aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/X86/X86ISelLowering.cpp
blob: 93df72a02b8439f7a754fba05a72e2ddb66d4854 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that X86 uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//

#include "X86.h"
#include "X86InstrBuilder.h"
#include "X86ISelLowering.h"
#include "X86MachineFunctionInfo.h"
#include "X86TargetMachine.h"
#include "llvm/CallingConv.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/GlobalVariable.h"
#include "llvm/Function.h"
#include "llvm/Intrinsics.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/VectorExtras.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Debug.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/StringExtras.h"
using namespace llvm;

// Forward declarations.
static SDOperand getMOVLMask(unsigned NumElems, SelectionDAG &DAG);

X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
  : TargetLowering(TM) {
  Subtarget = &TM.getSubtarget<X86Subtarget>();
  X86ScalarSSEf64 = Subtarget->hasSSE2();
  X86ScalarSSEf32 = Subtarget->hasSSE1();
  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
  
  bool Fast = false;

  RegInfo = TM.getRegisterInfo();

  // Set up the TargetLowering object.

  // X86 is weird, it always uses i8 for shift amounts and setcc results.
  setShiftAmountType(MVT::i8);
  setSetCCResultContents(ZeroOrOneSetCCResult);
  setSchedulingPreference(SchedulingForRegPressure);
  setShiftAmountFlavor(Mask);   // shl X, 32 == shl X, 0
  setStackPointerRegisterToSaveRestore(X86StackPtr);

  if (Subtarget->isTargetDarwin()) {
    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
    setUseUnderscoreSetJmp(false);
    setUseUnderscoreLongJmp(false);
  } else if (Subtarget->isTargetMingw()) {
    // MS runtime is weird: it exports _setjmp, but longjmp!
    setUseUnderscoreSetJmp(true);
    setUseUnderscoreLongJmp(false);
  } else {
    setUseUnderscoreSetJmp(true);
    setUseUnderscoreLongJmp(true);
  }
  
  // Set up the register classes.
  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
  if (Subtarget->is64Bit())
    addRegisterClass(MVT::i64, X86::GR64RegisterClass);

  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Promote);

  // We don't accept any truncstore of integer registers.  
  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
  setTruncStoreAction(MVT::i16, MVT::i8, Expand);

  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
  // operation.
  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);

  if (Subtarget->is64Bit()) {
    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
  } else {
    if (X86ScalarSSEf64)
      // If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP.
      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Expand);
    else
      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Promote);
  }

  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
  // this operation.
  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
  // SSE has no i16 to fp conversion, only i32
  if (X86ScalarSSEf32) {
    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
    // f32 and f64 cases are Legal, f80 case is not
    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
  } else {
    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
  }

  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
  // are Legal, f80 is custom lowered.
  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);

  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
  // this operation.
  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);

  if (X86ScalarSSEf32) {
    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
    // f32 and f64 cases are Legal, f80 case is not
    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
  } else {
    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
  }

  // Handle FP_TO_UINT by promoting the destination to a larger signed
  // conversion.
  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);

  if (Subtarget->is64Bit()) {
    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
  } else {
    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
      // Expand FP_TO_UINT into a select.
      // FIXME: We would like to use a Custom expander here eventually to do
      // the optimal thing for SSE vs. the default expansion in the legalizer.
      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
    else
      // With SSE3 we can use fisttpll to convert to a signed i64.
      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Promote);
  }

  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
  if (!X86ScalarSSEf64) {
    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
  }

  // Scalar integer divide and remainder are lowered to use operations that
  // produce two results, to match the available instructions. This exposes
  // the two-result form to trivial CSE, which is able to combine x/y and x%y
  // into a single instruction.
  //
  // Scalar integer multiply-high is also lowered to use two-result
  // operations, to match the available instructions. However, plain multiply
  // (low) operations are left as Legal, as there are single-result
  // instructions for this in x86. Using the two-result multiply instructions
  // when both high and low results are needed must be arranged by dagcombine.
  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
  setOperationAction(ISD::UREM            , MVT::i64   , Expand);

  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
  if (Subtarget->is64Bit())
    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
  
  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
  if (Subtarget->is64Bit()) {
    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
  }

  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);

  // These should be promoted to a larger select which is supported.
  setOperationAction(ISD::SELECT           , MVT::i1   , Promote);
  setOperationAction(ISD::SELECT           , MVT::i8   , Promote);
  // X86 wants to expand cmov itself.
  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
  if (Subtarget->is64Bit()) {
    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
  }
  // X86 ret instruction may pop stack.
  setOperationAction(ISD::RET             , MVT::Other, Custom);
  if (!Subtarget->is64Bit())
    setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);

  // Darwin ABI issue.
  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
  if (Subtarget->is64Bit())
    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
  if (Subtarget->is64Bit()) {
    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
  }
  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
  if (Subtarget->is64Bit()) {
    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
  }

  if (Subtarget->hasSSE1())
    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);

  if (!Subtarget->hasSSE2())
    setOperationAction(ISD::MEMBARRIER    , MVT::Other, Expand);

  // Expand certain atomics
  setOperationAction(ISD::ATOMIC_LCS     , MVT::i8, Custom);
  setOperationAction(ISD::ATOMIC_LCS     , MVT::i16, Custom);
  setOperationAction(ISD::ATOMIC_LCS     , MVT::i32, Custom);
  setOperationAction(ISD::ATOMIC_LCS     , MVT::i64, Custom);
  setOperationAction(ISD::ATOMIC_LSS     , MVT::i32, Expand);

  // Use the default ISD::LOCATION, ISD::DECLARE expansion.
  setOperationAction(ISD::LOCATION, MVT::Other, Expand);
  // FIXME - use subtarget debug flags
  if (!Subtarget->isTargetDarwin() &&
      !Subtarget->isTargetELF() &&
      !Subtarget->isTargetCygMing())
    setOperationAction(ISD::LABEL, MVT::Other, Expand);

  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
  if (Subtarget->is64Bit()) {
    // FIXME: Verify
    setExceptionPointerRegister(X86::RAX);
    setExceptionSelectorRegister(X86::RDX);
  } else {
    setExceptionPointerRegister(X86::EAX);
    setExceptionSelectorRegister(X86::EDX);
  }
  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
  
  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);

  setOperationAction(ISD::TRAP, MVT::Other, Legal);

  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
  if (Subtarget->is64Bit()) {
    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
  } else {
    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
  }

  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
  if (Subtarget->is64Bit())
    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
  if (Subtarget->isTargetCygMing())
    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
  else
    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);

  if (X86ScalarSSEf64) {
    // f32 and f64 use SSE.
    // Set up the FP register classes.
    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
    addRegisterClass(MVT::f64, X86::FR64RegisterClass);

    // Use ANDPD to simulate FABS.
    setOperationAction(ISD::FABS , MVT::f64, Custom);
    setOperationAction(ISD::FABS , MVT::f32, Custom);

    // Use XORP to simulate FNEG.
    setOperationAction(ISD::FNEG , MVT::f64, Custom);
    setOperationAction(ISD::FNEG , MVT::f32, Custom);

    // Use ANDPD and ORPD to simulate FCOPYSIGN.
    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);

    // We don't support sin/cos/fmod
    setOperationAction(ISD::FSIN , MVT::f64, Expand);
    setOperationAction(ISD::FCOS , MVT::f64, Expand);
    setOperationAction(ISD::FSIN , MVT::f32, Expand);
    setOperationAction(ISD::FCOS , MVT::f32, Expand);

    // Expand FP immediates into loads from the stack, except for the special
    // cases we handle.
    addLegalFPImmediate(APFloat(+0.0)); // xorpd
    addLegalFPImmediate(APFloat(+0.0f)); // xorps

    // Floating truncations from f80 and extensions to f80 go through memory.
    // If optimizing, we lie about this though and handle it in
    // InstructionSelectPreprocess so that dagcombine2 can hack on these.
    if (Fast) {
      setConvertAction(MVT::f32, MVT::f80, Expand);
      setConvertAction(MVT::f64, MVT::f80, Expand);
      setConvertAction(MVT::f80, MVT::f32, Expand);
      setConvertAction(MVT::f80, MVT::f64, Expand);
    }
  } else if (X86ScalarSSEf32) {
    // Use SSE for f32, x87 for f64.
    // Set up the FP register classes.
    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);

    // Use ANDPS to simulate FABS.
    setOperationAction(ISD::FABS , MVT::f32, Custom);

    // Use XORP to simulate FNEG.
    setOperationAction(ISD::FNEG , MVT::f32, Custom);

    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);

    // Use ANDPS and ORPS to simulate FCOPYSIGN.
    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);

    // We don't support sin/cos/fmod
    setOperationAction(ISD::FSIN , MVT::f32, Expand);
    setOperationAction(ISD::FCOS , MVT::f32, Expand);

    // Special cases we handle for FP constants.
    addLegalFPImmediate(APFloat(+0.0f)); // xorps
    addLegalFPImmediate(APFloat(+0.0)); // FLD0
    addLegalFPImmediate(APFloat(+1.0)); // FLD1
    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS

    // SSE <-> X87 conversions go through memory.  If optimizing, we lie about
    // this though and handle it in InstructionSelectPreprocess so that
    // dagcombine2 can hack on these.
    if (Fast) {
      setConvertAction(MVT::f32, MVT::f64, Expand);
      setConvertAction(MVT::f32, MVT::f80, Expand);
      setConvertAction(MVT::f80, MVT::f32, Expand);    
      setConvertAction(MVT::f64, MVT::f32, Expand);
      // And x87->x87 truncations also.
      setConvertAction(MVT::f80, MVT::f64, Expand);
    }

    if (!UnsafeFPMath) {
      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
    }
  } else {
    // f32 and f64 in x87.
    // Set up the FP register classes.
    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);

    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);

    // Floating truncations go through memory.  If optimizing, we lie about
    // this though and handle it in InstructionSelectPreprocess so that
    // dagcombine2 can hack on these.
    if (Fast) {
      setConvertAction(MVT::f80, MVT::f32, Expand);    
      setConvertAction(MVT::f64, MVT::f32, Expand);
      setConvertAction(MVT::f80, MVT::f64, Expand);
    }

    if (!UnsafeFPMath) {
      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
    }
    addLegalFPImmediate(APFloat(+0.0)); // FLD0
    addLegalFPImmediate(APFloat(+1.0)); // FLD1
    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
  }

  // Long double always uses X87.
  addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
  setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
  setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
  {
    APFloat TmpFlt(+0.0);
    TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven);
    addLegalFPImmediate(TmpFlt);  // FLD0
    TmpFlt.changeSign();
    addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
    APFloat TmpFlt2(+1.0);
    TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven);
    addLegalFPImmediate(TmpFlt2);  // FLD1
    TmpFlt2.changeSign();
    addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
  }
    
  if (!UnsafeFPMath) {
    setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
    setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
  }

  // Always use a library call for pow.
  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);

  // First set operation action for all vector types to expand. Then we
  // will selectively turn on ones that can be effectively codegen'd.
  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
    setOperationAction(ISD::VECTOR_SHUFFLE,     (MVT::SimpleValueType)VT, Expand);
    setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::SimpleValueType)VT, Expand);
    setOperationAction(ISD::INSERT_VECTOR_ELT,  (MVT::SimpleValueType)VT, Expand);
    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
  }

  if (Subtarget->hasMMX()) {
    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
    addRegisterClass(MVT::v2f32, X86::VR64RegisterClass);
    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);

    // FIXME: add MMX packed arithmetics

    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);

    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
    setOperationAction(ISD::SUB,                MVT::v1i64, Legal);

    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);

    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
    setOperationAction(ISD::AND,                MVT::v1i64, Legal);

    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);

    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);

    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
    setOperationAction(ISD::LOAD,               MVT::v2f32, Promote);
    AddPromotedToType (ISD::LOAD,               MVT::v2f32, MVT::v1i64);
    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);

    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f32, Custom);
    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);

    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);

    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
  }

  if (Subtarget->hasSSE1()) {
    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);

    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
    setOperationAction(ISD::VSETCC,             MVT::v4f32, Legal);
  }

  if (Subtarget->hasSSE2()) {
    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);

    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);

    setOperationAction(ISD::VSETCC,             MVT::v2f64, Legal);
    setOperationAction(ISD::VSETCC,             MVT::v16i8, Legal);
    setOperationAction(ISD::VSETCC,             MVT::v8i16, Legal);
    setOperationAction(ISD::VSETCC,             MVT::v4i32, Legal);
    setOperationAction(ISD::VSETCC,             MVT::v2i64, Legal);

    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);

    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
      MVT VT = (MVT::SimpleValueType)i;
      // Do not attempt to custom lower non-power-of-2 vectors
      if (!isPowerOf2_32(VT.getVectorNumElements()))
        continue;
      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
    }
    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
    if (Subtarget->is64Bit()) {
      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
    }

    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
      setOperationAction(ISD::AND,    (MVT::SimpleValueType)VT, Promote);
      AddPromotedToType (ISD::AND,    (MVT::SimpleValueType)VT, MVT::v2i64);
      setOperationAction(ISD::OR,     (MVT::SimpleValueType)VT, Promote);
      AddPromotedToType (ISD::OR,     (MVT::SimpleValueType)VT, MVT::v2i64);
      setOperationAction(ISD::XOR,    (MVT::SimpleValueType)VT, Promote);
      AddPromotedToType (ISD::XOR,    (MVT::SimpleValueType)VT, MVT::v2i64);
      setOperationAction(ISD::LOAD,   (MVT::SimpleValueType)VT, Promote);
      AddPromotedToType (ISD::LOAD,   (MVT::SimpleValueType)VT, MVT::v2i64);
      setOperationAction(ISD::SELECT, (MVT::SimpleValueType)VT, Promote);
      AddPromotedToType (ISD::SELECT, (MVT::SimpleValueType)VT, MVT::v2i64);
    }

    setTruncStoreAction(MVT::f64, MVT::f32, Expand);

    // Custom lower v2i64 and v2f64 selects.
    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
    
  }
  
  if (Subtarget->hasSSE41()) {
    // FIXME: Do we need to handle scalar-to-vector here?
    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
    setOperationAction(ISD::MUL,                MVT::v2i64, Legal);

    // i8 and i16 vectors are custom , because the source register and source
    // source memory operand types are not the same width.  f32 vectors are
    // custom since the immediate controlling the insert encodes additional
    // information.
    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Legal);
    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);

    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);

    if (Subtarget->is64Bit()) {
      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
    }
  }

  // We want to custom lower some of our intrinsics.
  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);

  // We have target-specific dag combine patterns for the following nodes:
  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
  setTargetDAGCombine(ISD::BUILD_VECTOR);
  setTargetDAGCombine(ISD::SELECT);
  setTargetDAGCombine(ISD::STORE);

  computeRegisterProperties();

  // FIXME: These should be based on subtarget info. Plus, the values should
  // be smaller when we are in optimizing for size mode.
  maxStoresPerMemset = 16; // For %llvm.memset -> sequence of stores
  maxStoresPerMemcpy = 16; // For %llvm.memcpy -> sequence of stores
  maxStoresPerMemmove = 3; // For %llvm.memmove -> sequence of stores
  allowUnalignedMemoryAccesses = true; // x86 supports it!
  setPrefLoopAlignment(16);
}


MVT X86TargetLowering::getSetCCResultType(const SDOperand &) const {
  return MVT::i8;
}


/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
/// the desired ByVal argument alignment.
static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
  if (MaxAlign == 16)
    return;
  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
    if (VTy->getBitWidth() == 128)
      MaxAlign = 16;
  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
    unsigned EltAlign = 0;
    getMaxByValAlign(ATy->getElementType(), EltAlign);
    if (EltAlign > MaxAlign)
      MaxAlign = EltAlign;
  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
      unsigned EltAlign = 0;
      getMaxByValAlign(STy->getElementType(i), EltAlign);
      if (EltAlign > MaxAlign)
        MaxAlign = EltAlign;
      if (MaxAlign == 16)
        break;
    }
  }
  return;
}

/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
/// function arguments in the caller parameter area. For X86, aggregates
/// that contain SSE vectors are placed at 16-byte boundaries while the rest
/// are at 4-byte boundaries.
unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
  if (Subtarget->is64Bit())
    return getTargetData()->getABITypeAlignment(Ty);
  unsigned Align = 4;
  if (Subtarget->hasSSE1())
    getMaxByValAlign(Ty, Align);
  return Align;
}

/// getOptimalMemOpType - Returns the target specific optimal type for load
/// and store operations as a result of memset, memcpy, and memmove
/// lowering. It returns MVT::iAny if SelectionDAG should be responsible for
/// determining it.
MVT
X86TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned Align,
                                       bool isSrcConst, bool isSrcStr) const {
  if ((isSrcConst || isSrcStr) && Subtarget->hasSSE2() && Size >= 16)
    return MVT::v4i32;
  if ((isSrcConst || isSrcStr) && Subtarget->hasSSE1() && Size >= 16)
    return MVT::v4f32;
  if (Subtarget->is64Bit() && Size >= 8)
    return MVT::i64;
  return MVT::i32;
}


/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
/// jumptable.
SDOperand X86TargetLowering::getPICJumpTableRelocBase(SDOperand Table,
                                                      SelectionDAG &DAG) const {
  if (usesGlobalOffsetTable())
    return DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, getPointerTy());
  if (!Subtarget->isPICStyleRIPRel())
    return DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy());
  return Table;
}

//===----------------------------------------------------------------------===//
//               Return Value Calling Convention Implementation
//===----------------------------------------------------------------------===//

#include "X86GenCallingConv.inc"

/// LowerRET - Lower an ISD::RET node.
SDOperand X86TargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG) {
  assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
  
  SmallVector<CCValAssign, 16> RVLocs;
  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
  CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs);
  CCInfo.AnalyzeReturn(Op.Val, RetCC_X86);
    
  // If this is the first return lowered for this function, add the regs to the
  // liveout set for the function.
  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
    for (unsigned i = 0; i != RVLocs.size(); ++i)
      if (RVLocs[i].isRegLoc())
        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
  }
  SDOperand Chain = Op.getOperand(0);
  
  // Handle tail call return.
  Chain = GetPossiblePreceedingTailCall(Chain, X86ISD::TAILCALL);
  if (Chain.getOpcode() == X86ISD::TAILCALL) {
    SDOperand TailCall = Chain;
    SDOperand TargetAddress = TailCall.getOperand(1);
    SDOperand StackAdjustment = TailCall.getOperand(2);
    assert(((TargetAddress.getOpcode() == ISD::Register &&
               (cast<RegisterSDNode>(TargetAddress)->getReg() == X86::ECX ||
                cast<RegisterSDNode>(TargetAddress)->getReg() == X86::R9)) ||
              TargetAddress.getOpcode() == ISD::TargetExternalSymbol ||
              TargetAddress.getOpcode() == ISD::TargetGlobalAddress) && 
             "Expecting an global address, external symbol, or register");
    assert(StackAdjustment.getOpcode() == ISD::Constant &&
           "Expecting a const value");

    SmallVector<SDOperand,8> Operands;
    Operands.push_back(Chain.getOperand(0));
    Operands.push_back(TargetAddress);
    Operands.push_back(StackAdjustment);
    // Copy registers used by the call. Last operand is a flag so it is not
    // copied.
    for (unsigned i=3; i < TailCall.getNumOperands()-1; i++) {
      Operands.push_back(Chain.getOperand(i));
    }
    return DAG.getNode(X86ISD::TC_RETURN, MVT::Other, &Operands[0], 
                       Operands.size());
  }
  
  // Regular return.
  SDOperand Flag;

  SmallVector<SDOperand, 6> RetOps;
  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
  // Operand #1 = Bytes To Pop
  RetOps.push_back(DAG.getConstant(getBytesToPopOnReturn(), MVT::i16));
  
  // Copy the result values into the output registers.
  for (unsigned i = 0; i != RVLocs.size(); ++i) {
    CCValAssign &VA = RVLocs[i];
    assert(VA.isRegLoc() && "Can only return in registers!");
    SDOperand ValToCopy = Op.getOperand(i*2+1);
    
    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
    // the RET instruction and handled by the FP Stackifier.
    if (RVLocs[i].getLocReg() == X86::ST0 ||
        RVLocs[i].getLocReg() == X86::ST1) {
      // If this is a copy from an xmm register to ST(0), use an FPExtend to
      // change the value to the FP stack register class.
      if (isScalarFPTypeInSSEReg(RVLocs[i].getValVT()))
        ValToCopy = DAG.getNode(ISD::FP_EXTEND, MVT::f80, ValToCopy);
      RetOps.push_back(ValToCopy);
      // Don't emit a copytoreg.
      continue;
    }

    Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), ValToCopy, Flag);
    Flag = Chain.getValue(1);
  }

  // The x86-64 ABI for returning structs by value requires that we copy
  // the sret argument into %rax for the return. We saved the argument into
  // a virtual register in the entry block, so now we copy the value out
  // and into %rax.
  if (Subtarget->is64Bit() &&
      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
    MachineFunction &MF = DAG.getMachineFunction();
    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
    unsigned Reg = FuncInfo->getSRetReturnReg();
    if (!Reg) {
      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
      FuncInfo->setSRetReturnReg(Reg);
    }
    SDOperand Val = DAG.getCopyFromReg(Chain, Reg, getPointerTy());

    Chain = DAG.getCopyToReg(Chain, X86::RAX, Val, Flag);
    Flag = Chain.getValue(1);
  }
  
  RetOps[0] = Chain;  // Update chain.

