aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/X86/X86FloatingPoint.cpp
blob: a4ea1a9eab04ecdbd22e0245ab0dd3d319cda43c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
//===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the pass which converts floating point instructions from
// pseudo registers into register stack instructions.  This pass uses live
// variable information to indicate where the FPn registers are used and their
// lifetimes.
//
// The x87 hardware tracks liveness of the stack registers, so it is necessary
// to implement exact liveness tracking between basic blocks. The CFG edges are
// partitioned into bundles where the same FP registers must be live in
// identical stack positions. Instructions are inserted at the end of each basic
// block to rearrange the live registers to match the outgoing bundle.
//
// This approach avoids splitting critical edges at the potential cost of more
// live register shuffling instructions when critical edges are present.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "x86-codegen"
#include "X86.h"
#include "X86InstrInfo.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/EdgeBundles.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include <algorithm>
using namespace llvm;

STATISTIC(NumFXCH, "Number of fxch instructions inserted");
STATISTIC(NumFP  , "Number of floating point instructions");

namespace {
  struct FPS : public MachineFunctionPass {
    static char ID;
    FPS() : MachineFunctionPass(ID) {
      initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
      // This is really only to keep valgrind quiet.
      // The logic in isLive() is too much for it.
      memset(Stack, 0, sizeof(Stack));
      memset(RegMap, 0, sizeof(RegMap));
    }

    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.setPreservesCFG();
      AU.addRequired<EdgeBundles>();
      AU.addPreservedID(MachineLoopInfoID);
      AU.addPreservedID(MachineDominatorsID);
      MachineFunctionPass::getAnalysisUsage(AU);
    }

    virtual bool runOnMachineFunction(MachineFunction &MF);

    virtual const char *getPassName() const { return "X86 FP Stackifier"; }

  private:
    const TargetInstrInfo *TII; // Machine instruction info.

    // Two CFG edges are related if they leave the same block, or enter the same
    // block. The transitive closure of an edge under this relation is a
    // LiveBundle. It represents a set of CFG edges where the live FP stack
    // registers must be allocated identically in the x87 stack.
    //
    // A LiveBundle is usually all the edges leaving a block, or all the edges
    // entering a block, but it can contain more edges if critical edges are
    // present.
    //
    // The set of live FP registers in a LiveBundle is calculated by bundleCFG,
    // but the exact mapping of FP registers to stack slots is fixed later.
    struct LiveBundle {
      // Bit mask of live FP registers. Bit 0 = FP0, bit 1 = FP1, &c.
      unsigned Mask;

      // Number of pre-assigned live registers in FixStack. This is 0 when the
      // stack order has not yet been fixed.
      unsigned FixCount;

      // Assigned stack order for live-in registers.
      // FixStack[i] == getStackEntry(i) for all i < FixCount.
      unsigned char FixStack[8];

      LiveBundle() : Mask(0), FixCount(0) {}

      // Have the live registers been assigned a stack order yet?
      bool isFixed() const { return !Mask || FixCount; }
    };

    // Numbered LiveBundle structs. LiveBundles[0] is used for all CFG edges
    // with no live FP registers.
    SmallVector<LiveBundle, 8> LiveBundles;

    // The edge bundle analysis provides indices into the LiveBundles vector.
    EdgeBundles *Bundles;

    // Return a bitmask of FP registers in block's live-in list.
    static unsigned calcLiveInMask(MachineBasicBlock *MBB) {
      unsigned Mask = 0;
      for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
           E = MBB->livein_end(); I != E; ++I) {
        unsigned Reg = *I;
        if (Reg < X86::FP0 || Reg > X86::FP6)
          continue;
        Mask |= 1 << (Reg - X86::FP0);
      }
      return Mask;
    }

    // Partition all the CFG edges into LiveBundles.
    void bundleCFG(MachineFunction &MF);

    MachineBasicBlock *MBB;     // Current basic block

    // The hardware keeps track of how many FP registers are live, so we have
    // to model that exactly. Usually, each live register corresponds to an
    // FP<n> register, but when dealing with calls, returns, and inline
    // assembly, it is sometimes necessary to have live scratch registers.
    unsigned Stack[8];          // FP<n> Registers in each stack slot...
    unsigned StackTop;          // The current top of the FP stack.

    enum {
      NumFPRegs = 16            // Including scratch pseudo-registers.
    };

    // For each live FP<n> register, point to its Stack[] entry.
    // The first entries correspond to FP0-FP6, the rest are scratch registers
    // used when we need slightly different live registers than what the
    // register allocator thinks.
    unsigned RegMap[NumFPRegs];

    // Pending fixed registers - Inline assembly needs FP registers to appear
    // in fixed stack slot positions. This is handled by copying FP registers
    // to ST registers before the instruction, and copying back after the
    // instruction.
    //
    // This is modeled with pending ST registers. NumPendingSTs is the number
    // of ST registers (ST0-STn) we are tracking. PendingST[n] points to an FP
    // register that holds the ST value. The ST registers are not moved into
    // place until immediately before the instruction that needs them.
    //
    // It can happen that we need an ST register to be live when no FP register
    // holds the value:
    //
    //   %ST0 = COPY %FP4<kill>
    //
    // When that happens, we allocate a scratch FP register to hold the ST
    // value. That means every register in PendingST must be live.

    unsigned NumPendingSTs;
    unsigned char PendingST[8];

    // Set up our stack model to match the incoming registers to MBB.
    void setupBlockStack();

    // Shuffle live registers to match the expectations of successor blocks.
    void finishBlockStack();

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    void dumpStack() const {
      dbgs() << "Stack contents:";
      for (unsigned i = 0; i != StackTop; ++i) {
        dbgs() << " FP" << Stack[i];
        assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
      }
      for (unsigned i = 0; i != NumPendingSTs; ++i)
        dbgs() << ", ST" << i << " in FP" << unsigned(PendingST[i]);
      dbgs() << "\n";
    }
#endif

    /// getSlot - Return the stack slot number a particular register number is
    /// in.
    unsigned getSlot(unsigned RegNo) const {
      assert(RegNo < NumFPRegs && "Regno out of range!");
      return RegMap[RegNo];
    }

    /// isLive - Is RegNo currently live in the stack?
    bool isLive(unsigned RegNo) const {
      unsigned Slot = getSlot(RegNo);
      return Slot < StackTop && Stack[Slot] == RegNo;
    }

    /// getScratchReg - Return an FP register that is not currently in use.
    unsigned getScratchReg() const {
      for (int i = NumFPRegs - 1; i >= 8; --i)
        if (!isLive(i))
          return i;
      llvm_unreachable("Ran out of scratch FP registers");
    }

    /// isScratchReg - Returns trus if RegNo is a scratch FP register.
    static bool isScratchReg(unsigned RegNo) {
      return RegNo > 8 && RegNo < NumFPRegs;
    }

    /// getStackEntry - Return the X86::FP<n> register in register ST(i).
    unsigned getStackEntry(unsigned STi) const {
      if (STi >= StackTop)
        report_fatal_error("Access past stack top!");
      return Stack[StackTop-1-STi];
    }

    /// getSTReg - Return the X86::ST(i) register which contains the specified
    /// FP<RegNo> register.
    unsigned getSTReg(unsigned RegNo) const {
      return StackTop - 1 - getSlot(RegNo) + X86::ST0;
    }

    // pushReg - Push the specified FP<n> register onto the stack.
    void pushReg(unsigned Reg) {
      assert(Reg < NumFPRegs && "Register number out of range!");
      if (StackTop >= 8)
        report_fatal_error("Stack overflow!");
      Stack[StackTop] = Reg;
      RegMap[Reg] = StackTop++;
    }

    bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
    void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
      DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
      if (isAtTop(RegNo)) return;

      unsigned STReg = getSTReg(RegNo);
      unsigned RegOnTop = getStackEntry(0);

      // Swap the slots the regs are in.
      std::swap(RegMap[RegNo], RegMap[RegOnTop]);

      // Swap stack slot contents.
      if (RegMap[RegOnTop] >= StackTop)
        report_fatal_error("Access past stack top!");
      std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);

      // Emit an fxch to update the runtime processors version of the state.
      BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg);
      ++NumFXCH;
    }

    void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
      DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
      unsigned STReg = getSTReg(RegNo);
      pushReg(AsReg);   // New register on top of stack

      BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg);
    }

    /// duplicatePendingSTBeforeKill - The instruction at I is about to kill
    /// RegNo. If any PendingST registers still need the RegNo value, duplicate
    /// them to new scratch registers.
    void duplicatePendingSTBeforeKill(unsigned RegNo, MachineInstr *I) {
      for (unsigned i = 0; i != NumPendingSTs; ++i) {
        if (PendingST[i] != RegNo)
          continue;
        unsigned SR = getScratchReg();
        DEBUG(dbgs() << "Duplicating pending ST" << i
                     << " in FP" << RegNo << " to FP" << SR << '\n');
        duplicateToTop(RegNo, SR, I);
        PendingST[i] = SR;
      }
    }

    /// popStackAfter - Pop the current value off of the top of the FP stack
    /// after the specified instruction.
    void popStackAfter(MachineBasicBlock::iterator &I);

    /// freeStackSlotAfter - Free the specified register from the register
    /// stack, so that it is no longer in a register.  If the register is
    /// currently at the top of the stack, we just pop the current instruction,
    /// otherwise we store the current top-of-stack into the specified slot,
    /// then pop the top of stack.
    void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);

    /// freeStackSlotBefore - Just the pop, no folding. Return the inserted
    /// instruction.
    MachineBasicBlock::iterator
    freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo);

    /// Adjust the live registers to be the set in Mask.
    void adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I);

    /// Shuffle the top FixCount stack entries such that FP reg FixStack[0] is
    /// st(0), FP reg FixStack[1] is st(1) etc.
    void shuffleStackTop(const unsigned char *FixStack, unsigned FixCount,
                         MachineBasicBlock::iterator I);

    bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);

    void handleZeroArgFP(MachineBasicBlock::iterator &I);
    void handleOneArgFP(MachineBasicBlock::iterator &I);
    void handleOneArgFPRW(MachineBasicBlock::iterator &I);
    void handleTwoArgFP(MachineBasicBlock::iterator &I);
    void handleCompareFP(MachineBasicBlock::iterator &I);
    void handleCondMovFP(MachineBasicBlock::iterator &I);
    void handleSpecialFP(MachineBasicBlock::iterator &I);

    // Check if a COPY instruction is using FP registers.
    static bool isFPCopy(MachineInstr *MI) {
      unsigned DstReg = MI->getOperand(0).getReg();
      unsigned SrcReg = MI->getOperand(1).getReg();

      return X86::RFP80RegClass.contains(DstReg) ||
        X86::RFP80RegClass.contains(SrcReg);
    }
  };
  char FPS::ID = 0;
}

FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }

/// getFPReg - Return the X86::FPx register number for the specified operand.
/// For example, this returns 3 for X86::FP3.
static unsigned getFPReg(const MachineOperand &MO) {
  assert(MO.isReg() && "Expected an FP register!");
  unsigned Reg = MO.getReg();
  assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
  return Reg - X86::FP0;
}

/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
/// register references into FP stack references.
///
bool FPS::runOnMachineFunction(MachineFunction &MF) {
  // We only need to run this pass if there are any FP registers used in this
  // function.  If it is all integer, there is nothing for us to do!
  bool FPIsUsed = false;

  assert(X86::FP6 == X86::FP0+6 && "Register enums aren't sorted right!");
  for (unsigned i = 0; i <= 6; ++i)
    if (MF.getRegInfo().isPhysRegUsed(X86::FP0+i)) {
      FPIsUsed = true;
      break;
    }

  // Early exit.
  if (!FPIsUsed) return false;

  Bundles = &getAnalysis<EdgeBundles>();
  TII = MF.getTarget().getInstrInfo();

  // Prepare cross-MBB liveness.
  bundleCFG(MF);

  StackTop = 0;

  // Process the function in depth first order so that we process at least one
  // of the predecessors for every reachable block in the function.
  SmallPtrSet<MachineBasicBlock*, 8> Processed;
  MachineBasicBlock *Entry = MF.begin();

  bool Changed = false;
  for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*, 8> >
         I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
       I != E; ++I)
    Changed |= processBasicBlock(MF, **I);

  // Process any unreachable blocks in arbitrary order now.
  if (MF.size() != Processed.size())
    for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB)
      if (Processed.insert(BB))
        Changed |= processBasicBlock(MF, *BB);

  LiveBundles.clear();

  return Changed;
}

/// bundleCFG - Scan all the basic blocks to determine consistent live-in and
/// live-out sets for the FP registers. Consistent means that the set of
/// registers live-out from a block is identical to the live-in set of all
/// successors. This is not enforced by the normal live-in lists since
/// registers may be implicitly defined, or not used by all successors.
void FPS::bundleCFG(MachineFunction &MF) {
  assert(LiveBundles.empty() && "Stale data in LiveBundles");
  LiveBundles.resize(Bundles->getNumBundles());

  // Gather the actual live-in masks for all MBBs.
  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
    MachineBasicBlock *MBB = I;
    const unsigned Mask = calcLiveInMask(MBB);
    if (!Mask)
      continue;
    // Update MBB ingoing bundle mask.
    LiveBundles[Bundles->getBundle(MBB->getNumber(), false)].Mask |= Mask;
  }
}

/// processBasicBlock - Loop over all of the instructions in the basic block,
/// transforming FP instructions into their stack form.
///
bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
  bool Changed = false;
  MBB = &BB;
  NumPendingSTs = 0;

  setupBlockStack();

  for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
    MachineInstr *MI = I;
    uint64_t Flags = MI->getDesc().TSFlags;

    unsigned FPInstClass = Flags & X86II::FPTypeMask;
    if (MI->isInlineAsm())
      FPInstClass = X86II::SpecialFP;

    if (MI->isCopy() && isFPCopy(MI))
      FPInstClass = X86II::SpecialFP;

    if (MI->isImplicitDef() &&
        X86::RFP80RegClass.contains(MI->getOperand(0).getReg()))
      FPInstClass = X86II::SpecialFP;

    if (FPInstClass == X86II::NotFP)
      continue;  // Efficiently ignore non-fp insts!

    MachineInstr *PrevMI = 0;
    if (I != BB.begin())
      PrevMI = prior(I);

    ++NumFP;  // Keep track of # of pseudo instrs
    DEBUG(dbgs() << "\nFPInst:\t" << *MI);

    // Get dead variables list now because the MI pointer may be deleted as part
    // of processing!
    SmallVector<unsigned, 8> DeadRegs;
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
      const MachineOperand &MO = MI->getOperand(i);
      if (MO.isReg() && MO.isDead())
        DeadRegs.push_back(MO.getReg());
    }

    switch (FPInstClass) {
    case X86II::ZeroArgFP:  handleZeroArgFP(I); break;
    case X86II::OneArgFP:   handleOneArgFP(I);  break;  // fstp ST(0)
    case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
    case X86II::TwoArgFP:   handleTwoArgFP(I);  break;
    case X86II::CompareFP:  handleCompareFP(I); break;
    case X86II::CondMovFP:  handleCondMovFP(I); break;
    case X86II::SpecialFP:  handleSpecialFP(I); break;
    default: llvm_unreachable("Unknown FP Type!");
    }

    // Check to see if any of the values defined by this instruction are dead
    // after definition.  If so, pop them.
    for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
      unsigned Reg = DeadRegs[i];
      if (Reg >= X86::FP0 && Reg <= X86::FP6) {
        DEBUG(dbgs() << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
        freeStackSlotAfter(I, Reg-X86::FP0);
      }
    }

    // Print out all of the instructions expanded to if -debug
    DEBUG(
      MachineBasicBlock::iterator PrevI(PrevMI);
      if (I == PrevI) {
        dbgs() << "Just deleted pseudo instruction\n";
      } else {
        MachineBasicBlock::iterator Start = I;
        // Rewind to first instruction newly inserted.
        while (Start != BB.begin() && prior(Start) != PrevI) --Start;
        dbgs() << "Inserted instructions:\n\t";
        Start->print(dbgs(), &MF.getTarget());
        while (++Start != llvm::next(I)) {}
      }
      dumpStack();
    );
    (void)PrevMI;

    Changed = true;
  }

  finishBlockStack();

  return Changed;
}

/// setupBlockStack - Use the live bundles to set up our model of the stack
/// to match predecessors' live out stack.
void FPS::setupBlockStack() {
  DEBUG(dbgs() << "\nSetting up live-ins for BB#" << MBB->getNumber()
               << " derived from " << MBB->getName() << ".\n");
  StackTop = 0;
  // Get the live-in bundle for MBB.
  const LiveBundle &Bundle =
    LiveBundles[Bundles->getBundle(MBB->getNumber(), false)];

  if (!Bundle.Mask) {
    DEBUG(dbgs() << "Block has no FP live-ins.\n");
    return;
  }

  // Depth-first iteration should ensure that we always have an assigned stack.
  assert(Bundle.isFixed() && "Reached block before any predecessors");

