOLD instruction latency cycles.
MachineBasicBlock::iterator searchBackwards(MachineOperand& p,
MachineBasicBlock::iterator& I,
MachineFunction::iterator MFI);
/// \brief if an instruction can be converted to an
/// equivalent LEA, insert the new instruction into the basic block
/// and return a pointer to it. Otherwise, return zero.
MachineInstr* postRAConvertToLEA(MachineFunction::iterator &MFI,
MachineBasicBlock::iterator &MBBI) const;
public:
FixupLEAPass() : MachineFunctionPass(ID) {}
/// \brief Loop over all of the basic blocks,
/// replacing instructions by equivalent LEA instructions
/// if needed and when possible.
virtual bool runOnMachineFunction(MachineFunction &MF);
private:
MachineFunction *MF;
const TargetMachine *TM;
const TargetInstrInfo *TII; // Machine instruction info.
};
char FixupLEAPass::ID = 0;
}
MachineInstr *
FixupLEAPass::postRAConvertToLEA(MachineFunction::iterator &MFI,
MachineBasicBlock::iterator &MBBI) const {
MachineInstr* MI = MBBI;
MachineInstr* NewMI;
switch (MI->getOpcode()) {
case X86::MOV32rr:
case X86::MOV64rr: {
const MachineOperand& Src = MI->getOperand(1);
const MachineOperand& Dest = MI->getOperand(0);
NewMI = BuildMI(*MF, MI->getDebugLoc(),
TII->get( MI->getOpcode() == X86::MOV32rr ? X86::LEA32r : X86::LEA64r))
.addOperand(Dest)
.addOperand(Src).addImm(1).addReg(0).addImm(0).addReg(0);
MFI->insert(MBBI, NewMI); // Insert the new inst
return NewMI;
}
case X86::ADD64ri32:
case X86::ADD64ri8:
case X86::ADD64ri32_DB:
case X86::ADD64ri8_DB:
case X86::ADD32ri:
case X86::ADD32ri8:
case X86::ADD32ri_DB:
case X86::ADD32ri8_DB:
case X86::ADD16ri:
case X86::ADD16ri8:
case X86::ADD16ri_DB:
case X86::ADD16ri8_DB:
if (!MI->getOperand(2).isImm()) {
// convertToThreeAddress will call getImm()
// which requires isImm() to be true
return 0;
}
break;
case X86::ADD16rr:
case X86::ADD16rr_DB:
if (MI->getOperand(1).getReg() != MI->getOperand(2).getReg()) {
// if src1 != src2, then convertToThreeAddress will
// need to create a Virtual register, which we cannot do
// after register allocation.
return 0;
}
}
return TII->convertToThreeAddress(MFI, MBBI, 0);
}
FunctionPass *llvm::createX86FixupLEAs() {
return new FixupLEAPass();
}
bool FixupLEAPass::runOnMachineFunction(MachineFunction &Func) {
MF = &Func;
TM = &MF->getTarget();
TII = TM->getInstrInfo();
DEBUG(dbgs() << "Start X86FixupLEAs\n";);
// Process all basic blocks.
for (MachineFunction::iterator I = Func.begin(), E = Func.end(); I != E; ++I)
processBasicBlock(Func, I);
DEBUG(dbgs() << "End X86FixupLEAs\n";);
return true;
}
FixupLEAPass::RegUsageState FixupLEAPass::usesRegister(MachineOperand& p,
MachineBasicBlock::iterator I) {
RegUsageState RegUsage = RU_NotUsed;
MachineInstr* MI = I;
for (unsigned int i = 0; i < MI->getNumOperands(); ++i) {
MachineOperand& opnd = MI->getOperand(i);
if (opnd.isReg() && opnd.getReg() == p.getReg()){
if (opnd.isDef())
return RU_Write;
RegUsage = RU_Read;
}
}
return RegUsage;
}
/// getPreviousInstr - Given a reference to an instruction in a basic
/// block, return a reference to the previous instruction in the block,
/// wrapping around to the last instruction of the block if the block
/// branches to itself.
static inline bool getPreviousInstr(MachineBasicBlock::iterator& I,
MachineFunction::iterator MFI) {
if (I == MFI->begin()) {
if (MFI->isPredecessor(MFI)) {
I = --MFI->end();
return true;
}
else
return false;
}
--I;
return true;
}
MachineBasicBlock::iterator FixupLEAPass::searchBackwards(MachineOperand& p,
MachineBasicBlock::iterator& I,
MachineFunction::iterator MFI) {
int InstrDistance = 1;
MachineBasicBlock::iterator CurInst;
static const int INSTR_DISTANCE_THRESHOLD = 5;
CurInst = I;
bool Found;
Found = getPreviousInstr(CurInst, MFI);
while( Found && I != CurInst) {
if (CurInst->isCall() || CurInst->isInlineAsm())
break;
if (InstrDistance > INSTR_DISTANCE_THRESHOLD)
break; // too far back to make a difference
if (usesRegister(p, CurInst) == RU_Write){
return CurInst;
}
InstrDistance += TII->getInstrLatency(TM->getInstrItineraryData(), CurInst);
Found = getPreviousInstr(CurInst, MFI);
}
return 0;
}
void FixupLEAPass::processInstruction(MachineBasicBlock::iterator& I,
MachineFunction::iterator MFI) {
// Process a load, store, or LEA instruction.
MachineInstr *MI = I;
int opcode = MI->getOpcode();
const MCInstrDesc& Desc = MI->getDesc();
int AddrOffset = X86II::getMemoryOperandNo(Desc.TSFlags, opcode);
if (AddrOffset >= 0) {
AddrOffset += X86II::getOperandBias(Desc);
MachineOperand& p = MI->getOperand(AddrOffset + X86::AddrBaseReg);
if (p.isReg() && p.getReg() != X86::ESP) {
seekLEAFixup(p, I, MFI);
}
MachineOperand& q = MI->getOperand(AddrOffset + X86::AddrIndexReg);
if (q.isReg() && q.getReg() != X86::ESP) {
seekLEAFixup(q, I, MFI);
}
}
}
void FixupLEAPass::seekLEAFixup(MachineOperand& p,
MachineBasicBlock::iterator& I,
MachineFunction::iterator MFI) {
MachineBasicBlock::iterator MBI = searchBackwards(p, I, MFI);
if (MBI) {
MachineInstr* NewMI = postRAConvertToLEA(MFI, MBI);
if (NewMI) {
++NumLEAs;
DEBUG(dbgs() << "Candidate to replace:"; MBI->dump(););
// now to replace with an equivalent LEA...
DEBUG(dbgs() << "Replaced by: "; NewMI->dump(););
MFI->erase(MBI);
MachineBasicBlock::iterator J =
static_cast<MachineBasicBlock::iterator> (NewMI);
processInstruction(J, MFI);
}
}
}
bool FixupLEAPass::processBasicBlock(MachineFunction &MF,
MachineFunction::iterator MFI) {
for (MachineBasicBlock::iterator I = MFI->begin(); I != MFI->end(); ++I)
processInstruction(I, MFI);
return false;
}
|