  // Add the flag if we have it.
  if (Flag.Val)
    RetOps.push_back(Flag);
  
  return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, &RetOps[0], RetOps.size());
}


/// LowerCallResult - Lower the result values of an ISD::CALL into the
/// appropriate copies out of appropriate physical registers.  This assumes that
/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
/// being lowered.  The returns a SDNode with the same number of values as the
/// ISD::CALL.
SDNode *X86TargetLowering::
LowerCallResult(SDOperand Chain, SDOperand InFlag, SDNode *TheCall, 
                unsigned CallingConv, SelectionDAG &DAG) {
  
  // Assign locations to each value returned by this call.
  SmallVector<CCValAssign, 16> RVLocs;
  bool isVarArg = cast<ConstantSDNode>(TheCall->getOperand(2))->getValue() != 0;
  CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs);
  CCInfo.AnalyzeCallResult(TheCall, RetCC_X86);

  SmallVector<SDOperand, 8> ResultVals;
  
  // Copy all of the result registers out of their specified physreg.
  for (unsigned i = 0; i != RVLocs.size(); ++i) {
    MVT CopyVT = RVLocs[i].getValVT();
    
    // If this is a call to a function that returns an fp value on the floating
    // point stack, but where we prefer to use the value in xmm registers, copy
    // it out as F80 and use a truncate to move it from fp stack reg to xmm reg.
    if (RVLocs[i].getLocReg() == X86::ST0 &&
        isScalarFPTypeInSSEReg(RVLocs[i].getValVT())) {
      CopyVT = MVT::f80;
    }
    
    Chain = DAG.getCopyFromReg(Chain, RVLocs[i].getLocReg(),
                               CopyVT, InFlag).getValue(1);
    SDOperand Val = Chain.getValue(0);
    InFlag = Chain.getValue(2);

    if (CopyVT != RVLocs[i].getValVT()) {
      // Round the F80 the right size, which also moves to the appropriate xmm
      // register.
      Val = DAG.getNode(ISD::FP_ROUND, RVLocs[i].getValVT(), Val,
                        // This truncation won't change the value.
                        DAG.getIntPtrConstant(1));
    }
    
    ResultVals.push_back(Val);
  }
  
  // Merge everything together with a MERGE_VALUES node.
  ResultVals.push_back(Chain);
  return DAG.getNode(ISD::MERGE_VALUES, TheCall->getVTList(),
                     &ResultVals[0], ResultVals.size()).Val;
}


//===----------------------------------------------------------------------===//
//                C & StdCall & Fast Calling Convention implementation
//===----------------------------------------------------------------------===//
//  StdCall calling convention seems to be standard for many Windows' API
//  routines and around. It differs from C calling convention just a little:
//  callee should clean up the stack, not caller. Symbols should be also
//  decorated in some fancy way :) It doesn't support any vector arguments.
//  For info on fast calling convention see Fast Calling Convention (tail call)
//  implementation LowerX86_32FastCCCallTo.

/// AddLiveIn - This helper function adds the specified physical register to the
/// MachineFunction as a live in value.  It also creates a corresponding virtual
/// register for it.
static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
                          const TargetRegisterClass *RC) {
  assert(RC->contains(PReg) && "Not the correct regclass!");
  unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
  MF.getRegInfo().addLiveIn(PReg, VReg);
  return VReg;
}

/// CallIsStructReturn - Determines whether a CALL node uses struct return
/// semantics.
static bool CallIsStructReturn(SDOperand Op) {
  unsigned NumOps = (Op.getNumOperands() - 5) / 2;
  if (!NumOps)
    return false;

  return cast<ARG_FLAGSSDNode>(Op.getOperand(6))->getArgFlags().isSRet();
}

/// ArgsAreStructReturn - Determines whether a FORMAL_ARGUMENTS node uses struct
/// return semantics.
static bool ArgsAreStructReturn(SDOperand Op) {
  unsigned NumArgs = Op.Val->getNumValues() - 1;
  if (!NumArgs)
    return false;

  return cast<ARG_FLAGSSDNode>(Op.getOperand(3))->getArgFlags().isSRet();
}

/// IsCalleePop - Determines whether a CALL or FORMAL_ARGUMENTS node requires
/// the callee to pop its own arguments. Callee pop is necessary to support tail
/// calls.
bool X86TargetLowering::IsCalleePop(SDOperand Op) {
  bool IsVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
  if (IsVarArg)
    return false;

  switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
  default:
    return false;
  case CallingConv::X86_StdCall:
    return !Subtarget->is64Bit();
  case CallingConv::X86_FastCall:
    return !Subtarget->is64Bit();
  case CallingConv::Fast:
    return PerformTailCallOpt;
  }
}

/// CCAssignFnForNode - Selects the correct CCAssignFn for a CALL or
/// FORMAL_ARGUMENTS node.
CCAssignFn *X86TargetLowering::CCAssignFnForNode(SDOperand Op) const {
  unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
  
  if (Subtarget->is64Bit()) {
    if (Subtarget->isTargetWin64())
      return CC_X86_Win64_C;
    else {
      if (CC == CallingConv::Fast && PerformTailCallOpt)
        return CC_X86_64_TailCall;
      else
        return CC_X86_64_C;
    }
  }

  if (CC == CallingConv::X86_FastCall)
    return CC_X86_32_FastCall;
  else if (CC == CallingConv::Fast && PerformTailCallOpt)
    return CC_X86_32_TailCall;
  else
    return CC_X86_32_C;
}

/// NameDecorationForFORMAL_ARGUMENTS - Selects the appropriate decoration to
/// apply to a MachineFunction containing a given FORMAL_ARGUMENTS node.
NameDecorationStyle
X86TargetLowering::NameDecorationForFORMAL_ARGUMENTS(SDOperand Op) {
  unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
  if (CC == CallingConv::X86_FastCall)
    return FastCall;
  else if (CC == CallingConv::X86_StdCall)
    return StdCall;
  return None;
}


/// CallRequiresGOTInRegister - Check whether the call requires the GOT pointer
/// in a register before calling.
bool X86TargetLowering::CallRequiresGOTPtrInReg(bool Is64Bit, bool IsTailCall) {
  return !IsTailCall && !Is64Bit &&
    getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
    Subtarget->isPICStyleGOT();
}

/// CallRequiresFnAddressInReg - Check whether the call requires the function
/// address to be loaded in a register.
bool 
X86TargetLowering::CallRequiresFnAddressInReg(bool Is64Bit, bool IsTailCall) {
  return !Is64Bit && IsTailCall &&  
    getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
    Subtarget->isPICStyleGOT();
}

/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
/// by "Src" to address "Dst" with size and alignment information specified by
/// the specific parameter attribute. The copy will be passed as a byval
/// function parameter.
static SDOperand 
CreateCopyOfByValArgument(SDOperand Src, SDOperand Dst, SDOperand Chain,
                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG) {
  SDOperand SizeNode     = DAG.getConstant(Flags.getByValSize(), MVT::i32);
  return DAG.getMemcpy(Chain, Dst, Src, SizeNode, Flags.getByValAlign(),
                       /*AlwaysInline=*/true, NULL, 0, NULL, 0);
}

SDOperand X86TargetLowering::LowerMemArgument(SDOperand Op, SelectionDAG &DAG,
                                              const CCValAssign &VA,
                                              MachineFrameInfo *MFI,
                                              unsigned CC,
                                              SDOperand Root, unsigned i) {
  // Create the nodes corresponding to a load from this parameter slot.
  ISD::ArgFlagsTy Flags =
    cast<ARG_FLAGSSDNode>(Op.getOperand(3 + i))->getArgFlags();
  bool AlwaysUseMutable = (CC==CallingConv::Fast) && PerformTailCallOpt;
  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();

  // FIXME: For now, all byval parameter objects are marked mutable. This can be
  // changed with more analysis.  
  // In case of tail call optimization mark all arguments mutable. Since they
  // could be overwritten by lowering of arguments in case of a tail call.
  int FI = MFI->CreateFixedObject(VA.getValVT().getSizeInBits()/8,
                                  VA.getLocMemOffset(), isImmutable);
  SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
  if (Flags.isByVal())
    return FIN;
  return DAG.getLoad(VA.getValVT(), Root, FIN,
                     PseudoSourceValue::getFixedStack(), FI);
}

SDOperand
X86TargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) {
  MachineFunction &MF = DAG.getMachineFunction();
  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
  
  const Function* Fn = MF.getFunction();
  if (Fn->hasExternalLinkage() &&
      Subtarget->isTargetCygMing() &&
      Fn->getName() == "main")
    FuncInfo->setForceFramePointer(true);

  // Decorate the function name.
  FuncInfo->setDecorationStyle(NameDecorationForFORMAL_ARGUMENTS(Op));
  
  MachineFrameInfo *MFI = MF.getFrameInfo();
  SDOperand Root = Op.getOperand(0);
  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
  unsigned CC = MF.getFunction()->getCallingConv();
  bool Is64Bit = Subtarget->is64Bit();
  bool IsWin64 = Subtarget->isTargetWin64();

  assert(!(isVarArg && CC == CallingConv::Fast) &&
         "Var args not supported with calling convention fastcc");

  // Assign locations to all of the incoming arguments.
  SmallVector<CCValAssign, 16> ArgLocs;
  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
  CCInfo.AnalyzeFormalArguments(Op.Val, CCAssignFnForNode(Op));
  
  SmallVector<SDOperand, 8> ArgValues;
  unsigned LastVal = ~0U;
  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
    CCValAssign &VA = ArgLocs[i];
    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
    // places.
    assert(VA.getValNo() != LastVal &&
           "Don't support value assigned to multiple locs yet");
    LastVal = VA.getValNo();
    
    if (VA.isRegLoc()) {
      MVT RegVT = VA.getLocVT();
      TargetRegisterClass *RC;
      if (RegVT == MVT::i32)
        RC = X86::GR32RegisterClass;
      else if (Is64Bit && RegVT == MVT::i64)
        RC = X86::GR64RegisterClass;
      else if (RegVT == MVT::f32)
        RC = X86::FR32RegisterClass;
      else if (RegVT == MVT::f64)
        RC = X86::FR64RegisterClass;
      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
        RC = X86::VR128RegisterClass;
      else if (RegVT.isVector()) {
        assert(RegVT.getSizeInBits() == 64);
        if (!Is64Bit)
          RC = X86::VR64RegisterClass;     // MMX values are passed in MMXs.
        else {
          // Darwin calling convention passes MMX values in either GPRs or
          // XMMs in x86-64. Other targets pass them in memory.
          if (RegVT != MVT::v1i64 && Subtarget->hasSSE2()) {
            RC = X86::VR128RegisterClass;  // MMX values are passed in XMMs.
            RegVT = MVT::v2i64;
          } else {
            RC = X86::GR64RegisterClass;   // v1i64 values are passed in GPRs.
            RegVT = MVT::i64;
          }
        }
      } else {
        assert(0 && "Unknown argument type!");
      }

      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
      SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
      
      // If this is an 8 or 16-bit value, it is really passed promoted to 32
      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
      // right size.
      if (VA.getLocInfo() == CCValAssign::SExt)
        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
                               DAG.getValueType(VA.getValVT()));
      else if (VA.getLocInfo() == CCValAssign::ZExt)
        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
                               DAG.getValueType(VA.getValVT()));
      
      if (VA.getLocInfo() != CCValAssign::Full)
        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
      
      // Handle MMX values passed in GPRs.
      if (Is64Bit && RegVT != VA.getLocVT()) {
        if (RegVT.getSizeInBits() == 64 && RC == X86::GR64RegisterClass)
          ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue);
        else if (RC == X86::VR128RegisterClass) {
          ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i64, ArgValue,
                                 DAG.getConstant(0, MVT::i64));
          ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue);
        }
      }
      
      ArgValues.push_back(ArgValue);
    } else {
      assert(VA.isMemLoc());
      ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, CC, Root, i));
    }
  }

  // The x86-64 ABI for returning structs by value requires that we copy
  // the sret argument into %rax for the return. Save the argument into
  // a virtual register so that we can access it from the return points.
  if (Is64Bit && DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
    MachineFunction &MF = DAG.getMachineFunction();
    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
    unsigned Reg = FuncInfo->getSRetReturnReg();
    if (!Reg) {
      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
      FuncInfo->setSRetReturnReg(Reg);
    }
    SDOperand Copy = DAG.getCopyToReg(DAG.getEntryNode(), Reg, ArgValues[0]);
    Root = DAG.getNode(ISD::TokenFactor, MVT::Other, Copy, Root);
  }

  unsigned StackSize = CCInfo.getNextStackOffset();
  // align stack specially for tail calls
  if (CC == CallingConv::Fast)
    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);

  // If the function takes variable number of arguments, make a frame index for
  // the start of the first vararg value... for expansion of llvm.va_start.
  if (isVarArg) {
    if (Is64Bit || CC != CallingConv::X86_FastCall) {
      VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
    }
    if (Is64Bit) {
      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;

      // FIXME: We should really autogenerate these arrays
      static const unsigned GPR64ArgRegsWin64[] = {
        X86::RCX, X86::RDX, X86::R8,  X86::R9
      };
      static const unsigned XMMArgRegsWin64[] = {
        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
      };
      static const unsigned GPR64ArgRegs64Bit[] = {
        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
      };
      static const unsigned XMMArgRegs64Bit[] = {
        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
      };
      const unsigned *GPR64ArgRegs, *XMMArgRegs;

      if (IsWin64) {
        TotalNumIntRegs = 4; TotalNumXMMRegs = 4;
        GPR64ArgRegs = GPR64ArgRegsWin64;
        XMMArgRegs = XMMArgRegsWin64;
      } else {
        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
        GPR64ArgRegs = GPR64ArgRegs64Bit;
        XMMArgRegs = XMMArgRegs64Bit;
      }
      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
                                                       TotalNumIntRegs);
      unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs,
                                                       TotalNumXMMRegs);

      // For X86-64, if there are vararg parameters that are passed via
      // registers, then we must store them to their spots on the stack so they
      // may be loaded by deferencing the result of va_next.
      VarArgsGPOffset = NumIntRegs * 8;
      VarArgsFPOffset = TotalNumIntRegs * 8 + NumXMMRegs * 16;
      RegSaveFrameIndex = MFI->CreateStackObject(TotalNumIntRegs * 8 +
                                                 TotalNumXMMRegs * 16, 16);

      // Store the integer parameter registers.
      SmallVector<SDOperand, 8> MemOps;
      SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
      SDOperand FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
                                  DAG.getIntPtrConstant(VarArgsGPOffset));
      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
        unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs],
                                  X86::GR64RegisterClass);
        SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i64);
        SDOperand Store =
          DAG.getStore(Val.getValue(1), Val, FIN,
                       PseudoSourceValue::getFixedStack(),
                       RegSaveFrameIndex);
        MemOps.push_back(Store);
        FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
                          DAG.getIntPtrConstant(8));
      }

      // Now store the XMM (fp + vector) parameter registers.
      FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
                        DAG.getIntPtrConstant(VarArgsFPOffset));
      for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
        unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
                                  X86::VR128RegisterClass);
        SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32);
        SDOperand Store =
          DAG.getStore(Val.getValue(1), Val, FIN,
                       PseudoSourceValue::getFixedStack(),
                       RegSaveFrameIndex);
        MemOps.push_back(Store);
        FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
                          DAG.getIntPtrConstant(16));
      }
      if (!MemOps.empty())
          Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
                             &MemOps[0], MemOps.size());
    }
  }
  
  // Make sure the instruction takes 8n+4 bytes to make sure the start of the
  // arguments and the arguments after the retaddr has been pushed are
  // aligned.
  if (!Is64Bit && CC == CallingConv::X86_FastCall &&
      !Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows() &&
      (StackSize & 7) == 0)
    StackSize += 4;

  ArgValues.push_back(Root);

  // Some CCs need callee pop.
  if (IsCalleePop(Op)) {
    BytesToPopOnReturn  = StackSize; // Callee pops everything.
    BytesCallerReserves = 0;
  } else {
    BytesToPopOnReturn  = 0; // Callee pops nothing.
    // If this is an sret function, the return should pop the hidden pointer.
    if (!Is64Bit && ArgsAreStructReturn(Op))
      BytesToPopOnReturn = 4;  
    BytesCallerReserves = StackSize;
  }

  if (!Is64Bit) {
    RegSaveFrameIndex = 0xAAAAAAA;   // RegSaveFrameIndex is X86-64 only.
    if (CC == CallingConv::X86_FastCall)
      VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
  }

  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);

  // Return the new list of results.
  return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
                     &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
}

SDOperand
X86TargetLowering::LowerMemOpCallTo(SDOperand Op, SelectionDAG &DAG,
                                    const SDOperand &StackPtr,
                                    const CCValAssign &VA,
                                    SDOperand Chain,
                                    SDOperand Arg) {
  unsigned LocMemOffset = VA.getLocMemOffset();
  SDOperand PtrOff = DAG.getIntPtrConstant(LocMemOffset);
  PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
  ISD::ArgFlagsTy Flags =
    cast<ARG_FLAGSSDNode>(Op.getOperand(6+2*VA.getValNo()))->getArgFlags();
  if (Flags.isByVal()) {
    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG);
  }
  return DAG.getStore(Chain, Arg, PtrOff,
                      PseudoSourceValue::getStack(), LocMemOffset);
}

/// EmitTailCallLoadRetAddr - Emit a load of return adress if tail call
/// optimization is performed and it is required.
SDOperand 
X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG, 
                                           SDOperand &OutRetAddr,
                                           SDOperand Chain, 
                                           bool IsTailCall, 
                                           bool Is64Bit, 
                                           int FPDiff) {
  if (!IsTailCall || FPDiff==0) return Chain;

  // Adjust the Return address stack slot.
  MVT VT = getPointerTy();
  OutRetAddr = getReturnAddressFrameIndex(DAG);
  // Load the "old" Return address.
  OutRetAddr = DAG.getLoad(VT, Chain,OutRetAddr, NULL, 0);
  return SDOperand(OutRetAddr.Val, 1);
}

/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
/// optimization is performed and it is required (FPDiff!=0).
static SDOperand 
EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF, 
                         SDOperand Chain, SDOperand RetAddrFrIdx,
                         bool Is64Bit, int FPDiff) {
  // Store the return address to the appropriate stack slot.
  if (!FPDiff) return Chain;
  // Calculate the new stack slot for the return address.
  int SlotSize = Is64Bit ? 8 : 4;
  int NewReturnAddrFI = 
    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize);
  MVT VT = Is64Bit ? MVT::i64 : MVT::i32;
  SDOperand NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
  Chain = DAG.getStore(Chain, RetAddrFrIdx, NewRetAddrFrIdx, 
                       PseudoSourceValue::getFixedStack(), NewReturnAddrFI);
  return Chain;
}

SDOperand X86TargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG) {
  MachineFunction &MF = DAG.getMachineFunction();
  SDOperand Chain     = Op.getOperand(0);
  unsigned CC         = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
  bool IsTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0
                        && CC == CallingConv::Fast && PerformTailCallOpt;
  SDOperand Callee    = Op.getOperand(4);
  bool Is64Bit        = Subtarget->is64Bit();
  bool IsStructRet    = CallIsStructReturn(Op);

  assert(!(isVarArg && CC == CallingConv::Fast) &&
         "Var args not supported with calling convention fastcc");

  // Analyze operands of the call, assigning locations to each operand.
  SmallVector<CCValAssign, 16> ArgLocs;
  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
  CCInfo.AnalyzeCallOperands(Op.Val, CCAssignFnForNode(Op));
  
  // Get a count of how many bytes are to be pushed on the stack.
  unsigned NumBytes = CCInfo.getNextStackOffset();
  if (CC == CallingConv::Fast)
    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);