  // Push the fixed live-in registers.
  for (unsigned i = Bundle.FixCount; i > 0; --i) {
    MBB->addLiveIn(X86::ST0+i-1);
    DEBUG(dbgs() << "Live-in st(" << (i-1) << "): %FP"
                 << unsigned(Bundle.FixStack[i-1]) << '\n');
    pushReg(Bundle.FixStack[i-1]);
  }

  // Kill off unwanted live-ins. This can happen with a critical edge.
  // FIXME: We could keep these live registers around as zombies. They may need
  // to be revived at the end of a short block. It might save a few instrs.
  adjustLiveRegs(calcLiveInMask(MBB), MBB->begin());
  DEBUG(MBB->dump());
}

/// finishBlockStack - Revive live-outs that are implicitly defined out of
/// MBB. Shuffle live registers to match the expected fixed stack of any
/// predecessors, and ensure that all predecessors are expecting the same
/// stack.
void FPS::finishBlockStack() {
  // The RET handling below takes care of return blocks for us.
  if (MBB->succ_empty())
    return;

  DEBUG(dbgs() << "Setting up live-outs for BB#" << MBB->getNumber()
               << " derived from " << MBB->getName() << ".\n");

  // Get MBB's live-out bundle.
  unsigned BundleIdx = Bundles->getBundle(MBB->getNumber(), true);
  LiveBundle &Bundle = LiveBundles[BundleIdx];

  // We may need to kill and define some registers to match successors.
  // FIXME: This can probably be combined with the shuffle below.
  MachineBasicBlock::iterator Term = MBB->getFirstTerminator();
  adjustLiveRegs(Bundle.Mask, Term);

  if (!Bundle.Mask) {
    DEBUG(dbgs() << "No live-outs.\n");
    return;
  }

  // Has the stack order been fixed yet?
  DEBUG(dbgs() << "LB#" << BundleIdx << ": ");
  if (Bundle.isFixed()) {
    DEBUG(dbgs() << "Shuffling stack to match.\n");
    shuffleStackTop(Bundle.FixStack, Bundle.FixCount, Term);
  } else {
    // Not fixed yet, we get to choose.
    DEBUG(dbgs() << "Fixing stack order now.\n");
    Bundle.FixCount = StackTop;
    for (unsigned i = 0; i < StackTop; ++i)
      Bundle.FixStack[i] = getStackEntry(i);
  }
}


//===----------------------------------------------------------------------===//
// Efficient Lookup Table Support
//===----------------------------------------------------------------------===//

namespace {
  struct TableEntry {
    uint16_t from;
    uint16_t to;
    bool operator<(const TableEntry &TE) const { return from < TE.from; }
    friend bool operator<(const TableEntry &TE, unsigned V) {
      return TE.from < V;
    }
    friend bool LLVM_ATTRIBUTE_UNUSED operator<(unsigned V,
                                                const TableEntry &TE) {
      return V < TE.from;
    }
  };
}

#ifndef NDEBUG
static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
  for (unsigned i = 0; i != NumEntries-1; ++i)
    if (!(Table[i] < Table[i+1])) return false;
  return true;
}
#endif

static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
  const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
  if (I != Table+N && I->from == Opcode)
    return I->to;
  return -1;
}

#ifdef NDEBUG
#define ASSERT_SORTED(TABLE)
#else
#define ASSERT_SORTED(TABLE)                                              \
  { static bool TABLE##Checked = false;                                   \
    if (!TABLE##Checked) {                                                \
       assert(TableIsSorted(TABLE, array_lengthof(TABLE)) &&              \
              "All lookup tables must be sorted for efficient access!");  \
       TABLE##Checked = true;                                             \
    }                                                                     \
  }
#endif

//===----------------------------------------------------------------------===//
// Register File -> Register Stack Mapping Methods
//===----------------------------------------------------------------------===//

// OpcodeTable - Sorted map of register instructions to their stack version.
// The first element is an register file pseudo instruction, the second is the
// concrete X86 instruction which uses the register stack.
//
static const TableEntry OpcodeTable[] = {
  { X86::ABS_Fp32     , X86::ABS_F     },
  { X86::ABS_Fp64     , X86::ABS_F     },
  { X86::ABS_Fp80     , X86::ABS_F     },
  { X86::ADD_Fp32m    , X86::ADD_F32m  },
  { X86::ADD_Fp64m    , X86::ADD_F64m  },
  { X86::ADD_Fp64m32  , X86::ADD_F32m  },
  { X86::ADD_Fp80m32  , X86::ADD_F32m  },
  { X86::ADD_Fp80m64  , X86::ADD_F64m  },
  { X86::ADD_FpI16m32 , X86::ADD_FI16m },
  { X86::ADD_FpI16m64 , X86::ADD_FI16m },
  { X86::ADD_FpI16m80 , X86::ADD_FI16m },
  { X86::ADD_FpI32m32 , X86::ADD_FI32m },
  { X86::ADD_FpI32m64 , X86::ADD_FI32m },
  { X86::ADD_FpI32m80 , X86::ADD_FI32m },
  { X86::CHS_Fp32     , X86::CHS_F     },
  { X86::CHS_Fp64     , X86::CHS_F     },
  { X86::CHS_Fp80     , X86::CHS_F     },
  { X86::CMOVBE_Fp32  , X86::CMOVBE_F  },
  { X86::CMOVBE_Fp64  , X86::CMOVBE_F  },
  { X86::CMOVBE_Fp80  , X86::CMOVBE_F  },
  { X86::CMOVB_Fp32   , X86::CMOVB_F   },
  { X86::CMOVB_Fp64   , X86::CMOVB_F  },
  { X86::CMOVB_Fp80   , X86::CMOVB_F  },
  { X86::CMOVE_Fp32   , X86::CMOVE_F  },
  { X86::CMOVE_Fp64   , X86::CMOVE_F   },
  { X86::CMOVE_Fp80   , X86::CMOVE_F   },
  { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
  { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
  { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
  { X86::CMOVNB_Fp32  , X86::CMOVNB_F  },
  { X86::CMOVNB_Fp64  , X86::CMOVNB_F  },
  { X86::CMOVNB_Fp80  , X86::CMOVNB_F  },
  { X86::CMOVNE_Fp32  , X86::CMOVNE_F  },
  { X86::CMOVNE_Fp64  , X86::CMOVNE_F  },
  { X86::CMOVNE_Fp80  , X86::CMOVNE_F  },
  { X86::CMOVNP_Fp32  , X86::CMOVNP_F  },
  { X86::CMOVNP_Fp64  , X86::CMOVNP_F  },
  { X86::CMOVNP_Fp80  , X86::CMOVNP_F  },
  { X86::CMOVP_Fp32   , X86::CMOVP_F   },
  { X86::CMOVP_Fp64   , X86::CMOVP_F   },
  { X86::CMOVP_Fp80   , X86::CMOVP_F   },
  { X86::COS_Fp32     , X86::COS_F     },
  { X86::COS_Fp64     , X86::COS_F     },
  { X86::COS_Fp80     , X86::COS_F     },
  { X86::DIVR_Fp32m   , X86::DIVR_F32m },
  { X86::DIVR_Fp64m   , X86::DIVR_F64m },
  { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
  { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
  { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
  { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
  { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
  { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
  { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
  { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
  { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
  { X86::DIV_Fp32m    , X86::DIV_F32m  },
  { X86::DIV_Fp64m    , X86::DIV_F64m  },
  { X86::DIV_Fp64m32  , X86::DIV_F32m  },
  { X86::DIV_Fp80m32  , X86::DIV_F32m  },
  { X86::DIV_Fp80m64  , X86::DIV_F64m  },
  { X86::DIV_FpI16m32 , X86::DIV_FI16m },
  { X86::DIV_FpI16m64 , X86::DIV_FI16m },
  { X86::DIV_FpI16m80 , X86::DIV_FI16m },
  { X86::DIV_FpI32m32 , X86::DIV_FI32m },
  { X86::DIV_FpI32m64 , X86::DIV_FI32m },
  { X86::DIV_FpI32m80 , X86::DIV_FI32m },
  { X86::ILD_Fp16m32  , X86::ILD_F16m  },
  { X86::ILD_Fp16m64  , X86::ILD_F16m  },
  { X86::ILD_Fp16m80  , X86::ILD_F16m  },
  { X86::ILD_Fp32m32  , X86::ILD_F32m  },
  { X86::ILD_Fp32m64  , X86::ILD_F32m  },
  { X86::ILD_Fp32m80  , X86::ILD_F32m  },
  { X86::ILD_Fp64m32  , X86::ILD_F64m  },
  { X86::ILD_Fp64m64  , X86::ILD_F64m  },
  { X86::ILD_Fp64m80  , X86::ILD_F64m  },
  { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
  { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
  { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
  { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
  { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
  { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
  { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
  { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
  { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
  { X86::IST_Fp16m32  , X86::IST_F16m  },
  { X86::IST_Fp16m64  , X86::IST_F16m  },
  { X86::IST_Fp16m80  , X86::IST_F16m  },
  { X86::IST_Fp32m32  , X86::IST_F32m  },
  { X86::IST_Fp32m64  , X86::IST_F32m  },
  { X86::IST_Fp32m80  , X86::IST_F32m  },
  { X86::IST_Fp64m32  , X86::IST_FP64m },
  { X86::IST_Fp64m64  , X86::IST_FP64m },
  { X86::IST_Fp64m80  , X86::IST_FP64m },
  { X86::LD_Fp032     , X86::LD_F0     },
  { X86::LD_Fp064     , X86::LD_F0     },
  { X86::LD_Fp080     , X86::LD_F0     },
  { X86::LD_Fp132     , X86::LD_F1     },
  { X86::LD_Fp164     , X86::LD_F1     },
  { X86::LD_Fp180     , X86::LD_F1     },
  { X86::LD_Fp32m     , X86::LD_F32m   },
  { X86::LD_Fp32m64   , X86::LD_F32m   },
  { X86::LD_Fp32m80   , X86::LD_F32m   },
  { X86::LD_Fp64m     , X86::LD_F64m   },
  { X86::LD_Fp64m80   , X86::LD_F64m   },
  { X86::LD_Fp80m     , X86::LD_F80m   },
  { X86::MUL_Fp32m    , X86::MUL_F32m  },
  { X86::MUL_Fp64m    , X86::MUL_F64m  },
  { X86::MUL_Fp64m32  , X86::MUL_F32m  },
  { X86::MUL_Fp80m32  , X86::MUL_F32m  },
  { X86::MUL_Fp80m64  , X86::MUL_F64m  },
  { X86::MUL_FpI16m32 , X86::MUL_FI16m },
  { X86::MUL_FpI16m64 , X86::MUL_FI16m },
  { X86::MUL_FpI16m80 , X86::MUL_FI16m },
  { X86::MUL_FpI32m32 , X86::MUL_FI32m },
  { X86::MUL_FpI32m64 , X86::MUL_FI32m },
  { X86::MUL_FpI32m80 , X86::MUL_FI32m },
  { X86::SIN_Fp32     , X86::SIN_F     },
  { X86::SIN_Fp64     , X86::SIN_F     },
  { X86::SIN_Fp80     , X86::SIN_F     },
  { X86::SQRT_Fp32    , X86::SQRT_F    },
  { X86::SQRT_Fp64    , X86::SQRT_F    },
  { X86::SQRT_Fp80    , X86::SQRT_F    },
  { X86::ST_Fp32m     , X86::ST_F32m   },
  { X86::ST_Fp64m     , X86::ST_F64m   },
  { X86::ST_Fp64m32   , X86::ST_F32m   },
  { X86::ST_Fp80m32   , X86::ST_F32m   },
  { X86::ST_Fp80m64   , X86::ST_F64m   },
  { X86::ST_FpP80m    , X86::ST_FP80m  },
  { X86::SUBR_Fp32m   , X86::SUBR_F32m },
  { X86::SUBR_Fp64m   , X86::SUBR_F64m },
  { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
  { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
  { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
  { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
  { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
  { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
  { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
  { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
  { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
  { X86::SUB_Fp32m    , X86::SUB_F32m  },
  { X86::SUB_Fp64m    , X86::SUB_F64m  },
  { X86::SUB_Fp64m32  , X86::SUB_F32m  },
  { X86::SUB_Fp80m32  , X86::SUB_F32m  },
  { X86::SUB_Fp80m64  , X86::SUB_F64m  },
  { X86::SUB_FpI16m32 , X86::SUB_FI16m },
  { X86::SUB_FpI16m64 , X86::SUB_FI16m },
  { X86::SUB_FpI16m80 , X86::SUB_FI16m },
  { X86::SUB_FpI32m32 , X86::SUB_FI32m },
  { X86::SUB_FpI32m64 , X86::SUB_FI32m },
  { X86::SUB_FpI32m80 , X86::SUB_FI32m },
  { X86::TST_Fp32     , X86::TST_F     },
  { X86::TST_Fp64     , X86::TST_F     },
  { X86::TST_Fp80     , X86::TST_F     },
  { X86::UCOM_FpIr32  , X86::UCOM_FIr  },
  { X86::UCOM_FpIr64  , X86::UCOM_FIr  },
  { X86::UCOM_FpIr80  , X86::UCOM_FIr  },
  { X86::UCOM_Fpr32   , X86::UCOM_Fr   },
  { X86::UCOM_Fpr64   , X86::UCOM_Fr   },
  { X86::UCOM_Fpr80   , X86::UCOM_Fr   },
};