  // Make sure the instruction takes 8n+4 bytes to make sure the start of the
  // arguments and the arguments after the retaddr has been pushed are aligned.
  if (!Is64Bit && CC == CallingConv::X86_FastCall &&
      !Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows() &&
      (NumBytes & 7) == 0)
    NumBytes += 4;

  int FPDiff = 0;
  if (IsTailCall) {
    // Lower arguments at fp - stackoffset + fpdiff.
    unsigned NumBytesCallerPushed = 
      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
    FPDiff = NumBytesCallerPushed - NumBytes;

    // Set the delta of movement of the returnaddr stackslot.
    // But only set if delta is greater than previous delta.
    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
  }

  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes));

  SDOperand RetAddrFrIdx;
  // Load return adress for tail calls.
  Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, IsTailCall, Is64Bit,
                                  FPDiff);

  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
  SmallVector<SDOperand, 8> MemOpChains;
  SDOperand StackPtr;

  // Walk the register/memloc assignments, inserting copies/loads.  In the case
  // of tail call optimization arguments are handle later.
  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
    CCValAssign &VA = ArgLocs[i];
    SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
    bool isByVal = cast<ARG_FLAGSSDNode>(Op.getOperand(6+2*VA.getValNo()))->
      getArgFlags().isByVal();
  
    // Promote the value if needed.
    switch (VA.getLocInfo()) {
    default: assert(0 && "Unknown loc info!");
    case CCValAssign::Full: break;
    case CCValAssign::SExt:
      Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
      break;
    case CCValAssign::ZExt:
      Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
      break;
    case CCValAssign::AExt:
      Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
      break;
    }
    
    if (VA.isRegLoc()) {
      if (Is64Bit) {
        MVT RegVT = VA.getLocVT();
        if (RegVT.isVector() && RegVT.getSizeInBits() == 64)
          switch (VA.getLocReg()) {
          default:
            break;
          case X86::RDI: case X86::RSI: case X86::RDX: case X86::RCX:
          case X86::R8: {
            // Special case: passing MMX values in GPR registers.
            Arg = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Arg);
            break;
          }
          case X86::XMM0: case X86::XMM1: case X86::XMM2: case X86::XMM3:
          case X86::XMM4: case X86::XMM5: case X86::XMM6: case X86::XMM7: {
            // Special case: passing MMX values in XMM registers.
            Arg = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Arg);
            Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Arg);
            Arg = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v2i64,
                              DAG.getNode(ISD::UNDEF, MVT::v2i64), Arg,
                              getMOVLMask(2, DAG));
            break;
          }
          }
      }
      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
    } else {
      if (!IsTailCall || (IsTailCall && isByVal)) {
        assert(VA.isMemLoc());
        if (StackPtr.Val == 0)
          StackPtr = DAG.getCopyFromReg(Chain, X86StackPtr, getPointerTy());
        
        MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
                                               Arg));
      }
    }
  }
  
  if (!MemOpChains.empty())
    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
                        &MemOpChains[0], MemOpChains.size());

  // Build a sequence of copy-to-reg nodes chained together with token chain
  // and flag operands which copy the outgoing args into registers.
  SDOperand InFlag;
  // Tail call byval lowering might overwrite argument registers so in case of
  // tail call optimization the copies to registers are lowered later.
  if (!IsTailCall)
    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
      Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
                               InFlag);
      InFlag = Chain.getValue(1);
    }

  // ELF / PIC requires GOT in the EBX register before function calls via PLT
  // GOT pointer.  
  if (CallRequiresGOTPtrInReg(Is64Bit, IsTailCall)) {
    Chain = DAG.getCopyToReg(Chain, X86::EBX,
                             DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
                             InFlag);
    InFlag = Chain.getValue(1);
  }
  // If we are tail calling and generating PIC/GOT style code load the address
  // of the callee into ecx. The value in ecx is used as target of the tail
  // jump. This is done to circumvent the ebx/callee-saved problem for tail
  // calls on PIC/GOT architectures. Normally we would just put the address of
  // GOT into ebx and then call target@PLT. But for tail callss ebx would be
  // restored (since ebx is callee saved) before jumping to the target@PLT.
  if (CallRequiresFnAddressInReg(Is64Bit, IsTailCall)) {
    // Note: The actual moving to ecx is done further down.
    GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
    if (G &&  !G->getGlobal()->hasHiddenVisibility() &&
        !G->getGlobal()->hasProtectedVisibility())
      Callee =  LowerGlobalAddress(Callee, DAG);
    else if (isa<ExternalSymbolSDNode>(Callee))
      Callee = LowerExternalSymbol(Callee,DAG);
  }

  if (Is64Bit && isVarArg) {
    // From AMD64 ABI document:
    // For calls that may call functions that use varargs or stdargs
    // (prototype-less calls or calls to functions containing ellipsis (...) in
    // the declaration) %al is used as hidden argument to specify the number
    // of SSE registers used. The contents of %al do not need to match exactly
    // the number of registers, but must be an ubound on the number of SSE
    // registers used and is in the range 0 - 8 inclusive.

    // FIXME: Verify this on Win64
    // Count the number of XMM registers allocated.
    static const unsigned XMMArgRegs[] = {
      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
    };
    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
    
    Chain = DAG.getCopyToReg(Chain, X86::AL,
                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
    InFlag = Chain.getValue(1);
  }


  // For tail calls lower the arguments to the 'real' stack slot.
  if (IsTailCall) {
    SmallVector<SDOperand, 8> MemOpChains2;
    SDOperand FIN;
    int FI = 0;
    // Do not flag preceeding copytoreg stuff together with the following stuff.
    InFlag = SDOperand();
    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
      CCValAssign &VA = ArgLocs[i];
      if (!VA.isRegLoc()) {
        assert(VA.isMemLoc());
        SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
        SDOperand FlagsOp = Op.getOperand(6+2*VA.getValNo());
        ISD::ArgFlagsTy Flags =
          cast<ARG_FLAGSSDNode>(FlagsOp)->getArgFlags();
        // Create frame index.
        int32_t Offset = VA.getLocMemOffset()+FPDiff;
        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
        FIN = DAG.getFrameIndex(FI, getPointerTy());

        if (Flags.isByVal()) {
          // Copy relative to framepointer.
          SDOperand Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
          if (StackPtr.Val == 0)
            StackPtr = DAG.getCopyFromReg(Chain, X86StackPtr, getPointerTy());
          Source = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, Source);

          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN, Chain,
                                                           Flags, DAG));
        } else {
          // Store relative to framepointer.
          MemOpChains2.push_back(
            DAG.getStore(Chain, Arg, FIN,
                         PseudoSourceValue::getFixedStack(), FI));
        }            
      }
    }

    if (!MemOpChains2.empty())
      Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
                          &MemOpChains2[0], MemOpChains2.size());

    // Copy arguments to their registers.
    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
      Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
                               InFlag);
      InFlag = Chain.getValue(1);
    }
    InFlag =SDOperand();

    // Store the return address to the appropriate stack slot.
    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
                                     FPDiff);
  }

  // If the callee is a GlobalAddress node (quite common, every direct call is)
  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
    // We should use extra load for direct calls to dllimported functions in
    // non-JIT mode.
    if ((IsTailCall || !Is64Bit ||
         getTargetMachine().getCodeModel() != CodeModel::Large)
        && !Subtarget->GVRequiresExtraLoad(G->getGlobal(),
                                           getTargetMachine(), true))
      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
    if (IsTailCall || !Is64Bit ||
        getTargetMachine().getCodeModel() != CodeModel::Large)
      Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
  } else if (IsTailCall) {
    unsigned Opc = Is64Bit ? X86::R9 : X86::ECX;

    Chain = DAG.getCopyToReg(Chain, 
                             DAG.getRegister(Opc, getPointerTy()), 
                             Callee,InFlag);
    Callee = DAG.getRegister(Opc, getPointerTy());
    // Add register as live out.
    DAG.getMachineFunction().getRegInfo().addLiveOut(Opc);
  }
 
  // Returns a chain & a flag for retval copy to use.
  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
  SmallVector<SDOperand, 8> Ops;

  if (IsTailCall) {
    Ops.push_back(Chain);
    Ops.push_back(DAG.getIntPtrConstant(NumBytes));
    Ops.push_back(DAG.getIntPtrConstant(0));
    if (InFlag.Val)
      Ops.push_back(InFlag);
    Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
    InFlag = Chain.getValue(1);
 
    // Returns a chain & a flag for retval copy to use.
    NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
    Ops.clear();
  }
  
  Ops.push_back(Chain);
  Ops.push_back(Callee);

  if (IsTailCall)
    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));

  // Add argument registers to the end of the list so that they are known live
  // into the call.
  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
                                  RegsToPass[i].second.getValueType()));
  
  // Add an implicit use GOT pointer in EBX.
  if (!IsTailCall && !Is64Bit &&
      getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
      Subtarget->isPICStyleGOT())
    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));

  // Add an implicit use of AL for x86 vararg functions.
  if (Is64Bit && isVarArg)
    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));

  if (InFlag.Val)
    Ops.push_back(InFlag);

  if (IsTailCall) {
    assert(InFlag.Val && 
           "Flag must be set. Depend on flag being set in LowerRET");
    Chain = DAG.getNode(X86ISD::TAILCALL,
                        Op.Val->getVTList(), &Ops[0], Ops.size());
      
    return SDOperand(Chain.Val, Op.ResNo);
  }

  Chain = DAG.getNode(X86ISD::CALL, NodeTys, &Ops[0], Ops.size());
  InFlag = Chain.getValue(1);

  // Create the CALLSEQ_END node.
  unsigned NumBytesForCalleeToPush;
  if (IsCalleePop(Op))
    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
  else if (!Is64Bit && IsStructRet)
    // If this is is a call to a struct-return function, the callee
    // pops the hidden struct pointer, so we have to push it back.
    // This is common for Darwin/X86, Linux & Mingw32 targets.
    NumBytesForCalleeToPush = 4;
  else
    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
  
  // Returns a flag for retval copy to use.
  Chain = DAG.getCALLSEQ_END(Chain,
                             DAG.getIntPtrConstant(NumBytes),
                             DAG.getIntPtrConstant(NumBytesForCalleeToPush),
                             InFlag);
  InFlag = Chain.getValue(1);

  // Handle result values, copying them out of physregs into vregs that we
  // return.
  return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
}


//===----------------------------------------------------------------------===//
//                Fast Calling Convention (tail call) implementation
//===----------------------------------------------------------------------===//

//  Like std call, callee cleans arguments, convention except that ECX is
//  reserved for storing the tail called function address. Only 2 registers are
//  free for argument passing (inreg). Tail call optimization is performed
//  provided:
//                * tailcallopt is enabled
//                * caller/callee are fastcc
//  On X86_64 architecture with GOT-style position independent code only local
//  (within module) calls are supported at the moment.
//  To keep the stack aligned according to platform abi the function
//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
//  If a tail called function callee has more arguments than the caller the
//  caller needs to make sure that there is room to move the RETADDR to. This is
//  achieved by reserving an area the size of the argument delta right after the
//  original REtADDR, but before the saved framepointer or the spilled registers
//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
//  stack layout:
//    arg1
//    arg2
//    RETADDR
//    [ new RETADDR 
//      move area ]
//    (possible EBP)
//    ESI
//    EDI
//    local1 ..

/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
/// for a 16 byte align requirement.
unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize, 
                                                        SelectionDAG& DAG) {
  if (PerformTailCallOpt) {
    MachineFunction &MF = DAG.getMachineFunction();
    const TargetMachine &TM = MF.getTarget();
    const TargetFrameInfo &TFI = *TM.getFrameInfo();
    unsigned StackAlignment = TFI.getStackAlignment();
    uint64_t AlignMask = StackAlignment - 1; 
    int64_t Offset = StackSize;
    unsigned SlotSize = Subtarget->is64Bit() ? 8 : 4;
    if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
      // Number smaller than 12 so just add the difference.
      Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
    } else {
      // Mask out lower bits, add stackalignment once plus the 12 bytes.
      Offset = ((~AlignMask) & Offset) + StackAlignment + 
        (StackAlignment-SlotSize);
    }
    StackSize = Offset;
  }
  return StackSize;
}

/// IsEligibleForTailCallElimination - Check to see whether the next instruction
/// following the call is a return. A function is eligible if caller/callee
/// calling conventions match, currently only fastcc supports tail calls, and
/// the function CALL is immediatly followed by a RET.
bool X86TargetLowering::IsEligibleForTailCallOptimization(SDOperand Call,
                                                      SDOperand Ret,
                                                      SelectionDAG& DAG) const {
  if (!PerformTailCallOpt)
    return false;

  if (CheckTailCallReturnConstraints(Call, Ret)) {
    MachineFunction &MF = DAG.getMachineFunction();
    unsigned CallerCC = MF.getFunction()->getCallingConv();
    unsigned CalleeCC = cast<ConstantSDNode>(Call.getOperand(1))->getValue();
    if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
      SDOperand Callee = Call.getOperand(4);
      // On x86/32Bit PIC/GOT  tail calls are supported.
      if (getTargetMachine().getRelocationModel() != Reloc::PIC_ ||
          !Subtarget->isPICStyleGOT()|| !Subtarget->is64Bit())
        return true;

      // Can only do local tail calls (in same module, hidden or protected) on
      // x86_64 PIC/GOT at the moment.
      if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
        return G->getGlobal()->hasHiddenVisibility()
            || G->getGlobal()->hasProtectedVisibility();
    }
  }

  return false;
}

//===----------------------------------------------------------------------===//
//                           Other Lowering Hooks
//===----------------------------------------------------------------------===//


SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
  MachineFunction &MF = DAG.getMachineFunction();
  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
  int ReturnAddrIndex = FuncInfo->getRAIndex();

  if (ReturnAddrIndex == 0) {
    // Set up a frame object for the return address.
    if (Subtarget->is64Bit())
      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(8, -8);
    else
      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4);

    FuncInfo->setRAIndex(ReturnAddrIndex);
  }

  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
}



/// translateX86CC - do a one to one translation of a ISD::CondCode to the X86
/// specific condition code. It returns a false if it cannot do a direct
/// translation. X86CC is the translated CondCode.  LHS/RHS are modified as
/// needed.
static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
                           unsigned &X86CC, SDOperand &LHS, SDOperand &RHS,
                           SelectionDAG &DAG) {
  X86CC = X86::COND_INVALID;
  if (!isFP) {
    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
        // X > -1   -> X == 0, jump !sign.
        RHS = DAG.getConstant(0, RHS.getValueType());
        X86CC = X86::COND_NS;
        return true;
      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
        // X < 0   -> X == 0, jump on sign.
        X86CC = X86::COND_S;
        return true;
      } else if (SetCCOpcode == ISD::SETLT && RHSC->getValue() == 1) {
        // X < 1   -> X <= 0
        RHS = DAG.getConstant(0, RHS.getValueType());
        X86CC = X86::COND_LE;
        return true;
      }
    }

    switch (SetCCOpcode) {
    default: break;
    case ISD::SETEQ:  X86CC = X86::COND_E;  break;
    case ISD::SETGT:  X86CC = X86::COND_G;  break;
    case ISD::SETGE:  X86CC = X86::COND_GE; break;
    case ISD::SETLT:  X86CC = X86::COND_L;  break;
    case ISD::SETLE:  X86CC = X86::COND_LE; break;
    case ISD::SETNE:  X86CC = X86::COND_NE; break;
    case ISD::SETULT: X86CC = X86::COND_B;  break;
    case ISD::SETUGT: X86CC = X86::COND_A;  break;
    case ISD::SETULE: X86CC = X86::COND_BE; break;
    case ISD::SETUGE: X86CC = X86::COND_AE; break;
    }
  } else {
    // On a floating point condition, the flags are set as follows:
    // ZF  PF  CF   op
    //  0 | 0 | 0 | X > Y
    //  0 | 0 | 1 | X < Y
    //  1 | 0 | 0 | X == Y
    //  1 | 1 | 1 | unordered
    bool Flip = false;
    switch (SetCCOpcode) {
    default: break;
    case ISD::SETUEQ:
    case ISD::SETEQ: X86CC = X86::COND_E;  break;
    case ISD::SETOLT: Flip = true; // Fallthrough
    case ISD::SETOGT:
    case ISD::SETGT: X86CC = X86::COND_A;  break;
    case ISD::SETOLE: Flip = true; // Fallthrough
    case ISD::SETOGE:
    case ISD::SETGE: X86CC = X86::COND_AE; break;
    case ISD::SETUGT: Flip = true; // Fallthrough
    case ISD::SETULT:
    case ISD::SETLT: X86CC = X86::COND_B;  break;
    case ISD::SETUGE: Flip = true; // Fallthrough
    case ISD::SETULE:
    case ISD::SETLE: X86CC = X86::COND_BE; break;
    case ISD::SETONE:
    case ISD::SETNE: X86CC = X86::COND_NE; break;
    case ISD::SETUO: X86CC = X86::COND_P;  break;
    case ISD::SETO:  X86CC = X86::COND_NP; break;
    }
    if (Flip)
      std::swap(LHS, RHS);
  }

  return X86CC != X86::COND_INVALID;
}

/// hasFPCMov - is there a floating point cmov for the specific X86 condition
/// code. Current x86 isa includes the following FP cmov instructions:
/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
static bool hasFPCMov(unsigned X86CC) {
  switch (X86CC) {
  default:
    return false;
  case X86::COND_B:
  case X86::COND_BE:
  case X86::COND_E:
  case X86::COND_P:
  case X86::COND_A:
  case X86::COND_AE:
  case X86::COND_NE:
  case X86::COND_NP:
    return true;
  }
}

/// isUndefOrInRange - Op is either an undef node or a ConstantSDNode.  Return
/// true if Op is undef or if its value falls within the specified range (L, H].
static bool isUndefOrInRange(SDOperand Op, unsigned Low, unsigned Hi) {
  if (Op.getOpcode() == ISD::UNDEF)
    return true;

  unsigned Val = cast<ConstantSDNode>(Op)->getValue();
  return (Val >= Low && Val < Hi);
}

/// isUndefOrEqual - Op is either an undef node or a ConstantSDNode.  Return
/// true if Op is undef or if its value equal to the specified value.
static bool isUndefOrEqual(SDOperand Op, unsigned Val) {
  if (Op.getOpcode() == ISD::UNDEF)
    return true;
  return cast<ConstantSDNode>(Op)->getValue() == Val;
}

/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to PSHUFD.
bool X86::isPSHUFDMask(SDNode *N) {
  assert(N->getOpcode() == ISD::BUILD_VECTOR);

  if (N->getNumOperands() != 2 && N->getNumOperands() != 4)
    return false;

  // Check if the value doesn't reference the second vector.
  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
    SDOperand Arg = N->getOperand(i);
    if (Arg.getOpcode() == ISD::UNDEF) continue;
    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
    if (cast<ConstantSDNode>(Arg)->getValue() >= e)
      return false;
  }

  return true;
}

/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to PSHUFHW.
bool X86::isPSHUFHWMask(SDNode *N) {
  assert(N->getOpcode() == ISD::BUILD_VECTOR);

  if (N->getNumOperands() != 8)
    return false;

  // Lower quadword copied in order.
  for (unsigned i = 0; i != 4; ++i) {
    SDOperand Arg = N->getOperand(i);
    if (Arg.getOpcode() == ISD::UNDEF) continue;
    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
    if (cast<ConstantSDNode>(Arg)->getValue() != i)
      return false;
  }

  // Upper quadword shuffled.
  for (unsigned i = 4; i != 8; ++i) {
    SDOperand Arg = N->getOperand(i);
    if (Arg.getOpcode() == ISD::UNDEF) continue;
    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
    if (Val < 4 || Val > 7)
      return false;
  }

  return true;
}

/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to PSHUFLW.
bool X86::isPSHUFLWMask(SDNode *N) {
  assert(N->getOpcode() == ISD::BUILD_VECTOR);

  if (N->getNumOperands() != 8)
    return false;

  // Upper quadword copied in order.
  for (unsigned i = 4; i != 8; ++i)
    if (!isUndefOrEqual(N->getOperand(i), i))
      return false;

  // Lower quadword shuffled.
  for (unsigned i = 0; i != 4; ++i)
    if (!isUndefOrInRange(N->getOperand(i), 0, 4))
      return false;

  return true;
}

/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to SHUFP*.
static bool isSHUFPMask(SDOperandPtr Elems, unsigned NumElems) {
  if (NumElems != 2 && NumElems != 4) return false;

  unsigned Half = NumElems / 2;
  for (unsigned i = 0; i < Half; ++i)
    if (!isUndefOrInRange(Elems[i], 0, NumElems))
      return false;
  for (unsigned i = Half; i < NumElems; ++i)
    if (!isUndefOrInRange(Elems[i], NumElems, NumElems*2))
      return false;

  return true;
}

bool X86::isSHUFPMask(SDNode *N) {
  assert(N->getOpcode() == ISD::BUILD_VECTOR);
  return ::isSHUFPMask(N->op_begin(), N->getNumOperands());
}

/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
/// half elements to come from vector 1 (which would equal the dest.) and
/// the upper half to come from vector 2.
static bool isCommutedSHUFP(SDOperandPtr Ops, unsigned NumOps) {
  if (NumOps != 2 && NumOps != 4) return false;

  unsigned Half = NumOps / 2;
  for (unsigned i = 0; i < Half; ++i)
    if (!isUndefOrInRange(Ops[i], NumOps, NumOps*2))
      return false;
  for (unsigned i = Half; i < NumOps; ++i)
    if (!isUndefOrInRange(Ops[i], 0, NumOps))
      return false;
  return true;
}

static bool isCommutedSHUFP(SDNode *N) {
  assert(N->getOpcode() == ISD::BUILD_VECTOR);
  return isCommutedSHUFP(N->op_begin(), N->getNumOperands());
}

/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
bool X86::isMOVHLPSMask(SDNode *N) {
  assert(N->getOpcode() == ISD::BUILD_VECTOR);

  if (N->getNumOperands() != 4)
    return false;

  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
  return isUndefOrEqual(N->getOperand(0), 6) &&
         isUndefOrEqual(N->getOperand(1), 7) &&
         isUndefOrEqual(N->getOperand(2), 2) &&
         isUndefOrEqual(N->getOperand(3), 3);
}

/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
/// <2, 3, 2, 3>
bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) {
  assert(N->getOpcode() == ISD::BUILD_VECTOR);

  if (N->getNumOperands() != 4)
    return false;

  // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3
  return isUndefOrEqual(N->getOperand(0), 2) &&
         isUndefOrEqual(N->getOperand(1), 3) &&
         isUndefOrEqual(N->getOperand(2), 2) &&
         isUndefOrEqual(N->getOperand(3), 3);
}

/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
bool X86::isMOVLPMask(SDNode *N) {
  assert(N->getOpcode() == ISD::BUILD_VECTOR);

  unsigned NumElems = N->getNumOperands();
  if (NumElems != 2 && NumElems != 4)
    return false;

  for (unsigned i = 0; i < NumElems/2; ++i)
    if (!isUndefOrEqual(N->getOperand(i), i + NumElems))
      return false;

  for (unsigned i = NumElems/2; i < NumElems; ++i)
    if (!isUndefOrEqual(N->getOperand(i), i))
      return false;

  return true;
}

/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
/// and MOVLHPS.
bool X86::isMOVHPMask(SDNode *N) {
  assert(N->getOpcode() == ISD::BUILD_VECTOR);

  unsigned NumElems = N->getNumOperands();
  if (NumElems != 2 && NumElems != 4)
    return false;

  for (unsigned i = 0; i < NumElems/2; ++i)
    if (!isUndefOrEqual(N->getOperand(i), i))
      return false;

  for (unsigned i = 0; i < NumElems/2; ++i) {
    SDOperand Arg = N->getOperand(i + NumElems/2);
    if (!isUndefOrEqual(Arg, i + NumElems))
      return false;
  }

  return true;
}

/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to UNPCKL.
bool static isUNPCKLMask(SDOperandPtr Elts, unsigned NumElts,
                         bool V2IsSplat = false) {
  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
    return false;

  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
    SDOperand BitI  = Elts[i];
    SDOperand BitI1 = Elts[i+1];
    if (!isUndefOrEqual(BitI, j))
      return false;
    if (V2IsSplat) {
      if (isUndefOrEqual(BitI1, NumElts))
        return false;
    } else {
      if (!isUndefOrEqual(BitI1, j + NumElts))
        return false;
    }
  }

  return true;
}

bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) {
  assert(N->getOpcode() == ISD::BUILD_VECTOR);
  return ::isUNPCKLMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
}

/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to UNPCKH.
bool static isUNPCKHMask(SDOperandPtr Elts, unsigned NumElts,
                         bool V2IsSplat = false) {
  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
    return false;

  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
    SDOperand BitI  = Elts[i];
    SDOperand BitI1 = Elts[i+1];
    if (!isUndefOrEqual(BitI, j + NumElts/2))
      return false;
    if (V2IsSplat) {
      if (isUndefOrEqual(BitI1, NumElts))
        return false;
    } else {
      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
        return false;
    }
  }

  return true;
}

bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) {
  assert(N->getOpcode() == ISD::BUILD_VECTOR);
  return ::isUNPCKHMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
}

/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
/// <0, 0, 1, 1>
bool X86::isUNPCKL_v_undef_Mask(SDNode *N) {
  assert(N->getOpcode() == ISD::BUILD_VECTOR);

  unsigned NumElems = N->getNumOperands();
  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
    return false;

  for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
    SDOperand BitI  = N->getOperand(i);
    SDOperand BitI1 = N->getOperand(i+1);

    if (!isUndefOrEqual(BitI, j))
      return false;
    if (!isUndefOrEqual(BitI1, j))
      return false;
  }

  return true;
}

/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
/// <2, 2, 3, 3>
bool X86::isUNPCKH_v_undef_Mask(SDNode *N) {
  assert(N->getOpcode() == ISD::BUILD_VECTOR);

  unsigned NumElems = N->getNumOperands();
  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
    return false;

  for (unsigned i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
    SDOperand BitI  = N->getOperand(i);
    SDOperand BitI1 = N->getOperand(i + 1);

    if (!isUndefOrEqual(BitI, j))
      return false;
    if (!isUndefOrEqual(BitI1, j))
      return false;
  }

  return true;
}

/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to MOVSS,
/// MOVSD, and MOVD, i.e. setting the lowest element.
static bool isMOVLMask(SDOperandPtr Elts, unsigned NumElts) {
  if (NumElts != 2 && NumElts != 4)
    return false;

  if (!isUndefOrEqual(Elts[0], NumElts))
    return false;

  for (unsigned i = 1; i < NumElts; ++i) {
    if (!isUndefOrEqual(Elts[i], i))
      return false;
  }

  return true;
}

bool X86::isMOVLMask(SDNode *N) {
  assert(N->getOpcode() == ISD::BUILD_VECTOR);
  return ::isMOVLMask(N->op_begin(), N->getNumOperands());
}

/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
/// element of vector 2 and the other elements to come from vector 1 in order.
static bool isCommutedMOVL(SDOperandPtr Ops, unsigned NumOps,
                           bool V2IsSplat = false,
                           bool V2IsUndef = false) {
  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
    return false;

  if (!isUndefOrEqual(Ops[0], 0))
    return false;

  for (unsigned i = 1; i < NumOps; ++i) {
    SDOperand Arg = Ops[i];
    if (!(isUndefOrEqual(Arg, i+NumOps) ||
          (V2IsUndef && isUndefOrInRange(Arg, NumOps, NumOps*2)) ||
          (V2IsSplat && isUndefOrEqual(Arg, NumOps))))
      return false;
  }

  return true;
}

static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false,
                           bool V2IsUndef = false) {
  assert(N->getOpcode() == ISD::BUILD_VECTOR);
  return isCommutedMOVL(N->op_begin(), N->getNumOperands(),
                        V2IsSplat, V2IsUndef);
}

/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
bool X86::isMOVSHDUPMask(SDNode *N) {
  assert(N->getOpcode() == ISD::BUILD_VECTOR);

  if (N->getNumOperands() != 4)
    return false;

  // Expect 1, 1, 3, 3
  for (unsigned i = 0; i < 2; ++i) {
    SDOperand Arg = N->getOperand(i);
    if (Arg.getOpcode() == ISD::UNDEF) continue;
    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
    if (Val != 1) return false;
  }

  bool HasHi = false;
  for (unsigned i = 2; i < 4; ++i) {
    SDOperand Arg = N->getOperand(i);
    if (Arg.getOpcode() == ISD::UNDEF) continue;
    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
    if (Val != 3) return false;
    HasHi = true;
  }

  // Don't use movshdup if it can be done with a shufps.
  return HasHi;
}

/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
bool X86::isMOVSLDUPMask(SDNode *N) {
  assert(N->getOpcode() == ISD::BUILD_VECTOR);

  if (N->getNumOperands() != 4)
    return false;

  // Expect 0, 0, 2, 2
  for (unsigned i = 0; i < 2; ++i) {
    SDOperand Arg = N->getOperand(i);
    if (Arg.getOpcode() == ISD::UNDEF) continue;
    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
    if (Val != 0) return false;
  }

  bool HasHi = false;
  for (unsigned i = 2; i < 4; ++i) {
    SDOperand Arg = N->getOperand(i);
    if (Arg.getOpcode() == ISD::UNDEF) continue;
    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
    if (Val != 2) return false;
    HasHi = true;
  }

  // Don't use movshdup if it can be done with a shufps.
  return HasHi;
}

/// isIdentityMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a identity operation on the LHS or RHS.
static bool isIdentityMask(SDNode *N, bool RHS = false) {
  unsigned NumElems = N->getNumOperands();
  for (unsigned i = 0; i < NumElems; ++i)
    if (!isUndefOrEqual(N->getOperand(i), i + (RHS ? NumElems : 0)))
      return false;
  return true;
}

/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
/// a splat of a single element.
static bool isSplatMask(SDNode *N) {
  assert(N->getOpcode() == ISD::BUILD_VECTOR);

  // This is a splat operation if each element of the permute is the same, and
  // if the value doesn't reference the second vector.
  unsigned NumElems = N->getNumOperands();
  SDOperand ElementBase;
  unsigned i = 0;
  for (; i != NumElems; ++i) {
    SDOperand Elt = N->getOperand(i);
    if (isa<ConstantSDNode>(Elt)) {
      ElementBase = Elt;
      break;
    }
  }

  if (!ElementBase.Val)
    return false;

  for (; i != NumElems; ++i) {
    SDOperand Arg = N->getOperand(i);
    if (Arg.getOpcode() == ISD::UNDEF) continue;
    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
    if (Arg != ElementBase) return false;
  }

  // Make sure it is a splat of the first vector operand.
  return cast<ConstantSDNode>(ElementBase)->getValue() < NumElems;
}

/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
/// a splat of a single element and it's a 2 or 4 element mask.
bool X86::isSplatMask(SDNode *N) {
  assert(N->getOpcode() == ISD::BUILD_VECTOR);

  // We can only splat 64-bit, and 32-bit quantities with a single instruction.
  if (N->getNumOperands() != 4 && N->getNumOperands() != 2)
    return false;
  return ::isSplatMask(N);
}

/// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a splat of zero element.
bool X86::isSplatLoMask(SDNode *N) {
  assert(N->getOpcode() == ISD::BUILD_VECTOR);

  for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
    if (!isUndefOrEqual(N->getOperand(i), 0))
      return false;
  return true;
}

/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
/// instructions.
unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
  unsigned NumOperands = N->getNumOperands();
  unsigned Shift = (NumOperands == 4) ? 2 : 1;
  unsigned Mask = 0;
  for (unsigned i = 0; i < NumOperands; ++i) {
    unsigned Val = 0;
    SDOperand Arg = N->getOperand(NumOperands-i-1);
    if (Arg.getOpcode() != ISD::UNDEF)
      Val = cast<ConstantSDNode>(Arg)->getValue();
    if (Val >= NumOperands) Val -= NumOperands;
    Mask |= Val;
    if (i != NumOperands - 1)
      Mask <<= Shift;
  }

  return Mask;
}

/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
/// instructions.
unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
  unsigned Mask = 0;
  // 8 nodes, but we only care about the last 4.
  for (unsigned i = 7; i >= 4; --i) {
    unsigned Val = 0;
    SDOperand Arg = N->getOperand(i);
    if (Arg.getOpcode() != ISD::UNDEF)
      Val = cast<ConstantSDNode>(Arg)->getValue();
    Mask |= (Val - 4);
    if (i != 4)
      Mask <<= 2;
  }

  return Mask;
}

/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
/// instructions.
unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
  unsigned Mask = 0;
  // 8 nodes, but we only care about the first 4.
  for (int i = 3; i >= 0; --i) {
    unsigned Val = 0;
    SDOperand Arg = N->getOperand(i);
    if (Arg.getOpcode() != ISD::UNDEF)
      Val = cast<ConstantSDNode>(Arg)->getValue();
    Mask |= Val;
    if (i != 0)
      Mask <<= 2;
  }

  return Mask;
}

/// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand
/// specifies a 8 element shuffle that can be broken into a pair of
/// PSHUFHW and PSHUFLW.
static bool isPSHUFHW_PSHUFLWMask(SDNode *N) {
  assert(N->getOpcode() == ISD::BUILD_VECTOR);

  if (N->getNumOperands() != 8)
    return false;

  // Lower quadword shuffled.
  for (unsigned i = 0; i != 4; ++i) {
    SDOperand Arg = N->getOperand(i);
    if (Arg.getOpcode() == ISD::UNDEF) continue;
    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
    if (Val >= 4)
      return false;
  }

  // Upper quadword shuffled.
  for (unsigned i = 4; i != 8; ++i) {
    SDOperand Arg = N->getOperand(i);
    if (Arg.getOpcode() == ISD::UNDEF) continue;
    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
    if (Val < 4 || Val > 7)
      return false;
  }

  return true;
}

/// CommuteVectorShuffle - Swap vector_shuffle operands as well as
/// values in ther permute mask.
static SDOperand CommuteVectorShuffle(SDOperand Op, SDOperand &V1,
                                      SDOperand &V2, SDOperand &Mask,
                                      SelectionDAG &DAG) {
  MVT VT = Op.getValueType();
  MVT MaskVT = Mask.getValueType();
  MVT EltVT = MaskVT.getVectorElementType();
  unsigned NumElems = Mask.getNumOperands();
  SmallVector<SDOperand, 8> MaskVec;

  for (unsigned i = 0; i != NumElems; ++i) {
    SDOperand Arg = Mask.getOperand(i);
    if (Arg.getOpcode() == ISD::UNDEF) {
      MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
      continue;
    }
    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
    if (Val < NumElems)
      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
    else
      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
  }

  std::swap(V1, V2);
  Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], NumElems);
  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
}

/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
/// the two vector operands have swapped position.
static
SDOperand CommuteVectorShuffleMask(SDOperand Mask, SelectionDAG &DAG) {
  MVT MaskVT = Mask.getValueType();
  MVT EltVT = MaskVT.getVectorElementType();
  unsigned NumElems = Mask.getNumOperands();
  SmallVector<SDOperand, 8> MaskVec;
  for (unsigned i = 0; i != NumElems; ++i) {
    SDOperand Arg = Mask.getOperand(i);
    if (Arg.getOpcode() == ISD::UNDEF) {
      MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
      continue;
    }
    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
    if (Val < NumElems)
      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
    else
      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
  }
  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], NumElems);
}


/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
/// match movhlps. The lower half elements should come from upper half of
/// V1 (and in order), and the upper half elements should come from the upper
/// half of V2 (and in order).
static bool ShouldXformToMOVHLPS(SDNode *Mask) {
  unsigned NumElems = Mask->getNumOperands();
  if (NumElems != 4)
    return false;
  for (unsigned i = 0, e = 2; i != e; ++i)
    if (!isUndefOrEqual(Mask->getOperand(i), i+2))
      return false;
  for (unsigned i = 2; i != 4; ++i)
    if (!isUndefOrEqual(Mask->getOperand(i), i+4))
      return false;
  return true;
}

/// isScalarLoadToVector - Returns true if the node is a scalar load that
/// is promoted to a vector. It also returns the LoadSDNode by reference if
/// required.
static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) {
    N = N->getOperand(0).Val;
    if (ISD::isNON_EXTLoad(N)) {
      if (LD)
        *LD = cast<LoadSDNode>(N);
      return true;
    }
  }
  return false;
}

/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
/// match movlp{s|d}. The lower half elements should come from lower half of
/// V1 (and in order), and the upper half elements should come from the upper
/// half of V2 (and in order). And since V1 will become the source of the
/// MOVLP, it must be either a vector load or a scalar load to vector.
static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) {
  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
    return false;
  // Is V2 is a vector load, don't do this transformation. We will try to use
  // load folding shufps op.
  if (ISD::isNON_EXTLoad(V2))
    return false;

  unsigned NumElems = Mask->getNumOperands();
  if (NumElems != 2 && NumElems != 4)
    return false;
  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
    if (!isUndefOrEqual(Mask->getOperand(i), i))
      return false;
  for (unsigned i = NumElems/2; i != NumElems; ++i)
    if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems))
      return false;
  return true;
}

/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
/// all the same.
static bool isSplatVector(SDNode *N) {
  if (N->getOpcode() != ISD::BUILD_VECTOR)
    return false;

  SDOperand SplatValue = N->getOperand(0);
  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
    if (N->getOperand(i) != SplatValue)
      return false;
  return true;
}

/// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
/// to an undef.
static bool isUndefShuffle(SDNode *N) {
  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
    return false;

  SDOperand V1 = N->getOperand(0);
  SDOperand V2 = N->getOperand(1);
  SDOperand Mask = N->getOperand(2);
  unsigned NumElems = Mask.getNumOperands();
  for (unsigned i = 0; i != NumElems; ++i) {
    SDOperand Arg = Mask.getOperand(i);
    if (Arg.getOpcode() != ISD::UNDEF) {
      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
      if (Val < NumElems && V1.getOpcode() != ISD::UNDEF)
        return false;
      else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF)
        return false;
    }
  }
  return true;
}

/// isZeroNode - Returns true if Elt is a constant zero or a floating point
/// constant +0.0.
static inline bool isZeroNode(SDOperand Elt) {
  return ((isa<ConstantSDNode>(Elt) &&
           cast<ConstantSDNode>(Elt)->getValue() == 0) ||
          (isa<ConstantFPSDNode>(Elt) &&
           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
}

/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
/// to an zero vector.
static bool isZeroShuffle(SDNode *N) {
  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
    return false;

  SDOperand V1 = N->getOperand(0);
  SDOperand V2 = N->getOperand(1);
  SDOperand Mask = N->getOperand(2);
  unsigned NumElems = Mask.getNumOperands();
  for (unsigned i = 0; i != NumElems; ++i) {
    SDOperand Arg = Mask.getOperand(i);
    if (Arg.getOpcode() == ISD::UNDEF)
      continue;
    
    unsigned Idx = cast<ConstantSDNode>(Arg)->getValue();
    if (Idx < NumElems) {
      unsigned Opc = V1.Val->getOpcode();
      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.Val))
        continue;
      if (Opc != ISD::BUILD_VECTOR ||
          !isZeroNode(V1.Val->getOperand(Idx)))
        return false;
    } else if (Idx >= NumElems) {
      unsigned Opc = V2.Val->getOpcode();
      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.Val))
        continue;
      if (Opc != ISD::BUILD_VECTOR ||
          !isZeroNode(V2.Val->getOperand(Idx - NumElems)))
        return false;
    }
  }
  return true;
}

/// getZeroVector - Returns a vector of specified type with all zero elements.
///
static SDOperand getZeroVector(MVT VT, bool HasSSE2, SelectionDAG &DAG) {
  assert(VT.isVector() && "Expected a vector type");
  
  // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
  // type.  This ensures they get CSE'd.
  SDOperand Vec;
  if (VT.getSizeInBits() == 64) { // MMX
    SDOperand Cst = DAG.getTargetConstant(0, MVT::i32);
    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst);
  } else if (HasSSE2) {  // SSE2
    SDOperand Cst = DAG.getTargetConstant(0, MVT::i32);
    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst, Cst, Cst, Cst);
  } else { // SSE1
    SDOperand Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4f32, Cst, Cst, Cst, Cst);
  }
  return DAG.getNode(ISD::BIT_CONVERT, VT, Vec);
}

/// getOnesVector - Returns a vector of specified type with all bits set.
///
static SDOperand getOnesVector(MVT VT, SelectionDAG &DAG) {
  assert(VT.isVector() && "Expected a vector type");
  
  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
  // type.  This ensures they get CSE'd.
  SDOperand Cst = DAG.getTargetConstant(~0U, MVT::i32);
  SDOperand Vec;
  if (VT.getSizeInBits() == 64)  // MMX
    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst);
  else                                              // SSE
    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst, Cst, Cst, Cst);
  return DAG.getNode(ISD::BIT_CONVERT, VT, Vec);
}