static unsigned getConcreteOpcode(unsigned Opcode) {
  ASSERT_SORTED(OpcodeTable);
  int Opc = Lookup(OpcodeTable, array_lengthof(OpcodeTable), Opcode);
  assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
  return Opc;
}

//===----------------------------------------------------------------------===//
// Helper Methods
//===----------------------------------------------------------------------===//

// PopTable - Sorted map of instructions to their popping version.  The first
// element is an instruction, the second is the version which pops.
//
static const TableEntry PopTable[] = {
  { X86::ADD_FrST0 , X86::ADD_FPrST0  },

  { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
  { X86::DIV_FrST0 , X86::DIV_FPrST0  },

  { X86::IST_F16m  , X86::IST_FP16m   },
  { X86::IST_F32m  , X86::IST_FP32m   },

  { X86::MUL_FrST0 , X86::MUL_FPrST0  },

  { X86::ST_F32m   , X86::ST_FP32m    },
  { X86::ST_F64m   , X86::ST_FP64m    },
  { X86::ST_Frr    , X86::ST_FPrr     },

  { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
  { X86::SUB_FrST0 , X86::SUB_FPrST0  },

  { X86::UCOM_FIr  , X86::UCOM_FIPr   },

  { X86::UCOM_FPr  , X86::UCOM_FPPr   },
  { X86::UCOM_Fr   , X86::UCOM_FPr    },
};

/// popStackAfter - Pop the current value off of the top of the FP stack after
/// the specified instruction.  This attempts to be sneaky and combine the pop
/// into the instruction itself if possible.  The iterator is left pointing to
/// the last instruction, be it a new pop instruction inserted, or the old
/// instruction if it was modified in place.
///
void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
  MachineInstr* MI = I;
  DebugLoc dl = MI->getDebugLoc();
  ASSERT_SORTED(PopTable);
  if (StackTop == 0)
    report_fatal_error("Cannot pop empty stack!");
  RegMap[Stack[--StackTop]] = ~0;     // Update state

  // Check to see if there is a popping version of this instruction...
  int Opcode = Lookup(PopTable, array_lengthof(PopTable), I->getOpcode());
  if (Opcode != -1) {
    I->setDesc(TII->get(Opcode));
    if (Opcode == X86::UCOM_FPPr)
      I->RemoveOperand(0);
  } else {    // Insert an explicit pop
    I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
  }
}

/// freeStackSlotAfter - Free the specified register from the register stack, so
/// that it is no longer in a register.  If the register is currently at the top
/// of the stack, we just pop the current instruction, otherwise we store the
/// current top-of-stack into the specified slot, then pop the top of stack.
void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
  if (getStackEntry(0) == FPRegNo) {  // already at the top of stack? easy.
    popStackAfter(I);
    return;
  }

  // Otherwise, store the top of stack into the dead slot, killing the operand
  // without having to add in an explicit xchg then pop.
  //
  I = freeStackSlotBefore(++I, FPRegNo);
}

/// freeStackSlotBefore - Free the specified register without trying any
/// folding.
MachineBasicBlock::iterator
FPS::freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo) {
  unsigned STReg    = getSTReg(FPRegNo);
  unsigned OldSlot  = getSlot(FPRegNo);
  unsigned TopReg   = Stack[StackTop-1];
  Stack[OldSlot]    = TopReg;
  RegMap[TopReg]    = OldSlot;
  RegMap[FPRegNo]   = ~0;
  Stack[--StackTop] = ~0;
  return BuildMI(*MBB, I, DebugLoc(), TII->get(X86::ST_FPrr)).addReg(STReg);
}

/// adjustLiveRegs - Kill and revive registers such that exactly the FP
/// registers with a bit in Mask are live.
void FPS::adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I) {
  unsigned Defs = Mask;
  unsigned Kills = 0;
  for (unsigned i = 0; i < StackTop; ++i) {
    unsigned RegNo = Stack[i];
    if (!(Defs & (1 << RegNo)))
      // This register is live, but we don't want it.
      Kills |= (1 << RegNo);
    else
      // We don't need to imp-def this live register.
      Defs &= ~(1 << RegNo);
  }
  assert((Kills & Defs) == 0 && "Register needs killing and def'ing?");

  // Produce implicit-defs for free by using killed registers.
  while (Kills && Defs) {
    unsigned KReg = countTrailingZeros(Kills);
    unsigned DReg = countTrailingZeros(Defs);
    DEBUG(dbgs() << "Renaming %FP" << KReg << " as imp %FP" << DReg << "\n");
    std::swap(Stack[getSlot(KReg)], Stack[getSlot(DReg)]);
    std::swap(RegMap[KReg], RegMap[DReg]);
    Kills &= ~(1 << KReg);
    Defs &= ~(1 << DReg);
  }

  // Kill registers by popping.
  if (Kills && I != MBB->begin()) {
    MachineBasicBlock::iterator I2 = llvm::prior(I);
    while (StackTop) {
      unsigned KReg = getStackEntry(0);
      if (!(Kills & (1 << KReg)))
        break;
      DEBUG(dbgs() << "Popping %FP" << KReg << "\n");
      popStackAfter(I2);
      Kills &= ~(1 << KReg);
    }
  }

  // Manually kill the rest.
  while (Kills) {
    unsigned KReg = countTrailingZeros(Kills);
    DEBUG(dbgs() << "Killing %FP" << KReg << "\n");
    freeStackSlotBefore(I, KReg);
    Kills &= ~(1 << KReg);
  }

  // Load zeros for all the imp-defs.
  while(Defs) {
    unsigned DReg = countTrailingZeros(Defs);
    DEBUG(dbgs() << "Defining %FP" << DReg << " as 0\n");
    BuildMI(*MBB, I, DebugLoc(), TII->get(X86::LD_F0));
    pushReg(DReg);
    Defs &= ~(1 << DReg);
  }

  // Now we should have the correct registers live.
  DEBUG(dumpStack());
  assert(StackTop == CountPopulation_32(Mask) && "Live count mismatch");
}

/// shuffleStackTop - emit fxch instructions before I to shuffle the top
/// FixCount entries into the order given by FixStack.
/// FIXME: Is there a better algorithm than insertion sort?
void FPS::shuffleStackTop(const unsigned char *FixStack,
                          unsigned FixCount,
                          MachineBasicBlock::iterator I) {
  // Move items into place, starting from the desired stack bottom.
  while (FixCount--) {
    // Old register at position FixCount.
    unsigned OldReg = getStackEntry(FixCount);
    // Desired register at position FixCount.
    unsigned Reg = FixStack[FixCount];
    if (Reg == OldReg)
      continue;
    // (Reg st0) (OldReg st0) = (Reg OldReg st0)
    moveToTop(Reg, I);
    if (FixCount > 0)
      moveToTop(OldReg, I);
  }
  DEBUG(dumpStack());
}


//===----------------------------------------------------------------------===//
// Instruction transformation implementation
//===----------------------------------------------------------------------===//

/// handleZeroArgFP - ST(0) = fld0    ST(0) = flds <mem>
///
void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
  MachineInstr *MI = I;
  unsigned DestReg = getFPReg(MI->getOperand(0));

  // Change from the pseudo instruction to the concrete instruction.
  MI->RemoveOperand(0);   // Remove the explicit ST(0) operand
  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));

  // Result gets pushed on the stack.
  pushReg(DestReg);
}

/// handleOneArgFP - fst <mem>, ST(0)
///
void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
  MachineInstr *MI = I;
  unsigned NumOps = MI->getDesc().getNumOperands();
  assert((NumOps == X86::AddrNumOperands + 1 || NumOps == 1) &&
         "Can only handle fst* & ftst instructions!");

  // Is this the last use of the source register?
  unsigned Reg = getFPReg(MI->getOperand(NumOps-1));
  bool KillsSrc = MI->killsRegister(X86::FP0+Reg);

  if (KillsSrc)
    duplicatePendingSTBeforeKill(Reg, I);

  // FISTP64m is strange because there isn't a non-popping versions.
  // If we have one _and_ we don't want to pop the operand, duplicate the value
  // on the stack instead of moving it.  This ensure that popping the value is
  // always ok.
  // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
  //
  if (!KillsSrc &&
      (MI->getOpcode() == X86::IST_Fp64m32 ||
       MI->getOpcode() == X86::ISTT_Fp16m32 ||
       MI->getOpcode() == X86::ISTT_Fp32m32 ||
       MI->getOpcode() == X86::ISTT_Fp64m32 ||
       MI->getOpcode() == X86::IST_Fp64m64 ||
       MI->getOpcode() == X86::ISTT_Fp16m64 ||
       MI->getOpcode() == X86::ISTT_Fp32m64 ||
       MI->getOpcode() == X86::ISTT_Fp64m64 ||
       MI->getOpcode() == X86::IST_Fp64m80 ||
       MI->getOpcode() == X86::ISTT_Fp16m80 ||
       MI->getOpcode() == X86::ISTT_Fp32m80 ||
       MI->getOpcode() == X86::ISTT_Fp64m80 ||
       MI->getOpcode() == X86::ST_FpP80m)) {
    duplicateToTop(Reg, getScratchReg(), I);
  } else {
    moveToTop(Reg, I);            // Move to the top of the stack...
  }

  // Convert from the pseudo instruction to the concrete instruction.
  MI->RemoveOperand(NumOps-1);    // Remove explicit ST(0) operand
  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));

  if (MI->getOpcode() == X86::IST_FP64m ||
      MI->getOpcode() == X86::ISTT_FP16m ||
      MI->getOpcode() == X86::ISTT_FP32m ||
      MI->getOpcode() == X86::ISTT_FP64m ||
      MI->getOpcode() == X86::ST_FP80m) {
    if (StackTop == 0)
      report_fatal_error("Stack empty??");
    --StackTop;
  } else if (KillsSrc) { // Last use of operand?
    popStackAfter(I);
  }
}


/// handleOneArgFPRW: Handle instructions that read from the top of stack and
/// replace the value with a newly computed value.  These instructions may have
/// non-fp operands after their FP operands.
///
///  Examples:
///     R1 = fchs R2
///     R1 = fadd R2, [mem]
///
void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
  MachineInstr *MI = I;
#ifndef NDEBUG
  unsigned NumOps = MI->getDesc().getNumOperands();
  assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
#endif

  // Is this the last use of the source register?
  unsigned Reg = getFPReg(MI->getOperand(1));
  bool KillsSrc = MI->killsRegister(X86::FP0+Reg);

  if (KillsSrc) {
    duplicatePendingSTBeforeKill(Reg, I);
    // If this is the last use of the source register, just make sure it's on
    // the top of the stack.
    moveToTop(Reg, I);
    if (StackTop == 0)
      report_fatal_error("Stack cannot be empty!");
    --StackTop;
    pushReg(getFPReg(MI->getOperand(0)));
  } else {
    // If this is not the last use of the source register, _copy_ it to the top
    // of the stack.
    duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
  }

  // Change from the pseudo instruction to the concrete instruction.
  MI->RemoveOperand(1);   // Drop the source operand.
  MI->RemoveOperand(0);   // Drop the destination operand.
  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
}


//===----------------------------------------------------------------------===//
// Define tables of various ways to map pseudo instructions
//

// ForwardST0Table - Map: A = B op C  into: ST(0) = ST(0) op ST(i)
static const TableEntry ForwardST0Table[] = {
  { X86::ADD_Fp32  , X86::ADD_FST0r },
  { X86::ADD_Fp64  , X86::ADD_FST0r },
  { X86::ADD_Fp80  , X86::ADD_FST0r },
  { X86::DIV_Fp32  , X86::DIV_FST0r },
  { X86::DIV_Fp64  , X86::DIV_FST0r },
  { X86::DIV_Fp80  , X86::DIV_FST0r },
  { X86::MUL_Fp32  , X86::MUL_FST0r },
  { X86::MUL_Fp64  , X86::MUL_FST0r },
  { X86::MUL_Fp80  , X86::MUL_FST0r },
  { X86::SUB_Fp32  , X86::SUB_FST0r },
  { X86::SUB_Fp64  , X86::SUB_FST0r },
  { X86::SUB_Fp80  , X86::SUB_FST0r },
};