/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
/// that point to V2 points to its first element.
static SDOperand NormalizeMask(SDOperand Mask, SelectionDAG &DAG) {
  assert(Mask.getOpcode() == ISD::BUILD_VECTOR);

  bool Changed = false;
  SmallVector<SDOperand, 8> MaskVec;
  unsigned NumElems = Mask.getNumOperands();
  for (unsigned i = 0; i != NumElems; ++i) {
    SDOperand Arg = Mask.getOperand(i);
    if (Arg.getOpcode() != ISD::UNDEF) {
      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
      if (Val > NumElems) {
        Arg = DAG.getConstant(NumElems, Arg.getValueType());
        Changed = true;
      }
    }
    MaskVec.push_back(Arg);
  }

  if (Changed)
    Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(),
                       &MaskVec[0], MaskVec.size());
  return Mask;
}

/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
/// operation of specified width.
static SDOperand getMOVLMask(unsigned NumElems, SelectionDAG &DAG) {
  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
  MVT BaseVT = MaskVT.getVectorElementType();

  SmallVector<SDOperand, 8> MaskVec;
  MaskVec.push_back(DAG.getConstant(NumElems, BaseVT));
  for (unsigned i = 1; i != NumElems; ++i)
    MaskVec.push_back(DAG.getConstant(i, BaseVT));
  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
}

/// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation
/// of specified width.
static SDOperand getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) {
  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
  MVT BaseVT = MaskVT.getVectorElementType();
  SmallVector<SDOperand, 8> MaskVec;
  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
    MaskVec.push_back(DAG.getConstant(i,            BaseVT));
    MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT));
  }
  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
}

/// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation
/// of specified width.
static SDOperand getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) {
  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
  MVT BaseVT = MaskVT.getVectorElementType();
  unsigned Half = NumElems/2;
  SmallVector<SDOperand, 8> MaskVec;
  for (unsigned i = 0; i != Half; ++i) {
    MaskVec.push_back(DAG.getConstant(i + Half,            BaseVT));
    MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT));
  }
  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
}

/// getSwapEltZeroMask - Returns a vector_shuffle mask for a shuffle that swaps
/// element #0 of a vector with the specified index, leaving the rest of the
/// elements in place.
static SDOperand getSwapEltZeroMask(unsigned NumElems, unsigned DestElt,
                                   SelectionDAG &DAG) {
  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
  MVT BaseVT = MaskVT.getVectorElementType();
  SmallVector<SDOperand, 8> MaskVec;
  // Element #0 of the result gets the elt we are replacing.
  MaskVec.push_back(DAG.getConstant(DestElt, BaseVT));
  for (unsigned i = 1; i != NumElems; ++i)
    MaskVec.push_back(DAG.getConstant(i == DestElt ? 0 : i, BaseVT));
  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
}

/// PromoteSplat - Promote a splat of v4f32, v8i16 or v16i8 to v4i32.
static SDOperand PromoteSplat(SDOperand Op, SelectionDAG &DAG, bool HasSSE2) {
  MVT PVT = HasSSE2 ? MVT::v4i32 : MVT::v4f32;
  MVT VT = Op.getValueType();
  if (PVT == VT)
    return Op;
  SDOperand V1 = Op.getOperand(0);
  SDOperand Mask = Op.getOperand(2);
  unsigned NumElems = Mask.getNumOperands();
  // Special handling of v4f32 -> v4i32.
  if (VT != MVT::v4f32) {
    Mask = getUnpacklMask(NumElems, DAG);
    while (NumElems > 4) {
      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask);
      NumElems >>= 1;
    }
    Mask = getZeroVector(MVT::v4i32, true, DAG);
  }

  V1 = DAG.getNode(ISD::BIT_CONVERT, PVT, V1);
  SDOperand Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, PVT, V1,
                                  DAG.getNode(ISD::UNDEF, PVT), Mask);
  return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
}

/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
/// vector of zero or undef vector.  This produces a shuffle where the low
/// element of V2 is swizzled into the zero/undef vector, landing at element
/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
static SDOperand getShuffleVectorZeroOrUndef(SDOperand V2, unsigned Idx,
                                             bool isZero, bool HasSSE2,
                                             SelectionDAG &DAG) {
  MVT VT = V2.getValueType();
  SDOperand V1 = isZero
    ? getZeroVector(VT, HasSSE2, DAG) : DAG.getNode(ISD::UNDEF, VT);
  unsigned NumElems = V2.getValueType().getVectorNumElements();
  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
  MVT EVT = MaskVT.getVectorElementType();
  SmallVector<SDOperand, 16> MaskVec;
  for (unsigned i = 0; i != NumElems; ++i)
    if (i == Idx)  // If this is the insertion idx, put the low elt of V2 here.
      MaskVec.push_back(DAG.getConstant(NumElems, EVT));
    else
      MaskVec.push_back(DAG.getConstant(i, EVT));
  SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
                               &MaskVec[0], MaskVec.size());
  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
}

/// getNumOfConsecutiveZeros - Return the number of elements in a result of
/// a shuffle that is zero.
static
unsigned getNumOfConsecutiveZeros(SDOperand Op, SDOperand Mask,
                                  unsigned NumElems, bool Low,
                                  SelectionDAG &DAG) {
  unsigned NumZeros = 0;
  for (unsigned i = 0; i < NumElems; ++i) {
    SDOperand Idx = Mask.getOperand(Low ? i : NumElems-i-1);
    if (Idx.getOpcode() == ISD::UNDEF) {
      ++NumZeros;
      continue;
    }
    unsigned Index = cast<ConstantSDNode>(Idx)->getValue();
    SDOperand Elt = DAG.getShuffleScalarElt(Op.Val, Index);
    if (Elt.Val && isZeroNode(Elt))
      ++NumZeros;
    else
      break;
  }
  return NumZeros;
}

/// isVectorShift - Returns true if the shuffle can be implemented as a
/// logical left or right shift of a vector.
static bool isVectorShift(SDOperand Op, SDOperand Mask, SelectionDAG &DAG,
                          bool &isLeft, SDOperand &ShVal, unsigned &ShAmt) {
  unsigned NumElems = Mask.getNumOperands();

  isLeft = true;
  unsigned NumZeros= getNumOfConsecutiveZeros(Op, Mask, NumElems, true, DAG);
  if (!NumZeros) {
    isLeft = false;
    NumZeros = getNumOfConsecutiveZeros(Op, Mask, NumElems, false, DAG);
    if (!NumZeros)
      return false;
  }

  bool SeenV1 = false;
  bool SeenV2 = false;
  for (unsigned i = NumZeros; i < NumElems; ++i) {
    unsigned Val = isLeft ? (i - NumZeros) : i;
    SDOperand Idx = Mask.getOperand(isLeft ? i : (i - NumZeros));
    if (Idx.getOpcode() == ISD::UNDEF)
      continue;
    unsigned Index = cast<ConstantSDNode>(Idx)->getValue();
    if (Index < NumElems)
      SeenV1 = true;
    else {
      Index -= NumElems;
      SeenV2 = true;
    }
    if (Index != Val)
      return false;
  }
  if (SeenV1 && SeenV2)
    return false;

  ShVal = SeenV1 ? Op.getOperand(0) : Op.getOperand(1);
  ShAmt = NumZeros;
  return true;
}


/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
///
static SDOperand LowerBuildVectorv16i8(SDOperand Op, unsigned NonZeros,
                                       unsigned NumNonZero, unsigned NumZero,
                                       SelectionDAG &DAG, TargetLowering &TLI) {
  if (NumNonZero > 8)
    return SDOperand();

  SDOperand V(0, 0);
  bool First = true;
  for (unsigned i = 0; i < 16; ++i) {
    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
    if (ThisIsNonZero && First) {
      if (NumZero)
        V = getZeroVector(MVT::v8i16, true, DAG);
      else
        V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
      First = false;
    }

    if ((i & 1) != 0) {
      SDOperand ThisElt(0, 0), LastElt(0, 0);
      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
      if (LastIsNonZero) {
        LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1));
      }
      if (ThisIsNonZero) {
        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i));
        ThisElt = DAG.getNode(ISD::SHL, MVT::i16,
                              ThisElt, DAG.getConstant(8, MVT::i8));
        if (LastIsNonZero)
          ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt);
      } else
        ThisElt = LastElt;

      if (ThisElt.Val)
        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt,
                        DAG.getIntPtrConstant(i/2));
    }
  }

  return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V);
}

/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
///
static SDOperand LowerBuildVectorv8i16(SDOperand Op, unsigned NonZeros,
                                       unsigned NumNonZero, unsigned NumZero,
                                       SelectionDAG &DAG, TargetLowering &TLI) {
  if (NumNonZero > 4)
    return SDOperand();

  SDOperand V(0, 0);
  bool First = true;
  for (unsigned i = 0; i < 8; ++i) {
    bool isNonZero = (NonZeros & (1 << i)) != 0;
    if (isNonZero) {
      if (First) {
        if (NumZero)
          V = getZeroVector(MVT::v8i16, true, DAG);
        else
          V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
        First = false;
      }
      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i),
                      DAG.getIntPtrConstant(i));
    }
  }

  return V;
}

/// getVShift - Return a vector logical shift node.
///
static SDOperand getVShift(bool isLeft, MVT VT, SDOperand SrcOp,
                           unsigned NumBits, SelectionDAG &DAG,
                           const TargetLowering &TLI) {
  bool isMMX = VT.getSizeInBits() == 64;
  MVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64;
  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
  SrcOp = DAG.getNode(ISD::BIT_CONVERT, ShVT, SrcOp);
  return DAG.getNode(ISD::BIT_CONVERT, VT,
                     DAG.getNode(Opc, ShVT, SrcOp,
                              DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
}

SDOperand
X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
  // All zero's are handled with pxor, all one's are handled with pcmpeqd.
  if (ISD::isBuildVectorAllZeros(Op.Val) || ISD::isBuildVectorAllOnes(Op.Val)) {
    // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
    // eliminated on x86-32 hosts.
    if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
      return Op;

    if (ISD::isBuildVectorAllOnes(Op.Val))
      return getOnesVector(Op.getValueType(), DAG);
    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG);
  }

  MVT VT = Op.getValueType();
  MVT EVT = VT.getVectorElementType();
  unsigned EVTBits = EVT.getSizeInBits();

  unsigned NumElems = Op.getNumOperands();
  unsigned NumZero  = 0;
  unsigned NumNonZero = 0;
  unsigned NonZeros = 0;
  bool IsAllConstants = true;
  SmallSet<SDOperand, 8> Values;
  for (unsigned i = 0; i < NumElems; ++i) {
    SDOperand Elt = Op.getOperand(i);
    if (Elt.getOpcode() == ISD::UNDEF)
      continue;
    Values.insert(Elt);
    if (Elt.getOpcode() != ISD::Constant &&
        Elt.getOpcode() != ISD::ConstantFP)
      IsAllConstants = false;
    if (isZeroNode(Elt))
      NumZero++;
    else {
      NonZeros |= (1 << i);
      NumNonZero++;
    }
  }

  if (NumNonZero == 0) {
    // All undef vector. Return an UNDEF.  All zero vectors were handled above.
    return DAG.getNode(ISD::UNDEF, VT);
  }

  // Special case for single non-zero, non-undef, element.
  if (NumNonZero == 1 && NumElems <= 4) {
    unsigned Idx = CountTrailingZeros_32(NonZeros);
    SDOperand Item = Op.getOperand(Idx);
    
    // If this is an insertion of an i64 value on x86-32, and if the top bits of
    // the value are obviously zero, truncate the value to i32 and do the
    // insertion that way.  Only do this if the value is non-constant or if the
    // value is a constant being inserted into element 0.  It is cheaper to do
    // a constant pool load than it is to do a movd + shuffle.
    if (EVT == MVT::i64 && !Subtarget->is64Bit() &&
        (!IsAllConstants || Idx == 0)) {
      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
        // Handle MMX and SSE both.
        MVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32;
        unsigned VecElts = VT == MVT::v2i64 ? 4 : 2;
        
        // Truncate the value (which may itself be a constant) to i32, and
        // convert it to a vector with movd (S2V+shuffle to zero extend).
        Item = DAG.getNode(ISD::TRUNCATE, MVT::i32, Item);
        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VecVT, Item);
        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
                                           Subtarget->hasSSE2(), DAG);
        
        // Now we have our 32-bit value zero extended in the low element of
        // a vector.  If Idx != 0, swizzle it into place.
        if (Idx != 0) {
          SDOperand Ops[] = { 
            Item, DAG.getNode(ISD::UNDEF, Item.getValueType()),
            getSwapEltZeroMask(VecElts, Idx, DAG)
          };
          Item = DAG.getNode(ISD::VECTOR_SHUFFLE, VecVT, Ops, 3);
        }
        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Item);
      }
    }
    
    // If we have a constant or non-constant insertion into the low element of
    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
    // depending on what the source datatype is.  Because we can only get here
    // when NumElems <= 4, this only needs to handle i32/f32/i64/f64.
    if (Idx == 0 &&
        // Don't do this for i64 values on x86-32.
        (EVT != MVT::i64 || Subtarget->is64Bit())) {
      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
      // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
      return getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
                                         Subtarget->hasSSE2(), DAG);
    }

    // Is it a vector logical left shift?
    if (NumElems == 2 && Idx == 1 &&
        isZeroNode(Op.getOperand(0)) && !isZeroNode(Op.getOperand(1))) {
      unsigned NumBits = VT.getSizeInBits();
      return getVShift(true, VT,
                       DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(1)),
                       NumBits/2, DAG, *this);
    }
    
    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
      return SDOperand();

    // Otherwise, if this is a vector with i32 or f32 elements, and the element
    // is a non-constant being inserted into an element other than the low one,
    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
    // movd/movss) to move this into the low element, then shuffle it into
    // place.
    if (EVTBits == 32) {
      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
      
      // Turn it into a shuffle of zero and zero-extended scalar to vector.
      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
                                         Subtarget->hasSSE2(), DAG);
      MVT MaskVT  = MVT::getIntVectorWithNumElements(NumElems);
      MVT MaskEVT = MaskVT.getVectorElementType();
      SmallVector<SDOperand, 8> MaskVec;
      for (unsigned i = 0; i < NumElems; i++)
        MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT));
      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
                                   &MaskVec[0], MaskVec.size());
      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item,
                         DAG.getNode(ISD::UNDEF, VT), Mask);
    }
  }

  // Splat is obviously ok. Let legalizer expand it to a shuffle.
  if (Values.size() == 1)
    return SDOperand();
  
  // A vector full of immediates; various special cases are already
  // handled, so this is best done with a single constant-pool load.
  if (IsAllConstants)
    return SDOperand();

  // Let legalizer expand 2-wide build_vectors.
  if (EVTBits == 64) {
    if (NumNonZero == 1) {
      // One half is zero or undef.
      unsigned Idx = CountTrailingZeros_32(NonZeros);
      SDOperand V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT,
                                 Op.getOperand(Idx));
      return getShuffleVectorZeroOrUndef(V2, Idx, true,
                                         Subtarget->hasSSE2(), DAG);
    }
    return SDOperand();
  }

  // If element VT is < 32 bits, convert it to inserts into a zero vector.
  if (EVTBits == 8 && NumElems == 16) {
    SDOperand V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
                                        *this);
    if (V.Val) return V;
  }

  if (EVTBits == 16 && NumElems == 8) {
    SDOperand V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
                                        *this);
    if (V.Val) return V;
  }

  // If element VT is == 32 bits, turn it into a number of shuffles.
  SmallVector<SDOperand, 8> V;
  V.resize(NumElems);
  if (NumElems == 4 && NumZero > 0) {
    for (unsigned i = 0; i < 4; ++i) {
      bool isZero = !(NonZeros & (1 << i));
      if (isZero)
        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG);
      else
        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
    }

    for (unsigned i = 0; i < 2; ++i) {
      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
        default: break;
        case 0:
          V[i] = V[i*2];  // Must be a zero vector.
          break;
        case 1:
          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2],
                             getMOVLMask(NumElems, DAG));
          break;
        case 2:
          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
                             getMOVLMask(NumElems, DAG));
          break;
        case 3:
          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
                             getUnpacklMask(NumElems, DAG));
          break;
      }
    }

    MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
    MVT EVT = MaskVT.getVectorElementType();
    SmallVector<SDOperand, 8> MaskVec;
    bool Reverse = (NonZeros & 0x3) == 2;
    for (unsigned i = 0; i < 2; ++i)
      if (Reverse)
        MaskVec.push_back(DAG.getConstant(1-i, EVT));
      else
        MaskVec.push_back(DAG.getConstant(i, EVT));
    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
    for (unsigned i = 0; i < 2; ++i)
      if (Reverse)
        MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT));
      else
        MaskVec.push_back(DAG.getConstant(i+NumElems, EVT));
    SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
                                     &MaskVec[0], MaskVec.size());
    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask);
  }

  if (Values.size() > 2) {
    // Expand into a number of unpckl*.
    // e.g. for v4f32
    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
    SDOperand UnpckMask = getUnpacklMask(NumElems, DAG);
    for (unsigned i = 0; i < NumElems; ++i)
      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
    NumElems >>= 1;
    while (NumElems != 0) {
      for (unsigned i = 0; i < NumElems; ++i)
        V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems],
                           UnpckMask);
      NumElems >>= 1;
    }
    return V[0];
  }

  return SDOperand();
}

static
SDOperand LowerVECTOR_SHUFFLEv8i16(SDOperand V1, SDOperand V2,
                                   SDOperand PermMask, SelectionDAG &DAG,
                                   TargetLowering &TLI) {
  SDOperand NewV;
  MVT MaskVT = MVT::getIntVectorWithNumElements(8);
  MVT MaskEVT = MaskVT.getVectorElementType();
  MVT PtrVT = TLI.getPointerTy();
  SmallVector<SDOperand, 8> MaskElts(PermMask.Val->op_begin(),
                                     PermMask.Val->op_end());

  // First record which half of which vector the low elements come from.
  SmallVector<unsigned, 4> LowQuad(4);
  for (unsigned i = 0; i < 4; ++i) {
    SDOperand Elt = MaskElts[i];
    if (Elt.getOpcode() == ISD::UNDEF)
      continue;
    unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
    int QuadIdx = EltIdx / 4;
    ++LowQuad[QuadIdx];
  }
  int BestLowQuad = -1;
  unsigned MaxQuad = 1;
  for (unsigned i = 0; i < 4; ++i) {
    if (LowQuad[i] > MaxQuad) {
      BestLowQuad = i;
      MaxQuad = LowQuad[i];
    }
  }

  // Record which half of which vector the high elements come from.
  SmallVector<unsigned, 4> HighQuad(4);
  for (unsigned i = 4; i < 8; ++i) {
    SDOperand Elt = MaskElts[i];
    if (Elt.getOpcode() == ISD::UNDEF)
      continue;
    unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
    int QuadIdx = EltIdx / 4;
    ++HighQuad[QuadIdx];
  }
  int BestHighQuad = -1;
  MaxQuad = 1;
  for (unsigned i = 0; i < 4; ++i) {
    if (HighQuad[i] > MaxQuad) {
      BestHighQuad = i;
      MaxQuad = HighQuad[i];
    }
  }

  // If it's possible to sort parts of either half with PSHUF{H|L}W, then do it.
  if (BestLowQuad != -1 || BestHighQuad != -1) {
    // First sort the 4 chunks in order using shufpd.
    SmallVector<SDOperand, 8> MaskVec;
    if (BestLowQuad != -1)
      MaskVec.push_back(DAG.getConstant(BestLowQuad, MVT::i32));
    else
      MaskVec.push_back(DAG.getConstant(0, MVT::i32));
    if (BestHighQuad != -1)
      MaskVec.push_back(DAG.getConstant(BestHighQuad, MVT::i32));
    else
      MaskVec.push_back(DAG.getConstant(1, MVT::i32));
    SDOperand Mask= DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, &MaskVec[0],2);
    NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v2i64,
                       DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, V1),
                       DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, V2), Mask);
    NewV = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, NewV);

    // Now sort high and low parts separately.
    BitVector InOrder(8);
    if (BestLowQuad != -1) {
      // Sort lower half in order using PSHUFLW.
      MaskVec.clear();
      bool AnyOutOrder = false;
      for (unsigned i = 0; i != 4; ++i) {
        SDOperand Elt = MaskElts[i];
        if (Elt.getOpcode() == ISD::UNDEF) {
          MaskVec.push_back(Elt);
          InOrder.set(i);
        } else {
          unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
          if (EltIdx != i)
            AnyOutOrder = true;
          MaskVec.push_back(DAG.getConstant(EltIdx % 4, MaskEVT));
          // If this element is in the right place after this shuffle, then
          // remember it.
          if ((int)(EltIdx / 4) == BestLowQuad)
            InOrder.set(i);
        }
      }
      if (AnyOutOrder) {
        for (unsigned i = 4; i != 8; ++i)
          MaskVec.push_back(DAG.getConstant(i, MaskEVT));
        SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
        NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, NewV, NewV, Mask);
      }
    }

    if (BestHighQuad != -1) {
      // Sort high half in order using PSHUFHW if possible.
      MaskVec.clear();
      for (unsigned i = 0; i != 4; ++i)
        MaskVec.push_back(DAG.getConstant(i, MaskEVT));
      bool AnyOutOrder = false;
      for (unsigned i = 4; i != 8; ++i) {
        SDOperand Elt = MaskElts[i];
        if (Elt.getOpcode() == ISD::UNDEF) {
          MaskVec.push_back(Elt);
          InOrder.set(i);
        } else {
          unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
          if (EltIdx != i)
            AnyOutOrder = true;
          MaskVec.push_back(DAG.getConstant((EltIdx % 4) + 4, MaskEVT));
          // If this element is in the right place after this shuffle, then
          // remember it.
          if ((int)(EltIdx / 4) == BestHighQuad)
            InOrder.set(i);
        }
      }
      if (AnyOutOrder) {
        SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
        NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, NewV, NewV, Mask);
      }
    }