// ReverseST0Table - Map: A = B op C  into: ST(0) = ST(i) op ST(0)
static const TableEntry ReverseST0Table[] = {
  { X86::ADD_Fp32  , X86::ADD_FST0r  },   // commutative
  { X86::ADD_Fp64  , X86::ADD_FST0r  },   // commutative
  { X86::ADD_Fp80  , X86::ADD_FST0r  },   // commutative
  { X86::DIV_Fp32  , X86::DIVR_FST0r },
  { X86::DIV_Fp64  , X86::DIVR_FST0r },
  { X86::DIV_Fp80  , X86::DIVR_FST0r },
  { X86::MUL_Fp32  , X86::MUL_FST0r  },   // commutative
  { X86::MUL_Fp64  , X86::MUL_FST0r  },   // commutative
  { X86::MUL_Fp80  , X86::MUL_FST0r  },   // commutative
  { X86::SUB_Fp32  , X86::SUBR_FST0r },
  { X86::SUB_Fp64  , X86::SUBR_FST0r },
  { X86::SUB_Fp80  , X86::SUBR_FST0r },
};

// ForwardSTiTable - Map: A = B op C  into: ST(i) = ST(0) op ST(i)
static const TableEntry ForwardSTiTable[] = {
  { X86::ADD_Fp32  , X86::ADD_FrST0  },   // commutative
  { X86::ADD_Fp64  , X86::ADD_FrST0  },   // commutative
  { X86::ADD_Fp80  , X86::ADD_FrST0  },   // commutative
  { X86::DIV_Fp32  , X86::DIVR_FrST0 },
  { X86::DIV_Fp64  , X86::DIVR_FrST0 },
  { X86::DIV_Fp80  , X86::DIVR_FrST0 },
  { X86::MUL_Fp32  , X86::MUL_FrST0  },   // commutative
  { X86::MUL_Fp64  , X86::MUL_FrST0  },   // commutative
  { X86::MUL_Fp80  , X86::MUL_FrST0  },   // commutative
  { X86::SUB_Fp32  , X86::SUBR_FrST0 },
  { X86::SUB_Fp64  , X86::SUBR_FrST0 },
  { X86::SUB_Fp80  , X86::SUBR_FrST0 },
};

// ReverseSTiTable - Map: A = B op C  into: ST(i) = ST(i) op ST(0)
static const TableEntry ReverseSTiTable[] = {
  { X86::ADD_Fp32  , X86::ADD_FrST0 },
  { X86::ADD_Fp64  , X86::ADD_FrST0 },
  { X86::ADD_Fp80  , X86::ADD_FrST0 },
  { X86::DIV_Fp32  , X86::DIV_FrST0 },
  { X86::DIV_Fp64  , X86::DIV_FrST0 },
  { X86::DIV_Fp80  , X86::DIV_FrST0 },
  { X86::MUL_Fp32  , X86::MUL_FrST0 },
  { X86::MUL_Fp64  , X86::MUL_FrST0 },
  { X86::MUL_Fp80  , X86::MUL_FrST0 },
  { X86::SUB_Fp32  , X86::SUB_FrST0 },
  { X86::SUB_Fp64  , X86::SUB_FrST0 },
  { X86::SUB_Fp80  , X86::SUB_FrST0 },
};


/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
/// instructions which need to be simplified and possibly transformed.
///
/// Result: ST(0) = fsub  ST(0), ST(i)
///         ST(i) = fsub  ST(0), ST(i)
///         ST(0) = fsubr ST(0), ST(i)
///         ST(i) = fsubr ST(0), ST(i)
///
void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
  ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
  ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
  MachineInstr *MI = I;

  unsigned NumOperands = MI->getDesc().getNumOperands();
  assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
  unsigned Dest = getFPReg(MI->getOperand(0));
  unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
  unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
  bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
  bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
  DebugLoc dl = MI->getDebugLoc();

  unsigned TOS = getStackEntry(0);

  // One of our operands must be on the top of the stack.  If neither is yet, we
  // need to move one.
  if (Op0 != TOS && Op1 != TOS) {   // No operand at TOS?
    // We can choose to move either operand to the top of the stack.  If one of
    // the operands is killed by this instruction, we want that one so that we
    // can update right on top of the old version.
    if (KillsOp0) {
      moveToTop(Op0, I);         // Move dead operand to TOS.
      TOS = Op0;
    } else if (KillsOp1) {
      moveToTop(Op1, I);
      TOS = Op1;
    } else {
      // All of the operands are live after this instruction executes, so we
      // cannot update on top of any operand.  Because of this, we must
      // duplicate one of the stack elements to the top.  It doesn't matter
      // which one we pick.
      //
      duplicateToTop(Op0, Dest, I);
      Op0 = TOS = Dest;
      KillsOp0 = true;
    }
  } else if (!KillsOp0 && !KillsOp1) {
    // If we DO have one of our operands at the top of the stack, but we don't
    // have a dead operand, we must duplicate one of the operands to a new slot
    // on the stack.
    duplicateToTop(Op0, Dest, I);
    Op0 = TOS = Dest;
    KillsOp0 = true;
  }

  // Now we know that one of our operands is on the top of the stack, and at
  // least one of our operands is killed by this instruction.
  assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
         "Stack conditions not set up right!");

  // We decide which form to use based on what is on the top of the stack, and
  // which operand is killed by this instruction.
  const TableEntry *InstTable;
  bool isForward = TOS == Op0;
  bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
  if (updateST0) {
    if (isForward)
      InstTable = ForwardST0Table;
    else
      InstTable = ReverseST0Table;
  } else {
    if (isForward)
      InstTable = ForwardSTiTable;
    else
      InstTable = ReverseSTiTable;
  }

  int Opcode = Lookup(InstTable, array_lengthof(ForwardST0Table),
                      MI->getOpcode());
  assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");

  // NotTOS - The register which is not on the top of stack...
  unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;

  // Replace the old instruction with a new instruction
  MBB->remove(I++);
  I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS));

  // If both operands are killed, pop one off of the stack in addition to
  // overwriting the other one.
  if (KillsOp0 && KillsOp1 && Op0 != Op1) {
    assert(!updateST0 && "Should have updated other operand!");
    popStackAfter(I);   // Pop the top of stack
  }

  // Update stack information so that we know the destination register is now on
  // the stack.
  unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
  assert(UpdatedSlot < StackTop && Dest < 7);
  Stack[UpdatedSlot]   = Dest;
  RegMap[Dest]         = UpdatedSlot;
  MBB->getParent()->DeleteMachineInstr(MI); // Remove the old instruction
}

/// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
/// register arguments and no explicit destinations.
///
void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
  ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
  ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
  MachineInstr *MI = I;

  unsigned NumOperands = MI->getDesc().getNumOperands();
  assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
  unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
  unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
  bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
  bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);

  // Make sure the first operand is on the top of stack, the other one can be
  // anywhere.
  moveToTop(Op0, I);

  // Change from the pseudo instruction to the concrete instruction.
  MI->getOperand(0).setReg(getSTReg(Op1));
  MI->RemoveOperand(1);
  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));

  // If any of the operands are killed by this instruction, free them.
  if (KillsOp0) freeStackSlotAfter(I, Op0);
  if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
}

/// handleCondMovFP - Handle two address conditional move instructions.  These
/// instructions move a st(i) register to st(0) iff a condition is true.  These
/// instructions require that the first operand is at the top of the stack, but
/// otherwise don't modify the stack at all.
void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
  MachineInstr *MI = I;

  unsigned Op0 = getFPReg(MI->getOperand(0));
  unsigned Op1 = getFPReg(MI->getOperand(2));
  bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);

  // The first operand *must* be on the top of the stack.
  moveToTop(Op0, I);

  // Change the second operand to the stack register that the operand is in.
  // Change from the pseudo instruction to the concrete instruction.
  MI->RemoveOperand(0);
  MI->RemoveOperand(1);
  MI->getOperand(0).setReg(getSTReg(Op1));
  MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));

  // If we kill the second operand, make sure to pop it from the stack.
  if (Op0 != Op1 && KillsOp1) {
    // Get this value off of the register stack.
    freeStackSlotAfter(I, Op1);
  }
}


/// handleSpecialFP - Handle special instructions which behave unlike other
/// floating point instructions.  This is primarily intended for use by pseudo
/// instructions.
///
void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
  MachineInstr *MI = I;
  switch (MI->getOpcode()) {
  default: llvm_unreachable("Unknown SpecialFP instruction!");
  case TargetOpcode::COPY: {
    // We handle three kinds of copies: FP <- FP, FP <- ST, and ST <- FP.
    const MachineOperand &MO1 = MI->getOperand(1);
    const MachineOperand &MO0 = MI->getOperand(0);
    unsigned DstST = MO0.getReg() - X86::ST0;
    unsigned SrcST = MO1.getReg() - X86::ST0;
    bool KillsSrc = MI->killsRegister(MO1.getReg());

    // ST = COPY FP. Set up a pending ST register.
    if (DstST < 8) {
      unsigned SrcFP = getFPReg(MO1);
      assert(isLive(SrcFP) && "Cannot copy dead register");
      assert(!MO0.isDead() && "Cannot copy to dead ST register");

      // Unallocated STs are marked as the nonexistent FP255.
      while (NumPendingSTs <= DstST)
        PendingST[NumPendingSTs++] = NumFPRegs;

      // STi could still be live from a previous inline asm.
      if (isScratchReg(PendingST[DstST])) {
        DEBUG(dbgs() << "Clobbering old ST in FP" << unsigned(PendingST[DstST])
                     << '\n');
        freeStackSlotBefore(MI, PendingST[DstST]);
      }

      // When the source is killed, allocate a scratch FP register.
      if (KillsSrc) {
        duplicatePendingSTBeforeKill(SrcFP, I);
        unsigned Slot = getSlot(SrcFP);
        unsigned SR = getScratchReg();
        PendingST[DstST] = SR;
        Stack[Slot] = SR;
        RegMap[SR] = Slot;
      } else
        PendingST[DstST] = SrcFP;
      break;
    }

    // FP = COPY ST. Extract fixed stack value.
    // Any instruction defining ST registers must have assigned them to a
    // scratch register.
    if (SrcST < 8) {
      unsigned DstFP = getFPReg(MO0);
      assert(!isLive(DstFP) && "Cannot copy ST to live FP register");
      assert(NumPendingSTs > SrcST && "Cannot copy from dead ST register");
      unsigned SrcFP = PendingST[SrcST];
      assert(isScratchReg(SrcFP) && "Expected ST in a scratch register");
      assert(isLive(SrcFP) && "Scratch holding ST is dead");

      // DstFP steals the stack slot from SrcFP.
      unsigned Slot = getSlot(SrcFP);
      Stack[Slot] = DstFP;
      RegMap[DstFP] = Slot;

      // Always treat the ST as killed.
      PendingST[SrcST] = NumFPRegs;
      while (NumPendingSTs && PendingST[NumPendingSTs - 1] == NumFPRegs)
        --NumPendingSTs;
      break;
    }

    // FP <- FP copy.
    unsigned DstFP = getFPReg(MO0);
    unsigned SrcFP = getFPReg(MO1);
    assert(isLive(SrcFP) && "Cannot copy dead register");
    if (KillsSrc) {
      // If the input operand is killed, we can just change the owner of the
      // incoming stack slot into the result.
      unsigned Slot = getSlot(SrcFP);
      Stack[Slot] = DstFP;
      RegMap[DstFP] = Slot;
    } else {
      // For COPY we just duplicate the specified value to a new stack slot.
      // This could be made better, but would require substantial changes.
      duplicateToTop(SrcFP, DstFP, I);
    }
    break;
  }

  case TargetOpcode::IMPLICIT_DEF: {
    // All FP registers must be explicitly defined, so load a 0 instead.
    unsigned Reg = MI->getOperand(0).getReg() - X86::FP0;
    DEBUG(dbgs() << "Emitting LD_F0 for implicit FP" << Reg << '\n');
    BuildMI(*MBB, I, MI->getDebugLoc(), TII->get(X86::LD_F0));
    pushReg(Reg);
    break;
  }

  case X86::FpPOP_RETVAL: {
    // The FpPOP_RETVAL instruction is used after calls that return a value on
    // the floating point stack. We cannot model this with ST defs since CALL
    // instructions have fixed clobber lists. This instruction is interpreted
    // to mean that there is one more live register on the stack than we
    // thought.
    //
    // This means that StackTop does not match the hardware stack between a
    // call and the FpPOP_RETVAL instructions.  We do tolerate FP instructions
    // between CALL and FpPOP_RETVAL as long as they don't overflow the
    // hardware stack.
    unsigned DstFP = getFPReg(MI->getOperand(0));

    // Move existing stack elements up to reflect reality.
    assert(StackTop < 8 && "Stack overflowed before FpPOP_RETVAL");
    if (StackTop) {
      std::copy_backward(Stack, Stack + StackTop, Stack + StackTop + 1);
      for (unsigned i = 0; i != NumFPRegs; ++i)
        ++RegMap[i];
    }
    ++StackTop;

    // DstFP is the new bottom of the stack.
    Stack[0] = DstFP;
    RegMap[DstFP] = 0;

    // DstFP will be killed by processBasicBlock if this was a dead def.
    break;
  }

  case TargetOpcode::INLINEASM: {
    // The inline asm MachineInstr currently only *uses* FP registers for the
    // 'f' constraint.  These should be turned into the current ST(x) register
    // in the machine instr.
    //
    // There are special rules for x87 inline assembly. The compiler must know
    // exactly how many registers are popped and pushed implicitly by the asm.
    // Otherwise it is not possible to restore the stack state after the inline
    // asm.
    //
    // There are 3 kinds of input operands:
    //
    // 1. Popped inputs. These must appear at the stack top in ST0-STn. A
    //    popped input operand must be in a fixed stack slot, and it is either
    //    tied to an output operand, or in the clobber list. The MI has ST use
    //    and def operands for these inputs.
    //
    // 2. Fixed inputs. These inputs appear in fixed stack slots, but are
    //    preserved by the inline asm. The fixed stack slots must be STn-STm
    //    following the popped inputs. A fixed input operand cannot be tied to
    //    an output or appear in the clobber list. The MI has ST use operands
    //    and no defs for these inputs.
    //
    // 3. Preserved inputs. These inputs use the "f" constraint which is
    //    represented as an FP register. The inline asm won't change these
    //    stack slots.
    //
    // Outputs must be in ST registers, FP outputs are not allowed. Clobbered
    // registers do not count as output operands. The inline asm changes the
    // stack as if it popped all the popped inputs and then pushed all the
    // output operands.

    // Scan the assembly for ST registers used, defined and clobbered. We can
    // only tell clobbers from defs by looking at the asm descriptor.
    unsigned STUses = 0, STDefs = 0, STClobbers = 0, STDeadDefs = 0;
    unsigned NumOps = 0;
    for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI->getNumOperands();
         i != e && MI->getOperand(i).isImm(); i += 1 + NumOps) {
      unsigned Flags = MI->getOperand(i).getImm();
      NumOps = InlineAsm::getNumOperandRegisters(Flags);
      if (NumOps != 1)
        continue;
      const MachineOperand &MO = MI->getOperand(i + 1);
      if (!MO.isReg())
        continue;
      unsigned STReg = MO.getReg() - X86::ST0;
      if (STReg >= 8)
        continue;

      switch (InlineAsm::getKind(Flags)) {
      case InlineAsm::Kind_RegUse:
        STUses |= (1u << STReg);
        break;
      case InlineAsm::Kind_RegDef:
      case InlineAsm::Kind_RegDefEarlyClobber:
        STDefs |= (1u << STReg);
        if (MO.isDead())
          STDeadDefs |= (1u << STReg);
        break;
      case InlineAsm::Kind_Clobber:
        STClobbers |= (1u << STReg);
        break;
      default:
        break;
      }
    }

    if (STUses && !isMask_32(STUses))
      MI->emitError("fixed input regs must be last on the x87 stack");
    unsigned NumSTUses = CountTrailingOnes_32(STUses);

    // Defs must be contiguous from the stack top. ST0-STn.
    if (STDefs && !isMask_32(STDefs)) {
      MI->emitError("output regs must be last on the x87 stack");
      STDefs = NextPowerOf2(STDefs) - 1;
    }
    unsigned NumSTDefs = CountTrailingOnes_32(STDefs);

    // So must the clobbered stack slots. ST0-STm, m >= n.
    if (STClobbers && !isMask_32(STDefs | STClobbers))
      MI->emitError("clobbers must be last on the x87 stack");

    // Popped inputs are the ones that are also clobbered or defined.
    unsigned STPopped = STUses & (STDefs | STClobbers);
    if (STPopped && !isMask_32(STPopped))
      MI->emitError("implicitly popped regs must be last on the x87 stack");
    unsigned NumSTPopped = CountTrailingOnes_32(STPopped);

    DEBUG(dbgs() << "Asm uses " << NumSTUses << " fixed regs, pops "
                 << NumSTPopped << ", and defines " << NumSTDefs << " regs.\n");

    // Scan the instruction for FP uses corresponding to "f" constraints.
    // Collect FP registers to kill afer the instruction.
    // Always kill all the scratch regs.
    unsigned FPKills = ((1u << NumFPRegs) - 1) & ~0xff;
    unsigned FPUsed = 0;
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
      MachineOperand &Op = MI->getOperand(i);
      if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
        continue;
      if (!Op.isUse())
        MI->emitError("illegal \"f\" output constraint");
      unsigned FPReg = getFPReg(Op);
      FPUsed |= 1U << FPReg;