    // The other elements are put in the right place using pextrw and pinsrw.
    for (unsigned i = 0; i != 8; ++i) {
      if (InOrder[i])
        continue;
      SDOperand Elt = MaskElts[i];
      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
      SDOperand ExtOp = (EltIdx < 8)
        ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V1,
                      DAG.getConstant(EltIdx, PtrVT))
        : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V2,
                      DAG.getConstant(EltIdx - 8, PtrVT));
      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
                         DAG.getConstant(i, PtrVT));
    }
    return NewV;
  }

  // PSHUF{H|L}W are not used. Lower into extracts and inserts but try to use
  ///as few as possible.
  // First, let's find out how many elements are already in the right order.
  unsigned V1InOrder = 0;
  unsigned V1FromV1 = 0;
  unsigned V2InOrder = 0;
  unsigned V2FromV2 = 0;
  SmallVector<SDOperand, 8> V1Elts;
  SmallVector<SDOperand, 8> V2Elts;
  for (unsigned i = 0; i < 8; ++i) {
    SDOperand Elt = MaskElts[i];
    if (Elt.getOpcode() == ISD::UNDEF) {
      V1Elts.push_back(Elt);
      V2Elts.push_back(Elt);
      ++V1InOrder;
      ++V2InOrder;
      continue;
    }
    unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
    if (EltIdx == i) {
      V1Elts.push_back(Elt);
      V2Elts.push_back(DAG.getConstant(i+8, MaskEVT));
      ++V1InOrder;
    } else if (EltIdx == i+8) {
      V1Elts.push_back(Elt);
      V2Elts.push_back(DAG.getConstant(i, MaskEVT));
      ++V2InOrder;
    } else if (EltIdx < 8) {
      V1Elts.push_back(Elt);
      ++V1FromV1;
    } else {
      V2Elts.push_back(DAG.getConstant(EltIdx-8, MaskEVT));
      ++V2FromV2;
    }
  }

  if (V2InOrder > V1InOrder) {
    PermMask = CommuteVectorShuffleMask(PermMask, DAG);
    std::swap(V1, V2);
    std::swap(V1Elts, V2Elts);
    std::swap(V1FromV1, V2FromV2);
  }

  if ((V1FromV1 + V1InOrder) != 8) {
    // Some elements are from V2.
    if (V1FromV1) {
      // If there are elements that are from V1 but out of place,
      // then first sort them in place
      SmallVector<SDOperand, 8> MaskVec;
      for (unsigned i = 0; i < 8; ++i) {
        SDOperand Elt = V1Elts[i];
        if (Elt.getOpcode() == ISD::UNDEF) {
          MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
          continue;
        }
        unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
        if (EltIdx >= 8)
          MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
        else
          MaskVec.push_back(DAG.getConstant(EltIdx, MaskEVT));
      }
      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, V1, V1, Mask);
    }

    NewV = V1;
    for (unsigned i = 0; i < 8; ++i) {
      SDOperand Elt = V1Elts[i];
      if (Elt.getOpcode() == ISD::UNDEF)
        continue;
      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
      if (EltIdx < 8)
        continue;
      SDOperand ExtOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V2,
                                    DAG.getConstant(EltIdx - 8, PtrVT));
      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
                         DAG.getConstant(i, PtrVT));
    }
    return NewV;
  } else {
    // All elements are from V1.
    NewV = V1;
    for (unsigned i = 0; i < 8; ++i) {
      SDOperand Elt = V1Elts[i];
      if (Elt.getOpcode() == ISD::UNDEF)
        continue;
      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
      SDOperand ExtOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V1,
                                    DAG.getConstant(EltIdx, PtrVT));
      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
                         DAG.getConstant(i, PtrVT));
    }
    return NewV;
  }
}

/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
/// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be
/// done when every pair / quad of shuffle mask elements point to elements in
/// the right sequence. e.g.
/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
static
SDOperand RewriteAsNarrowerShuffle(SDOperand V1, SDOperand V2,
                                MVT VT,
                                SDOperand PermMask, SelectionDAG &DAG,
                                TargetLowering &TLI) {
  unsigned NumElems = PermMask.getNumOperands();
  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
  MVT MaskVT = MVT::getIntVectorWithNumElements(NewWidth);
  MVT NewVT = MaskVT;
  switch (VT.getSimpleVT()) {
  default: assert(false && "Unexpected!");
  case MVT::v4f32: NewVT = MVT::v2f64; break;
  case MVT::v4i32: NewVT = MVT::v2i64; break;
  case MVT::v8i16: NewVT = MVT::v4i32; break;
  case MVT::v16i8: NewVT = MVT::v4i32; break;
  }

  if (NewWidth == 2) {
    if (VT.isInteger())
      NewVT = MVT::v2i64;
    else
      NewVT = MVT::v2f64;
  }
  unsigned Scale = NumElems / NewWidth;
  SmallVector<SDOperand, 8> MaskVec;
  for (unsigned i = 0; i < NumElems; i += Scale) {
    unsigned StartIdx = ~0U;
    for (unsigned j = 0; j < Scale; ++j) {
      SDOperand Elt = PermMask.getOperand(i+j);
      if (Elt.getOpcode() == ISD::UNDEF)
        continue;
      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
      if (StartIdx == ~0U)
        StartIdx = EltIdx - (EltIdx % Scale);
      if (EltIdx != StartIdx + j)
        return SDOperand();
    }
    if (StartIdx == ~0U)
      MaskVec.push_back(DAG.getNode(ISD::UNDEF, MVT::i32));
    else
      MaskVec.push_back(DAG.getConstant(StartIdx / Scale, MVT::i32));
  }

  V1 = DAG.getNode(ISD::BIT_CONVERT, NewVT, V1);
  V2 = DAG.getNode(ISD::BIT_CONVERT, NewVT, V2);
  return DAG.getNode(ISD::VECTOR_SHUFFLE, NewVT, V1, V2,
                     DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
                                 &MaskVec[0], MaskVec.size()));
}

/// getVZextMovL - Return a zero-extending vector move low node.
///
static SDOperand getVZextMovL(MVT VT, MVT OpVT,
                              SDOperand SrcOp, SelectionDAG &DAG,
                              const X86Subtarget *Subtarget) {
  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
    LoadSDNode *LD = NULL;
    if (!isScalarLoadToVector(SrcOp.Val, &LD))
      LD = dyn_cast<LoadSDNode>(SrcOp);
    if (!LD) {
      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
      // instead.
      MVT EVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
      if ((EVT != MVT::i64 || Subtarget->is64Bit()) &&
          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
          SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
          SrcOp.getOperand(0).getOperand(0).getValueType() == EVT) {
        // PR2108
        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
        return DAG.getNode(ISD::BIT_CONVERT, VT,
                           DAG.getNode(X86ISD::VZEXT_MOVL, OpVT,
                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, OpVT,
                                                   SrcOp.getOperand(0).getOperand(0))));
      }
    }
  }

  return DAG.getNode(ISD::BIT_CONVERT, VT,
                     DAG.getNode(X86ISD::VZEXT_MOVL, OpVT,
                                 DAG.getNode(ISD::BIT_CONVERT, OpVT, SrcOp)));
}

SDOperand
X86TargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
  SDOperand V1 = Op.getOperand(0);
  SDOperand V2 = Op.getOperand(1);
  SDOperand PermMask = Op.getOperand(2);
  MVT VT = Op.getValueType();
  unsigned NumElems = PermMask.getNumOperands();
  bool isMMX = VT.getSizeInBits() == 64;
  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
  bool V1IsSplat = false;
  bool V2IsSplat = false;

  if (isUndefShuffle(Op.Val))
    return DAG.getNode(ISD::UNDEF, VT);

  if (isZeroShuffle(Op.Val))
    return getZeroVector(VT, Subtarget->hasSSE2(), DAG);

  if (isIdentityMask(PermMask.Val))
    return V1;
  else if (isIdentityMask(PermMask.Val, true))
    return V2;

  if (isSplatMask(PermMask.Val)) {
    if (isMMX || NumElems < 4) return Op;
    // Promote it to a v4{if}32 splat.
    return PromoteSplat(Op, DAG, Subtarget->hasSSE2());
  }

  // If the shuffle can be profitably rewritten as a narrower shuffle, then
  // do it!
  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
    SDOperand NewOp= RewriteAsNarrowerShuffle(V1, V2, VT, PermMask, DAG, *this);
    if (NewOp.Val)
      return DAG.getNode(ISD::BIT_CONVERT, VT, LowerVECTOR_SHUFFLE(NewOp, DAG));
  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
    // FIXME: Figure out a cleaner way to do this.
    // Try to make use of movq to zero out the top part.
    if (ISD::isBuildVectorAllZeros(V2.Val)) {
      SDOperand NewOp = RewriteAsNarrowerShuffle(V1, V2, VT, PermMask,
                                                 DAG, *this);
      if (NewOp.Val) {
        SDOperand NewV1 = NewOp.getOperand(0);
        SDOperand NewV2 = NewOp.getOperand(1);
        SDOperand NewMask = NewOp.getOperand(2);
        if (isCommutedMOVL(NewMask.Val, true, false)) {
          NewOp = CommuteVectorShuffle(NewOp, NewV1, NewV2, NewMask, DAG);
          return getVZextMovL(VT, NewOp.getValueType(), NewV2, DAG, Subtarget);
        }
      }
    } else if (ISD::isBuildVectorAllZeros(V1.Val)) {
      SDOperand NewOp= RewriteAsNarrowerShuffle(V1, V2, VT, PermMask,
                                                DAG, *this);
      if (NewOp.Val && X86::isMOVLMask(NewOp.getOperand(2).Val))
        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
                             DAG, Subtarget);
    }
  }

  // Check if this can be converted into a logical shift.
  bool isLeft = false;
  unsigned ShAmt = 0;
  SDOperand ShVal;
  bool isShift = isVectorShift(Op, PermMask, DAG, isLeft, ShVal, ShAmt);
  if (isShift && ShVal.hasOneUse()) {
    // If the shifted value has multiple uses, it may be cheaper to use 
    // v_set0 + movlhps or movhlps, etc.
    MVT EVT = VT.getVectorElementType();
    ShAmt *= EVT.getSizeInBits();
    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this);
  }

  if (X86::isMOVLMask(PermMask.Val)) {
    if (V1IsUndef)
      return V2;
    if (ISD::isBuildVectorAllZeros(V1.Val))
      return getVZextMovL(VT, VT, V2, DAG, Subtarget);
    return Op;
  }

  if (X86::isMOVSHDUPMask(PermMask.Val) ||
      X86::isMOVSLDUPMask(PermMask.Val) ||
      X86::isMOVHLPSMask(PermMask.Val) ||
      X86::isMOVHPMask(PermMask.Val) ||
      X86::isMOVLPMask(PermMask.Val))
    return Op;

  if (ShouldXformToMOVHLPS(PermMask.Val) ||
      ShouldXformToMOVLP(V1.Val, V2.Val, PermMask.Val))
    return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);

  if (isShift) {
    // No better options. Use a vshl / vsrl.
    MVT EVT = VT.getVectorElementType();
    ShAmt *= EVT.getSizeInBits();
    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this);
  }

  bool Commuted = false;
  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
  // 1,1,1,1 -> v8i16 though.
  V1IsSplat = isSplatVector(V1.Val);
  V2IsSplat = isSplatVector(V2.Val);
  
  // Canonicalize the splat or undef, if present, to be on the RHS.
  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
    std::swap(V1IsSplat, V2IsSplat);
    std::swap(V1IsUndef, V2IsUndef);
    Commuted = true;
  }

  // FIXME: Figure out a cleaner way to do this.
  if (isCommutedMOVL(PermMask.Val, V2IsSplat, V2IsUndef)) {
    if (V2IsUndef) return V1;
    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
    if (V2IsSplat) {
      // V2 is a splat, so the mask may be malformed. That is, it may point
      // to any V2 element. The instruction selectior won't like this. Get
      // a corrected mask and commute to form a proper MOVS{S|D}.
      SDOperand NewMask = getMOVLMask(NumElems, DAG);
      if (NewMask.Val != PermMask.Val)
        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
    }
    return Op;
  }

  if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
      X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
      X86::isUNPCKLMask(PermMask.Val) ||
      X86::isUNPCKHMask(PermMask.Val))
    return Op;

  if (V2IsSplat) {
    // Normalize mask so all entries that point to V2 points to its first
    // element then try to match unpck{h|l} again. If match, return a
    // new vector_shuffle with the corrected mask.
    SDOperand NewMask = NormalizeMask(PermMask, DAG);
    if (NewMask.Val != PermMask.Val) {
      if (X86::isUNPCKLMask(PermMask.Val, true)) {
        SDOperand NewMask = getUnpacklMask(NumElems, DAG);
        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
      } else if (X86::isUNPCKHMask(PermMask.Val, true)) {
        SDOperand NewMask = getUnpackhMask(NumElems, DAG);
        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
      }
    }
  }

  // Normalize the node to match x86 shuffle ops if needed
  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.Val))
      Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);

  if (Commuted) {
    // Commute is back and try unpck* again.
    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
    if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
        X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
        X86::isUNPCKLMask(PermMask.Val) ||
        X86::isUNPCKHMask(PermMask.Val))
      return Op;
  }

  // Try PSHUF* first, then SHUFP*.
  // MMX doesn't have PSHUFD but it does have PSHUFW. While it's theoretically
  // possible to shuffle a v2i32 using PSHUFW, that's not yet implemented.
  if (isMMX && NumElems == 4 && X86::isPSHUFDMask(PermMask.Val)) {
    if (V2.getOpcode() != ISD::UNDEF)
      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
                         DAG.getNode(ISD::UNDEF, VT), PermMask);
    return Op;
  }

  if (!isMMX) {
    if (Subtarget->hasSSE2() &&
        (X86::isPSHUFDMask(PermMask.Val) ||
         X86::isPSHUFHWMask(PermMask.Val) ||
         X86::isPSHUFLWMask(PermMask.Val))) {
      MVT RVT = VT;
      if (VT == MVT::v4f32) {
        RVT = MVT::v4i32;
        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, RVT,
                         DAG.getNode(ISD::BIT_CONVERT, RVT, V1),
                         DAG.getNode(ISD::UNDEF, RVT), PermMask);
      } else if (V2.getOpcode() != ISD::UNDEF)
        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, RVT, V1,
                         DAG.getNode(ISD::UNDEF, RVT), PermMask);
      if (RVT != VT)
        Op = DAG.getNode(ISD::BIT_CONVERT, VT, Op);
      return Op;
    }

    // Binary or unary shufps.
    if (X86::isSHUFPMask(PermMask.Val) ||
        (V2.getOpcode() == ISD::UNDEF && X86::isPSHUFDMask(PermMask.Val)))
      return Op;
  }

  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
  if (VT == MVT::v8i16) {
    SDOperand NewOp = LowerVECTOR_SHUFFLEv8i16(V1, V2, PermMask, DAG, *this);
    if (NewOp.Val)
      return NewOp;
  }

  // Handle all 4 wide cases with a number of shuffles.
  if (NumElems == 4 && !isMMX) {
    // Don't do this for MMX.
    MVT MaskVT = PermMask.getValueType();
    MVT MaskEVT = MaskVT.getVectorElementType();
    SmallVector<std::pair<int, int>, 8> Locs;
    Locs.reserve(NumElems);
    SmallVector<SDOperand, 8> Mask1(NumElems,
                                    DAG.getNode(ISD::UNDEF, MaskEVT));
    SmallVector<SDOperand, 8> Mask2(NumElems,
                                    DAG.getNode(ISD::UNDEF, MaskEVT));
    unsigned NumHi = 0;
    unsigned NumLo = 0;
    // If no more than two elements come from either vector. This can be
    // implemented with two shuffles. First shuffle gather the elements.
    // The second shuffle, which takes the first shuffle as both of its
    // vector operands, put the elements into the right order.
    for (unsigned i = 0; i != NumElems; ++i) {
      SDOperand Elt = PermMask.getOperand(i);
      if (Elt.getOpcode() == ISD::UNDEF) {
        Locs[i] = std::make_pair(-1, -1);
      } else {
        unsigned Val = cast<ConstantSDNode>(Elt)->getValue();
        if (Val < NumElems) {
          Locs[i] = std::make_pair(0, NumLo);
          Mask1[NumLo] = Elt;
          NumLo++;
        } else {
          Locs[i] = std::make_pair(1, NumHi);
          if (2+NumHi < NumElems)
            Mask1[2+NumHi] = Elt;
          NumHi++;
        }
      }
    }
    if (NumLo <= 2 && NumHi <= 2) {
      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
                                   &Mask1[0], Mask1.size()));
      for (unsigned i = 0; i != NumElems; ++i) {
        if (Locs[i].first == -1)
          continue;
        else {
          unsigned Idx = (i < NumElems/2) ? 0 : NumElems;
          Idx += Locs[i].first * (NumElems/2) + Locs[i].second;
          Mask2[i] = DAG.getConstant(Idx, MaskEVT);
        }
      }

      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1,
                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
                                     &Mask2[0], Mask2.size()));
    }

    // Break it into (shuffle shuffle_hi, shuffle_lo).
    Locs.clear();
    SmallVector<SDOperand,8> LoMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
    SmallVector<SDOperand,8> HiMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
    SmallVector<SDOperand,8> *MaskPtr = &LoMask;
    unsigned MaskIdx = 0;
    unsigned LoIdx = 0;
    unsigned HiIdx = NumElems/2;
    for (unsigned i = 0; i != NumElems; ++i) {
      if (i == NumElems/2) {
        MaskPtr = &HiMask;
        MaskIdx = 1;
        LoIdx = 0;
        HiIdx = NumElems/2;
      }
      SDOperand Elt = PermMask.getOperand(i);
      if (Elt.getOpcode() == ISD::UNDEF) {
        Locs[i] = std::make_pair(-1, -1);
      } else if (cast<ConstantSDNode>(Elt)->getValue() < NumElems) {
        Locs[i] = std::make_pair(MaskIdx, LoIdx);
        (*MaskPtr)[LoIdx] = Elt;
        LoIdx++;
      } else {
        Locs[i] = std::make_pair(MaskIdx, HiIdx);
        (*MaskPtr)[HiIdx] = Elt;
        HiIdx++;
      }
    }

    SDOperand LoShuffle =
      DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
                  DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
                              &LoMask[0], LoMask.size()));
    SDOperand HiShuffle =
      DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
                  DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
                              &HiMask[0], HiMask.size()));
    SmallVector<SDOperand, 8> MaskOps;
    for (unsigned i = 0; i != NumElems; ++i) {
      if (Locs[i].first == -1) {
        MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
      } else {
        unsigned Idx = Locs[i].first * NumElems + Locs[i].second;
        MaskOps.push_back(DAG.getConstant(Idx, MaskEVT));
      }
    }
    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle,
                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
                                   &MaskOps[0], MaskOps.size()));
  }

  return SDOperand();
}

SDOperand
X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDOperand Op,
                                                SelectionDAG &DAG) {
  MVT VT = Op.getValueType();
  if (VT.getSizeInBits() == 8) {
    SDOperand Extract = DAG.getNode(X86ISD::PEXTRB, MVT::i32,
                                    Op.getOperand(0), Op.getOperand(1));
    SDOperand Assert  = DAG.getNode(ISD::AssertZext, MVT::i32, Extract,
                                    DAG.getValueType(VT));
    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
  } else if (VT.getSizeInBits() == 16) {
    SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, MVT::i32,
                                    Op.getOperand(0), Op.getOperand(1));
    SDOperand Assert  = DAG.getNode(ISD::AssertZext, MVT::i32, Extract,
                                    DAG.getValueType(VT));
    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
  } else if (VT == MVT::f32) {
    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
    // the result back to FR32 register. It's only worth matching if the
    // result has a single use which is a store or a bitcast to i32.
    if (!Op.hasOneUse())
      return SDOperand();
    SDNode *User = Op.Val->use_begin()->getUser();
    if (User->getOpcode() != ISD::STORE &&
        (User->getOpcode() != ISD::BIT_CONVERT ||
         User->getValueType(0) != MVT::i32))
      return SDOperand();
    SDOperand Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32,
                    DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, Op.getOperand(0)),
                                    Op.getOperand(1));
    return DAG.getNode(ISD::BIT_CONVERT, MVT::f32, Extract);
  }
  return SDOperand();
}