      // If we kill this operand, make sure to pop it from the stack after the
      // asm.  We just remember it for now, and pop them all off at the end in
      // a batch.
      if (Op.isKill())
        FPKills |= 1U << FPReg;
    }

    // The popped inputs will be killed by the instruction, so duplicate them
    // if the FP register needs to be live after the instruction, or if it is
    // used in the instruction itself. We effectively treat the popped inputs
    // as early clobbers.
    for (unsigned i = 0; i < NumSTPopped; ++i) {
      if ((FPKills & ~FPUsed) & (1u << PendingST[i]))
        continue;
      unsigned SR = getScratchReg();
      duplicateToTop(PendingST[i], SR, I);
      DEBUG(dbgs() << "Duplicating ST" << i << " in FP"
                   << unsigned(PendingST[i]) << " to avoid clobbering it.\n");
      PendingST[i] = SR;
    }

    // Make sure we have a unique live register for every fixed use. Some of
    // them could be undef uses, and we need to emit LD_F0 instructions.
    for (unsigned i = 0; i < NumSTUses; ++i) {
      if (i < NumPendingSTs && PendingST[i] < NumFPRegs) {
        // Check for shared assignments.
        for (unsigned j = 0; j < i; ++j) {
          if (PendingST[j] != PendingST[i])
            continue;
          // STi and STj are inn the same register, create a copy.
          unsigned SR = getScratchReg();
          duplicateToTop(PendingST[i], SR, I);
          DEBUG(dbgs() << "Duplicating ST" << i << " in FP"
                       << unsigned(PendingST[i])
                       << " to avoid collision with ST" << j << '\n');
          PendingST[i] = SR;
        }
        continue;
      }
      unsigned SR = getScratchReg();
      DEBUG(dbgs() << "Emitting LD_F0 for ST" << i << " in FP" << SR << '\n');
      BuildMI(*MBB, I, MI->getDebugLoc(), TII->get(X86::LD_F0));
      pushReg(SR);
      PendingST[i] = SR;
      if (NumPendingSTs == i)
        ++NumPendingSTs;
    }
    assert(NumPendingSTs >= NumSTUses && "Fixed registers should be assigned");

    // Now we can rearrange the live registers to match what was requested.
    shuffleStackTop(PendingST, NumPendingSTs, I);
    DEBUG({dbgs() << "Before asm: "; dumpStack();});

    // With the stack layout fixed, rewrite the FP registers.
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
      MachineOperand &Op = MI->getOperand(i);
      if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
        continue;
      unsigned FPReg = getFPReg(Op);
      Op.setReg(getSTReg(FPReg));
    }

    // Simulate the inline asm popping its inputs and pushing its outputs.
    StackTop -= NumSTPopped;

    // Hold the fixed output registers in scratch FP registers. They will be
    // transferred to real FP registers by copies.
    NumPendingSTs = 0;
    for (unsigned i = 0; i < NumSTDefs; ++i) {
      unsigned SR = getScratchReg();
      pushReg(SR);
      FPKills &= ~(1u << SR);
    }
    for (unsigned i = 0; i < NumSTDefs; ++i)
      PendingST[NumPendingSTs++] = getStackEntry(i);
    DEBUG({dbgs() << "After asm: "; dumpStack();});

    // If any of the ST defs were dead, pop them immediately. Our caller only
    // handles dead FP defs.
    MachineBasicBlock::iterator InsertPt = MI;
    for (unsigned i = 0; STDefs & (1u << i); ++i) {
      if (!(STDeadDefs & (1u << i)))
        continue;
      freeStackSlotAfter(InsertPt, PendingST[i]);
      PendingST[i] = NumFPRegs;
    }
    while (NumPendingSTs && PendingST[NumPendingSTs - 1] == NumFPRegs)
      --NumPendingSTs;

    // If this asm kills any FP registers (is the last use of them) we must
    // explicitly emit pop instructions for them.  Do this now after the asm has
    // executed so that the ST(x) numbers are not off (which would happen if we
    // did this inline with operand rewriting).
    //
    // Note: this might be a non-optimal pop sequence.  We might be able to do
    // better by trying to pop in stack order or something.
    while (FPKills) {
      unsigned FPReg = countTrailingZeros(FPKills);
      if (isLive(FPReg))
        freeStackSlotAfter(InsertPt, FPReg);
      FPKills &= ~(1U << FPReg);
    }
    // Don't delete the inline asm!
    return;
  }

  case X86::WIN_FTOL_32:
  case X86::WIN_FTOL_64: {
    // Push the operand into ST0.
    MachineOperand &Op = MI->getOperand(0);
    assert(Op.isUse() && Op.isReg() &&
      Op.getReg() >= X86::FP0 && Op.getReg() <= X86::FP6);
    unsigned FPReg = getFPReg(Op);
    if (Op.isKill())
      moveToTop(FPReg, I);
    else
      duplicateToTop(FPReg, FPReg, I);

    // Emit the call. This will pop the operand.
    BuildMI(*MBB, I, MI->getDebugLoc(), TII->get(X86::CALLpcrel32))
      .addExternalSymbol("_ftol2")
      .addReg(X86::ST0, RegState::ImplicitKill)
      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
      .addReg(X86::EDX, RegState::Define | RegState::Implicit)
      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
    --StackTop;

    break;
  }

  case X86::RET:
  case X86::RETI:
    // If RET has an FP register use operand, pass the first one in ST(0) and
    // the second one in ST(1).

    // Find the register operands.
    unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
    unsigned LiveMask = 0;

    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
      MachineOperand &Op = MI->getOperand(i);
      if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
        continue;
      // FP Register uses must be kills unless there are two uses of the same
      // register, in which case only one will be a kill.
      assert(Op.isUse() &&
             (Op.isKill() ||                        // Marked kill.
              getFPReg(Op) == FirstFPRegOp ||       // Second instance.
              MI->killsRegister(Op.getReg())) &&    // Later use is marked kill.
             "Ret only defs operands, and values aren't live beyond it");

      if (FirstFPRegOp == ~0U)
        FirstFPRegOp = getFPReg(Op);
      else {
        assert(SecondFPRegOp == ~0U && "More than two fp operands!");
        SecondFPRegOp = getFPReg(Op);
      }
      LiveMask |= (1 << getFPReg(Op));

      // Remove the operand so that later passes don't see it.
      MI->RemoveOperand(i);
      --i, --e;
    }

    // We may have been carrying spurious live-ins, so make sure only the returned
    // registers are left live.
    adjustLiveRegs(LiveMask, MI);
    if (!LiveMask) return;  // Quick check to see if any are possible.

    // There are only four possibilities here:
    // 1) we are returning a single FP value.  In this case, it has to be in
    //    ST(0) already, so just declare success by removing the value from the
    //    FP Stack.
    if (SecondFPRegOp == ~0U) {
      // Assert that the top of stack contains the right FP register.
      assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
             "Top of stack not the right register for RET!");

      // Ok, everything is good, mark the value as not being on the stack
      // anymore so that our assertion about the stack being empty at end of
      // block doesn't fire.
      StackTop = 0;
      return;
    }

    // Otherwise, we are returning two values:
    // 2) If returning the same value for both, we only have one thing in the FP
    //    stack.  Consider:  RET FP1, FP1
    if (StackTop == 1) {
      assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
             "Stack misconfiguration for RET!");

      // Duplicate the TOS so that we return it twice.  Just pick some other FPx
      // register to hold it.
      unsigned NewReg = getScratchReg();
      duplicateToTop(FirstFPRegOp, NewReg, MI);
      FirstFPRegOp = NewReg;
    }

    /// Okay we know we have two different FPx operands now:
    assert(StackTop == 2 && "Must have two values live!");

    /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
    ///    in ST(1).  In this case, emit an fxch.
    if (getStackEntry(0) == SecondFPRegOp) {
      assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
      moveToTop(FirstFPRegOp, MI);
    }

    /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
    /// ST(1).  Just remove both from our understanding of the stack and return.
    assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
    assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live");
    StackTop = 0;
    return;
  }

  I = MBB->erase(I);  // Remove the pseudo instruction

  // We want to leave I pointing to the previous instruction, but what if we
  // just erased the first instruction?
  if (I == MBB->begin()) {
    DEBUG(dbgs() << "Inserting dummy KILL\n");
    I = BuildMI(*MBB, I, DebugLoc(), TII->get(TargetOpcode::KILL));
  } else
    --I;
}