SDOperand
X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
  if (!isa<ConstantSDNode>(Op.getOperand(1)))
    return SDOperand();

  if (Subtarget->hasSSE41()) {
    SDOperand Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
    if (Res.Val)
      return Res;
  }

  MVT VT = Op.getValueType();
  // TODO: handle v16i8.
  if (VT.getSizeInBits() == 16) {
    SDOperand Vec = Op.getOperand(0);
    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
    if (Idx == 0)
      return DAG.getNode(ISD::TRUNCATE, MVT::i16,
                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32,
                                 DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, Vec),
                                     Op.getOperand(1)));
    // Transform it so it match pextrw which produces a 32-bit result.
    MVT EVT = (MVT::SimpleValueType)(VT.getSimpleVT()+1);
    SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, EVT,
                                    Op.getOperand(0), Op.getOperand(1));
    SDOperand Assert  = DAG.getNode(ISD::AssertZext, EVT, Extract,
                                    DAG.getValueType(VT));
    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
  } else if (VT.getSizeInBits() == 32) {
    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
    if (Idx == 0)
      return Op;
    // SHUFPS the element to the lowest double word, then movss.
    MVT MaskVT = MVT::getIntVectorWithNumElements(4);
    SmallVector<SDOperand, 8> IdxVec;
    IdxVec.
      push_back(DAG.getConstant(Idx, MaskVT.getVectorElementType()));
    IdxVec.
      push_back(DAG.getNode(ISD::UNDEF, MaskVT.getVectorElementType()));
    IdxVec.
      push_back(DAG.getNode(ISD::UNDEF, MaskVT.getVectorElementType()));
    IdxVec.
      push_back(DAG.getNode(ISD::UNDEF, MaskVT.getVectorElementType()));
    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
                                 &IdxVec[0], IdxVec.size());
    SDOperand Vec = Op.getOperand(0);
    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
                       DAG.getIntPtrConstant(0));
  } else if (VT.getSizeInBits() == 64) {
    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
    //        to match extract_elt for f64.
    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
    if (Idx == 0)
      return Op;

    // UNPCKHPD the element to the lowest double word, then movsd.
    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
    MVT MaskVT = MVT::getIntVectorWithNumElements(4);
    SmallVector<SDOperand, 8> IdxVec;
    IdxVec.push_back(DAG.getConstant(1, MaskVT.getVectorElementType()));
    IdxVec.
      push_back(DAG.getNode(ISD::UNDEF, MaskVT.getVectorElementType()));
    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
                                 &IdxVec[0], IdxVec.size());
    SDOperand Vec = Op.getOperand(0);
    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
                       DAG.getIntPtrConstant(0));
  }

  return SDOperand();
}

SDOperand
X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDOperand Op, SelectionDAG &DAG){
  MVT VT = Op.getValueType();
  MVT EVT = VT.getVectorElementType();

  SDOperand N0 = Op.getOperand(0);
  SDOperand N1 = Op.getOperand(1);
  SDOperand N2 = Op.getOperand(2);

  if ((EVT.getSizeInBits() == 8) || (EVT.getSizeInBits() == 16)) {
    unsigned Opc = (EVT.getSizeInBits() == 8) ? X86ISD::PINSRB
                                                  : X86ISD::PINSRW;
    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
    // argument.
    if (N1.getValueType() != MVT::i32)
      N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
    if (N2.getValueType() != MVT::i32)
      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getValue());
    return DAG.getNode(Opc, VT, N0, N1, N2);
  } else if (EVT == MVT::f32) {
    // Bits [7:6] of the constant are the source select.  This will always be
    //  zero here.  The DAG Combiner may combine an extract_elt index into these
    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
    // Bits [5:4] of the constant are the destination select.  This is the 
    //  value of the incoming immediate.
    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may 
    //   combine either bitwise AND or insert of float 0.0 to set these bits.
    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getValue() << 4);
    return DAG.getNode(X86ISD::INSERTPS, VT, N0, N1, N2);
  }
  return SDOperand();
}

SDOperand
X86TargetLowering::LowerINSERT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
  MVT VT = Op.getValueType();
  MVT EVT = VT.getVectorElementType();

  if (Subtarget->hasSSE41())
    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);

  if (EVT == MVT::i8)
    return SDOperand();

  SDOperand N0 = Op.getOperand(0);
  SDOperand N1 = Op.getOperand(1);
  SDOperand N2 = Op.getOperand(2);

  if (EVT.getSizeInBits() == 16) {
    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
    // as its second argument.
    if (N1.getValueType() != MVT::i32)
      N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
    if (N2.getValueType() != MVT::i32)
      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getValue());
    return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2);
  }
  return SDOperand();
}

SDOperand
X86TargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
  SDOperand AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0));
  MVT VT = MVT::v2i32;
  switch (Op.getValueType().getSimpleVT()) {
  default: break;
  case MVT::v16i8:
  case MVT::v8i16:
    VT = MVT::v4i32;
    break;
  }
  return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(),
                     DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, AnyExt));
}

// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
// one of the above mentioned nodes. It has to be wrapped because otherwise
// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
// be used to form addressing mode. These wrapped nodes will be selected
// into MOV32ri.
SDOperand
X86TargetLowering::LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
  SDOperand Result = DAG.getTargetConstantPool(CP->getConstVal(),
                                               getPointerTy(),
                                               CP->getAlignment());
  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
  // With PIC, the address is actually $g + Offset.
  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
      !Subtarget->isPICStyleRIPRel()) {
    Result = DAG.getNode(ISD::ADD, getPointerTy(),
                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
                         Result);
  }

  return Result;
}

SDOperand
X86TargetLowering::LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
  GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
  SDOperand Result = DAG.getTargetGlobalAddress(GV, getPointerTy());
  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
  // With PIC, the address is actually $g + Offset.
  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
      !Subtarget->isPICStyleRIPRel()) {
    Result = DAG.getNode(ISD::ADD, getPointerTy(),
                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
                         Result);
  }
  
  // For Darwin & Mingw32, external and weak symbols are indirect, so we want to
  // load the value at address GV, not the value of GV itself. This means that
  // the GlobalAddress must be in the base or index register of the address, not
  // the GV offset field. Platform check is inside GVRequiresExtraLoad() call
  // The same applies for external symbols during PIC codegen
  if (Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false))
    Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result,
                         PseudoSourceValue::getGOT(), 0);

  return Result;
}

// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
static SDOperand
LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
                                const MVT PtrVT) {
  SDOperand InFlag;
  SDOperand Chain = DAG.getCopyToReg(DAG.getEntryNode(), X86::EBX,
                                     DAG.getNode(X86ISD::GlobalBaseReg,
                                                 PtrVT), InFlag);
  InFlag = Chain.getValue(1);

  // emit leal symbol@TLSGD(,%ebx,1), %eax
  SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
  SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
                                             GA->getValueType(0),
                                             GA->getOffset());
  SDOperand Ops[] = { Chain,  TGA, InFlag };
  SDOperand Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 3);
  InFlag = Result.getValue(2);
  Chain = Result.getValue(1);

  // call ___tls_get_addr. This function receives its argument in
  // the register EAX.
  Chain = DAG.getCopyToReg(Chain, X86::EAX, Result, InFlag);
  InFlag = Chain.getValue(1);

  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
  SDOperand Ops1[] = { Chain,
                      DAG.getTargetExternalSymbol("___tls_get_addr",
                                                  PtrVT),
                      DAG.getRegister(X86::EAX, PtrVT),
                      DAG.getRegister(X86::EBX, PtrVT),
                      InFlag };
  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 5);
  InFlag = Chain.getValue(1);

  return DAG.getCopyFromReg(Chain, X86::EAX, PtrVT, InFlag);
}

// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
static SDOperand
LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
                                const MVT PtrVT) {
  SDOperand InFlag, Chain;

  // emit leaq symbol@TLSGD(%rip), %rdi
  SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
  SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
                                             GA->getValueType(0),
                                             GA->getOffset());
  SDOperand Ops[]  = { DAG.getEntryNode(), TGA};
  SDOperand Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 2);
  Chain  = Result.getValue(1);
  InFlag = Result.getValue(2);

  // call ___tls_get_addr. This function receives its argument in
  // the register RDI.
  Chain = DAG.getCopyToReg(Chain, X86::RDI, Result, InFlag);
  InFlag = Chain.getValue(1);

  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
  SDOperand Ops1[] = { Chain,
                      DAG.getTargetExternalSymbol("___tls_get_addr",
                                                  PtrVT),
                      DAG.getRegister(X86::RDI, PtrVT),
                      InFlag };
  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 4);
  InFlag = Chain.getValue(1);

  return DAG.getCopyFromReg(Chain, X86::RAX, PtrVT, InFlag);
}

// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
// "local exec" model.
static SDOperand LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
                                     const MVT PtrVT) {
  // Get the Thread Pointer
  SDOperand ThreadPointer = DAG.getNode(X86ISD::THREAD_POINTER, PtrVT);
  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
  // exec)
  SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
                                             GA->getValueType(0),
                                             GA->getOffset());
  SDOperand Offset = DAG.getNode(X86ISD::Wrapper, PtrVT, TGA);

  if (GA->getGlobal()->isDeclaration()) // initial exec TLS model
    Offset = DAG.getLoad(PtrVT, DAG.getEntryNode(), Offset,
                         PseudoSourceValue::getGOT(), 0);

  // The address of the thread local variable is the add of the thread
  // pointer with the offset of the variable.
  return DAG.getNode(ISD::ADD, PtrVT, ThreadPointer, Offset);
}

SDOperand
X86TargetLowering::LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG) {
  // TODO: implement the "local dynamic" model
  // TODO: implement the "initial exec"model for pic executables
  assert(Subtarget->isTargetELF() &&
         "TLS not implemented for non-ELF targets");
  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
  // otherwise use the "Local Exec"TLS Model
  if (Subtarget->is64Bit()) {
    return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
  } else {
    if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
      return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
    else
      return LowerToTLSExecModel(GA, DAG, getPointerTy());
  }
}

SDOperand
X86TargetLowering::LowerExternalSymbol(SDOperand Op, SelectionDAG &DAG) {
  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
  SDOperand Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
  // With PIC, the address is actually $g + Offset.
  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
      !Subtarget->isPICStyleRIPRel()) {
    Result = DAG.getNode(ISD::ADD, getPointerTy(),
                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
                         Result);
  }

  return Result;
}

SDOperand X86TargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
  SDOperand Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
  // With PIC, the address is actually $g + Offset.
  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
      !Subtarget->isPICStyleRIPRel()) {
    Result = DAG.getNode(ISD::ADD, getPointerTy(),
                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
                         Result);
  }

  return Result;
}

/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
/// take a 2 x i32 value to shift plus a shift amount. 
SDOperand X86TargetLowering::LowerShift(SDOperand Op, SelectionDAG &DAG) {
  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
  MVT VT = Op.getValueType();
  unsigned VTBits = VT.getSizeInBits();
  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
  SDOperand ShOpLo = Op.getOperand(0);
  SDOperand ShOpHi = Op.getOperand(1);
  SDOperand ShAmt  = Op.getOperand(2);
  SDOperand Tmp1 = isSRA ?
    DAG.getNode(ISD::SRA, VT, ShOpHi, DAG.getConstant(VTBits - 1, MVT::i8)) :
    DAG.getConstant(0, VT);

  SDOperand Tmp2, Tmp3;
  if (Op.getOpcode() == ISD::SHL_PARTS) {
    Tmp2 = DAG.getNode(X86ISD::SHLD, VT, ShOpHi, ShOpLo, ShAmt);
    Tmp3 = DAG.getNode(ISD::SHL, VT, ShOpLo, ShAmt);
  } else {
    Tmp2 = DAG.getNode(X86ISD::SHRD, VT, ShOpLo, ShOpHi, ShAmt);
    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, VT, ShOpHi, ShAmt);
  }

  const MVT *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
  SDOperand AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt,
                                  DAG.getConstant(VTBits, MVT::i8));
  SDOperand Cond = DAG.getNode(X86ISD::CMP, VT,
                               AndNode, DAG.getConstant(0, MVT::i8));

  SDOperand Hi, Lo;
  SDOperand CC = DAG.getConstant(X86::COND_NE, MVT::i8);
  VTs = DAG.getNodeValueTypes(VT, MVT::Flag);
  SmallVector<SDOperand, 4> Ops;
  if (Op.getOpcode() == ISD::SHL_PARTS) {
    Ops.push_back(Tmp2);
    Ops.push_back(Tmp3);
    Ops.push_back(CC);
    Ops.push_back(Cond);
    Hi = DAG.getNode(X86ISD::CMOV, VT, &Ops[0], Ops.size());

    Ops.clear();
    Ops.push_back(Tmp3);
    Ops.push_back(Tmp1);
    Ops.push_back(CC);
    Ops.push_back(Cond);
    Lo = DAG.getNode(X86ISD::CMOV, VT, &Ops[0], Ops.size());
  } else {
    Ops.push_back(Tmp2);
    Ops.push_back(Tmp3);
    Ops.push_back(CC);
    Ops.push_back(Cond);
    Lo = DAG.getNode(X86ISD::CMOV, VT, &Ops[0], Ops.size());

    Ops.clear();
    Ops.push_back(Tmp3);
    Ops.push_back(Tmp1);
    Ops.push_back(CC);
    Ops.push_back(Cond);
    Hi = DAG.getNode(X86ISD::CMOV, VT, &Ops[0], Ops.size());
  }

  VTs = DAG.getNodeValueTypes(VT, VT);
  Ops.clear();
  Ops.push_back(Lo);
  Ops.push_back(Hi);
  return DAG.getNode(ISD::MERGE_VALUES, VTs, 2, &Ops[0], Ops.size());
}

SDOperand X86TargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
  MVT SrcVT = Op.getOperand(0).getValueType();
  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
         "Unknown SINT_TO_FP to lower!");
  
  // These are really Legal; caller falls through into that case.
  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
    return SDOperand();
  if (SrcVT == MVT::i64 && Op.getValueType() != MVT::f80 && 
      Subtarget->is64Bit())
    return SDOperand();
  
  unsigned Size = SrcVT.getSizeInBits()/8;
  MachineFunction &MF = DAG.getMachineFunction();
  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
  SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0),
                                 StackSlot,
                                 PseudoSourceValue::getFixedStack(),
                                 SSFI);

  // Build the FILD
  SDVTList Tys;
  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
  if (useSSE)
    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
  else
    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
  SmallVector<SDOperand, 8> Ops;
  Ops.push_back(Chain);
  Ops.push_back(StackSlot);
  Ops.push_back(DAG.getValueType(SrcVT));
  SDOperand Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD,
                                 Tys, &Ops[0], Ops.size());

  if (useSSE) {
    Chain = Result.getValue(1);
    SDOperand InFlag = Result.getValue(2);

    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
    // shouldn't be necessary except that RFP cannot be live across
    // multiple blocks. When stackifier is fixed, they can be uncoupled.
    MachineFunction &MF = DAG.getMachineFunction();
    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
    SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
    Tys = DAG.getVTList(MVT::Other);
    SmallVector<SDOperand, 8> Ops;
    Ops.push_back(Chain);
    Ops.push_back(Result);
    Ops.push_back(StackSlot);
    Ops.push_back(DAG.getValueType(Op.getValueType()));
    Ops.push_back(InFlag);
    Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
    Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot,
                         PseudoSourceValue::getFixedStack(), SSFI);
  }

  return Result;
}

std::pair<SDOperand,SDOperand> X86TargetLowering::
FP_TO_SINTHelper(SDOperand Op, SelectionDAG &DAG) {
  assert(Op.getValueType().getSimpleVT() <= MVT::i64 &&
         Op.getValueType().getSimpleVT() >= MVT::i16 &&
         "Unknown FP_TO_SINT to lower!");

  // These are really Legal.
  if (Op.getValueType() == MVT::i32 && 
      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
    return std::make_pair(SDOperand(), SDOperand());
  if (Subtarget->is64Bit() &&
      Op.getValueType() == MVT::i64 &&
      Op.getOperand(0).getValueType() != MVT::f80)
    return std::make_pair(SDOperand(), SDOperand());

  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
  // stack slot.
  MachineFunction &MF = DAG.getMachineFunction();
  unsigned MemSize = Op.getValueType().getSizeInBits()/8;
  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
  unsigned Opc;
  switch (Op.getValueType().getSimpleVT()) {
  default: assert(0 && "Invalid FP_TO_SINT to lower!");
  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
  }

  SDOperand Chain = DAG.getEntryNode();
  SDOperand Value = Op.getOperand(0);
  if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) {
    assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!");
    Chain = DAG.getStore(Chain, Value, StackSlot,
                         PseudoSourceValue::getFixedStack(), SSFI);
    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
    SDOperand Ops[] = {
      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
    };
    Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
    Chain = Value.getValue(1);
    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
  }

  // Build the FP_TO_INT*_IN_MEM
  SDOperand Ops[] = { Chain, Value, StackSlot };
  SDOperand FIST = DAG.getNode(Opc, MVT::Other, Ops, 3);

  return std::make_pair(FIST, StackSlot);
}

SDOperand X86TargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
  std::pair<SDOperand,SDOperand> Vals = FP_TO_SINTHelper(Op, DAG);
  SDOperand FIST = Vals.first, StackSlot = Vals.second;
  if (FIST.Val == 0) return SDOperand();
  
  // Load the result.
  return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0);
}

SDNode *X86TargetLowering::ExpandFP_TO_SINT(SDNode *N, SelectionDAG &DAG) {
  std::pair<SDOperand,SDOperand> Vals = FP_TO_SINTHelper(SDOperand(N, 0), DAG);
  SDOperand FIST = Vals.first, StackSlot = Vals.second;
  if (FIST.Val == 0) return 0;
  
  // Return an i64 load from the stack slot.
  SDOperand Res = DAG.getLoad(MVT::i64, FIST, StackSlot, NULL, 0);

  // Use a MERGE_VALUES node to drop the chain result value.
  return DAG.getNode(ISD::MERGE_VALUES, MVT::i64, Res).Val;
}  

SDOperand X86TargetLowering::LowerFABS(SDOperand Op, SelectionDAG &DAG) {
  MVT VT = Op.getValueType();
  MVT EltVT = VT;
  if (VT.isVector())
    EltVT = VT.getVectorElementType();
  std::vector<Constant*> CV;
  if (EltVT == MVT::f64) {
    Constant *C = ConstantFP::get(APFloat(APInt(64, ~(1ULL << 63))));
    CV.push_back(C);
    CV.push_back(C);
  } else {
    Constant *C = ConstantFP::get(APFloat(APInt(32, ~(1U << 31))));
    CV.push_back(C);
    CV.push_back(C);
    CV.push_back(C);
    CV.push_back(C);
  }
  Constant *C = ConstantVector::get(CV);
  SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
  SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx,
                               PseudoSourceValue::getConstantPool(), 0,
                               false, 16);
  return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask);
}

SDOperand X86TargetLowering::LowerFNEG(SDOperand Op, SelectionDAG &DAG) {
  MVT VT = Op.getValueType();
  MVT EltVT = VT;
  unsigned EltNum = 1;
  if (VT.isVector()) {
    EltVT = VT.getVectorElementType();
    EltNum = VT.getVectorNumElements();
  }
  std::vector<Constant*> CV;
  if (EltVT == MVT::f64) {
    Constant *C = ConstantFP::get(APFloat(APInt(64, 1ULL << 63)));
    CV.push_back(C);
    CV.push_back(C);
  } else {
    Constant *C = ConstantFP::get(APFloat(APInt(32, 1U << 31)));
    CV.push_back(C);
    CV.push_back(C);
    CV.push_back(C);
    CV.push_back(C);
  }
  Constant *C = ConstantVector::get(CV);
  SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
  SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx,
                               PseudoSourceValue::getConstantPool(), 0,
                               false, 16);
  if (VT.isVector()) {
    return DAG.getNode(ISD::BIT_CONVERT, VT,
                       DAG.getNode(ISD::XOR, MVT::v2i64,
                    DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Op.getOperand(0)),
                    DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Mask)));
  } else {
    return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask);
  }
}

SDOperand X86TargetLowering::LowerFCOPYSIGN(SDOperand Op, SelectionDAG &DAG) {
  SDOperand Op0 = Op.getOperand(0);
  SDOperand Op1 = Op.getOperand(1);
  MVT VT = Op.getValueType();
  MVT SrcVT = Op1.getValueType();

  // If second operand is smaller, extend it first.
  if (SrcVT.bitsLT(VT)) {
    Op1 = DAG.getNode(ISD::FP_EXTEND, VT, Op1);
    SrcVT = VT;
  }
  // And if it is bigger, shrink it first.
  if (SrcVT.bitsGT(VT)) {
    Op1 = DAG.getNode(ISD::FP_ROUND, VT, Op1, DAG.getIntPtrConstant(1));
    SrcVT = VT;
  }

  // At this point the operands and the result should have the same
  // type, and that won't be f80 since that is not custom lowered.

  // First get the sign bit of second operand.
  std::vector<Constant*> CV;
  if (SrcVT == MVT::f64) {
    CV.push_back(ConstantFP::get(APFloat(APInt(64, 1ULL << 63))));
    CV.push_back(ConstantFP::get(APFloat(APInt(64, 0))));
  } else {
    CV.push_back(ConstantFP::get(APFloat(APInt(32, 1U << 31))));
    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
  }
  Constant *C = ConstantVector::get(CV);
  SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
  SDOperand Mask1 = DAG.getLoad(SrcVT, DAG.getEntryNode(), CPIdx,
                                PseudoSourceValue::getConstantPool(), 0,
                                false, 16);
  SDOperand SignBit = DAG.getNode(X86ISD::FAND, SrcVT, Op1, Mask1);

  // Shift sign bit right or left if the two operands have different types.
  if (SrcVT.bitsGT(VT)) {
    // Op0 is MVT::f32, Op1 is MVT::f64.
    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2f64, SignBit);
    SignBit = DAG.getNode(X86ISD::FSRL, MVT::v2f64, SignBit,
                          DAG.getConstant(32, MVT::i32));
    SignBit = DAG.getNode(ISD::BIT_CONVERT, MVT::v4f32, SignBit);
    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f32, SignBit,
                          DAG.getIntPtrConstant(0));
  }

  // Clear first operand sign bit.
  CV.clear();
  if (VT == MVT::f64) {
    CV.push_back(ConstantFP::get(APFloat(APInt(64, ~(1ULL << 63)))));
    CV.push_back(ConstantFP::get(APFloat(APInt(64, 0))));
  } else {
    CV.push_back(ConstantFP::get(APFloat(APInt(32, ~(1U << 31)))));
    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
  }
  C = ConstantVector::get(CV);
  CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
  SDOperand Mask2 = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx,
                                PseudoSourceValue::getConstantPool(), 0,
                                false, 16);
  SDOperand Val = DAG.getNode(X86ISD::FAND, VT, Op0, Mask2);

  // Or the value with the sign bit.
  return DAG.getNode(X86ISD::FOR, VT, Val, SignBit);
}

SDOperand X86TargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
  SDOperand Cond;
  SDOperand Op0 = Op.getOperand(0);
  SDOperand Op1 = Op.getOperand(1);
  SDOperand CC = Op.getOperand(2);
  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
  unsigned X86CC;

  if (translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC,
                     Op0, Op1, DAG)) {
    Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1);
    return DAG.getNode(X86ISD::SETCC, MVT::i8,
                       DAG.getConstant(X86CC, MVT::i8), Cond);
  }

  assert(isFP && "Illegal integer SetCC!");

  Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1);
  switch (SetCCOpcode) {
  default: assert(false && "Illegal floating point SetCC!");
  case ISD::SETOEQ: {  // !PF & ZF
    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, MVT::i8,
                                 DAG.getConstant(X86::COND_NP, MVT::i8), Cond);
    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8,
                                 DAG.getConstant(X86::COND_E, MVT::i8), Cond);
    return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2);
  }
  case ISD::SETUNE: {  // PF | !ZF
    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, MVT::i8,
                                 DAG.getConstant(X86::COND_P, MVT::i8), Cond);
    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8,
                                 DAG.getConstant(X86::COND_NE, MVT::i8), Cond);
    return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2);
  }
  }
}


SDOperand X86TargetLowering::LowerSELECT(SDOperand Op, SelectionDAG &DAG) {
  bool addTest = true;
  SDOperand Cond  = Op.getOperand(0);
  SDOperand CC;

  if (Cond.getOpcode() == ISD::SETCC)
    Cond = LowerSETCC(Cond, DAG);

  // If condition flag is set by a X86ISD::CMP, then use it as the condition
  // setting operand in place of the X86ISD::SETCC.
  if (Cond.getOpcode() == X86ISD::SETCC) {
    CC = Cond.getOperand(0);

    SDOperand Cmp = Cond.getOperand(1);
    unsigned Opc = Cmp.getOpcode();
    MVT VT = Op.getValueType();
    
    bool IllegalFPCMov = false;
    if (VT.isFloatingPoint() && !VT.isVector() &&
        !isScalarFPTypeInSSEReg(VT))  // FPStack?
      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
    
    if ((Opc == X86ISD::CMP ||
         Opc == X86ISD::COMI ||
         Opc == X86ISD::UCOMI) && !IllegalFPCMov) {
      Cond = Cmp;
      addTest = false;
    }
  }

  if (addTest) {
    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
    Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8));
  }

  const MVT *VTs = DAG.getNodeValueTypes(Op.getValueType(),
                                                    MVT::Flag);
  SmallVector<SDOperand, 4> Ops;
  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
  // condition is true.
  Ops.push_back(Op.getOperand(2));
  Ops.push_back(Op.getOperand(1));
  Ops.push_back(CC);
  Ops.push_back(Cond);
  return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
}

SDOperand X86TargetLowering::LowerBRCOND(SDOperand Op, SelectionDAG &DAG) {
  bool addTest = true;
  SDOperand Chain = Op.getOperand(0);
  SDOperand Cond  = Op.getOperand(1);
  SDOperand Dest  = Op.getOperand(2);
  SDOperand CC;

  if (Cond.getOpcode() == ISD::SETCC)
    Cond = LowerSETCC(Cond, DAG);

  // If condition flag is set by a X86ISD::CMP, then use it as the condition
  // setting operand in place of the X86ISD::SETCC.
  if (Cond.getOpcode() == X86ISD::SETCC) {
    CC = Cond.getOperand(0);

    SDOperand Cmp = Cond.getOperand(1);
    unsigned Opc = Cmp.getOpcode();
    if (Opc == X86ISD::CMP ||
        Opc == X86ISD::COMI ||
        Opc == X86ISD::UCOMI) {
      Cond = Cmp;
      addTest = false;
    }
  }

  if (addTest) {
    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
    Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8));
  }
  return DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
                     Chain, Op.getOperand(2), CC, Cond);
}


// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
// Calls to _alloca is needed to probe the stack when allocating more than 4k
// bytes in one go. Touching the stack at 4K increments is necessary to ensure
// that the guard pages used by the OS virtual memory manager are allocated in
// correct sequence.
SDOperand
X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDOperand Op,
                                           SelectionDAG &DAG) {
  assert(Subtarget->isTargetCygMing() &&
         "This should be used only on Cygwin/Mingw targets");

  // Get the inputs.
  SDOperand Chain = Op.getOperand(0);
  SDOperand Size  = Op.getOperand(1);
  // FIXME: Ensure alignment here

  SDOperand Flag;

  MVT IntPtr = getPointerTy();
  MVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;

  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0));

  Chain = DAG.getCopyToReg(Chain, X86::EAX, Size, Flag);
  Flag = Chain.getValue(1);

  SDVTList  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
  SDOperand Ops[] = { Chain,
                      DAG.getTargetExternalSymbol("_alloca", IntPtr),
                      DAG.getRegister(X86::EAX, IntPtr),
                      DAG.getRegister(X86StackPtr, SPTy),
                      Flag };
  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops, 5);
  Flag = Chain.getValue(1);

  Chain = DAG.getCALLSEQ_END(Chain,
                             DAG.getIntPtrConstant(0),
                             DAG.getIntPtrConstant(0),
                             Flag);

  Chain = DAG.getCopyFromReg(Chain, X86StackPtr, SPTy).getValue(1);

  std::vector<MVT> Tys;
  Tys.push_back(SPTy);
  Tys.push_back(MVT::Other);
  SDOperand Ops1[2] = { Chain.getValue(0), Chain };
  return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops1, 2);
}

SDOperand
X86TargetLowering::EmitTargetCodeForMemset(SelectionDAG &DAG,
                                           SDOperand Chain,
                                           SDOperand Dst, SDOperand Src,
                                           SDOperand Size, unsigned Align,
                                        const Value *DstSV, uint64_t DstSVOff) {
  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);

  /// If not DWORD aligned or size is more than the threshold, call the library.
  /// The libc version is likely to be faster for these cases. It can use the
  /// address value and run time information about the CPU.
  if ((Align & 3) == 0 ||
      !ConstantSize ||
      ConstantSize->getValue() > getSubtarget()->getMaxInlineSizeThreshold()) {
    SDOperand InFlag(0, 0);

    // Check to see if there is a specialized entry-point for memory zeroing.
    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Src);
    if (const char *bzeroEntry = 
          V && V->isNullValue() ? Subtarget->getBZeroEntry() : 0) {
      MVT IntPtr = getPointerTy();
      const Type *IntPtrTy = getTargetData()->getIntPtrType();
      TargetLowering::ArgListTy Args; 
      TargetLowering::ArgListEntry Entry;
      Entry.Node = Dst;
      Entry.Ty = IntPtrTy;
      Args.push_back(Entry);
      Entry.Node = Size;
      Args.push_back(Entry);
      std::pair<SDOperand,SDOperand> CallResult =
        LowerCallTo(Chain, Type::VoidTy, false, false, false, CallingConv::C,
                    false, DAG.getExternalSymbol(bzeroEntry, IntPtr),
                    Args, DAG);
      return CallResult.second;
    }

    // Otherwise have the target-independent code call memset.
    return SDOperand();
  }

  uint64_t SizeVal = ConstantSize->getValue();
  SDOperand InFlag(0, 0);
  MVT AVT;
  SDOperand Count;
  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Src);
  unsigned BytesLeft = 0;
  bool TwoRepStos = false;
  if (ValC) {
    unsigned ValReg;
    uint64_t Val = ValC->getValue() & 255;

    // If the value is a constant, then we can potentially use larger sets.
    switch (Align & 3) {
      case 2:   // WORD aligned
        AVT = MVT::i16;
        ValReg = X86::AX;
        Val = (Val << 8) | Val;
        break;
      case 0:  // DWORD aligned
        AVT = MVT::i32;
        ValReg = X86::EAX;
        Val = (Val << 8)  | Val;
        Val = (Val << 16) | Val;
        if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) {  // QWORD aligned
          AVT = MVT::i64;
          ValReg = X86::RAX;
          Val = (Val << 32) | Val;
        }
        break;
      default:  // Byte aligned
        AVT = MVT::i8;
        ValReg = X86::AL;
        Count = DAG.getIntPtrConstant(SizeVal);
        break;
    }

    if (AVT.bitsGT(MVT::i8)) {
      unsigned UBytes = AVT.getSizeInBits() / 8;
      Count = DAG.getIntPtrConstant(SizeVal / UBytes);
      BytesLeft = SizeVal % UBytes;
    }

    Chain  = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT),
                              InFlag);
    InFlag = Chain.getValue(1);
  } else {
    AVT = MVT::i8;
    Count  = DAG.getIntPtrConstant(SizeVal);
    Chain  = DAG.getCopyToReg(Chain, X86::AL, Src, InFlag);
    InFlag = Chain.getValue(1);
  }

  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
                            Count, InFlag);
  InFlag = Chain.getValue(1);
  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
                            Dst, InFlag);
  InFlag = Chain.getValue(1);

  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
  SmallVector<SDOperand, 8> Ops;
  Ops.push_back(Chain);
  Ops.push_back(DAG.getValueType(AVT));
  Ops.push_back(InFlag);
  Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());

  if (TwoRepStos) {
    InFlag = Chain.getValue(1);
    Count  = Size;
    MVT CVT = Count.getValueType();
    SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
    Chain  = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
                              Left, InFlag);
    InFlag = Chain.getValue(1);
    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
    Ops.clear();
    Ops.push_back(Chain);
    Ops.push_back(DAG.getValueType(MVT::i8));
    Ops.push_back(InFlag);
    Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
  } else if (BytesLeft) {
    // Handle the last 1 - 7 bytes.
    unsigned Offset = SizeVal - BytesLeft;
    MVT AddrVT = Dst.getValueType();
    MVT SizeVT = Size.getValueType();

    Chain = DAG.getMemset(Chain,
                          DAG.getNode(ISD::ADD, AddrVT, Dst,
                                      DAG.getConstant(Offset, AddrVT)),
                          Src,
                          DAG.getConstant(BytesLeft, SizeVT),
                          Align, DstSV, DstSVOff + Offset);
  }

  // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
  return Chain;
}

SDOperand
X86TargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG,
                                           SDOperand Chain,
                                           SDOperand Dst, SDOperand Src,
                                           SDOperand Size, unsigned Align,
                                           bool AlwaysInline,
                                           const Value *DstSV, uint64_t DstSVOff,
                                           const Value *SrcSV, uint64_t SrcSVOff){
  
  // This requires the copy size to be a constant, preferrably
  // within a subtarget-specific limit.
  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
  if (!ConstantSize)
    return SDOperand();
  uint64_t SizeVal = ConstantSize->getValue();
  if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold())
    return SDOperand();

  MVT AVT;
  unsigned BytesLeft = 0;
  if (Align >= 8 && Subtarget->is64Bit())
    AVT = MVT::i64;
  else if (Align >= 4)
    AVT = MVT::i32;
  else if (Align >= 2)
    AVT = MVT::i16;
  else
    AVT = MVT::i8;

  unsigned UBytes = AVT.getSizeInBits() / 8;
  unsigned CountVal = SizeVal / UBytes;
  SDOperand Count = DAG.getIntPtrConstant(CountVal);
  BytesLeft = SizeVal % UBytes;

  SDOperand InFlag(0, 0);
  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
                            Count, InFlag);
  InFlag = Chain.getValue(1);
  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
                            Dst, InFlag);
  InFlag = Chain.getValue(1);
  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI,
                            Src, InFlag);
  InFlag = Chain.getValue(1);

  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
  SmallVector<SDOperand, 8> Ops;
  Ops.push_back(Chain);
  Ops.push_back(DAG.getValueType(AVT));
  Ops.push_back(InFlag);
  SDOperand RepMovs = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());

  SmallVector<SDOperand, 4> Results;
  Results.push_back(RepMovs);
  if (BytesLeft) {
    // Handle the last 1 - 7 bytes.
    unsigned Offset = SizeVal - BytesLeft;
    MVT DstVT = Dst.getValueType();
    MVT SrcVT = Src.getValueType();
    MVT SizeVT = Size.getValueType();
    Results.push_back(DAG.getMemcpy(Chain,
                                    DAG.getNode(ISD::ADD, DstVT, Dst,
                                                DAG.getConstant(Offset, DstVT)),
                                    DAG.getNode(ISD::ADD, SrcVT, Src,
                                                DAG.getConstant(Offset, SrcVT)),
                                    DAG.getConstant(BytesLeft, SizeVT),
                                    Align, AlwaysInline,
                                    DstSV, DstSVOff + Offset,
                                    SrcSV, SrcSVOff + Offset));
  }

  return DAG.getNode(ISD::TokenFactor, MVT::Other, &Results[0], Results.size());
}

/// Expand the result of: i64,outchain = READCYCLECOUNTER inchain
SDNode *X86TargetLowering::ExpandREADCYCLECOUNTER(SDNode *N, SelectionDAG &DAG){
  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
  SDOperand TheChain = N->getOperand(0);
  SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &TheChain, 1);
  if (Subtarget->is64Bit()) {
    SDOperand rax = DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1));
    SDOperand rdx = DAG.getCopyFromReg(rax.getValue(1), X86::RDX,
                                       MVT::i64, rax.getValue(2));
    SDOperand Tmp = DAG.getNode(ISD::SHL, MVT::i64, rdx,
                                DAG.getConstant(32, MVT::i8));
    SDOperand Ops[] = {
      DAG.getNode(ISD::OR, MVT::i64, rax, Tmp), rdx.getValue(1)
    };
    
    Tys = DAG.getVTList(MVT::i64, MVT::Other);
    return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 2).Val;
  }
  
  SDOperand eax = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1));
  SDOperand edx = DAG.getCopyFromReg(eax.getValue(1), X86::EDX,
                                       MVT::i32, eax.getValue(2));
  // Use a buildpair to merge the two 32-bit values into a 64-bit one. 
  SDOperand Ops[] = { eax, edx };
  Ops[0] = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Ops, 2);

  // Use a MERGE_VALUES to return the value and chain.
  Ops[1] = edx.getValue(1);
  Tys = DAG.getVTList(MVT::i64, MVT::Other);
  return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 2).Val;
}

SDOperand X86TargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG) {
  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();

  if (!Subtarget->is64Bit()) {
    // vastart just stores the address of the VarArgsFrameIndex slot into the
    // memory location argument.
    SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
    return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV, 0);
  }

  // __va_list_tag:
  //   gp_offset         (0 - 6 * 8)
  //   fp_offset         (48 - 48 + 8 * 16)
  //   overflow_arg_area (point to parameters coming in memory).
  //   reg_save_area
  SmallVector<SDOperand, 8> MemOps;
  SDOperand FIN = Op.getOperand(1);
  // Store gp_offset
  SDOperand Store = DAG.getStore(Op.getOperand(0),
                                 DAG.getConstant(VarArgsGPOffset, MVT::i32),
                                 FIN, SV, 0);
  MemOps.push_back(Store);

  // Store fp_offset
  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(4));
  Store = DAG.getStore(Op.getOperand(0),
                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
                       FIN, SV, 0);
  MemOps.push_back(Store);

  // Store ptr to overflow_arg_area
  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(4));
  SDOperand OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
  Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV, 0);
  MemOps.push_back(Store);

  // Store ptr to reg_save_area.
  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(8));
  SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
  Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV, 0);
  MemOps.push_back(Store);
  return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size());
}

SDOperand X86TargetLowering::LowerVAARG(SDOperand Op, SelectionDAG &DAG) {
  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!");
  SDOperand Chain = Op.getOperand(0);
  SDOperand SrcPtr = Op.getOperand(1);
  SDOperand SrcSV = Op.getOperand(2);

  assert(0 && "VAArgInst is not yet implemented for x86-64!");
  abort();
  return SDOperand();
}

SDOperand X86TargetLowering::LowerVACOPY(SDOperand Op, SelectionDAG &DAG) {
  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
  SDOperand Chain = Op.getOperand(0);
  SDOperand DstPtr = Op.getOperand(1);
  SDOperand SrcPtr = Op.getOperand(2);
  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();

  return DAG.getMemcpy(Chain, DstPtr, SrcPtr,
                       DAG.getIntPtrConstant(24), 8, false,
                       DstSV, 0, SrcSV, 0);
}

SDOperand
X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue();
  switch (IntNo) {
  default: return SDOperand();    // Don't custom lower most intrinsics.
  // Comparison intrinsics.
  case Intrinsic::x86_sse_comieq_ss:
  case Intrinsic::x86_sse_comilt_ss:
  case Intrinsic::x86_sse_comile_ss:
  case Intrinsic::x86_sse_comigt_ss:
  case Intrinsic::x86_sse_comige_ss:
  case Intrinsic::x86_sse_comineq_ss:
  case Intrinsic::x86_sse_ucomieq_ss:
  case Intrinsic::x86_sse_ucomilt_ss:
  case Intrinsic::x86_sse_ucomile_ss:
  case Intrinsic::x86_sse_ucomigt_ss:
  case Intrinsic::x86_sse_ucomige_ss:
  case Intrinsic::x86_sse_ucomineq_ss:
  case Intrinsic::x86_sse2_comieq_sd:
  case Intrinsic::x86_sse2_comilt_sd:
  case Intrinsic::x86_sse2_comile_sd:
  case Intrinsic::x86_sse2_comigt_sd:
  case Intrinsic::x86_sse2_comige_sd:
  case Intrinsic::x86_sse2_comineq_sd:
  case Intrinsic::x86_sse2_ucomieq_sd:
  case Intrinsic::x86_sse2_ucomilt_sd:
  case Intrinsic::x86_sse2_ucomile_sd:
  case Intrinsic::x86_sse2_ucomigt_sd:
  case Intrinsic::x86_sse2_ucomige_sd:
  case Intrinsic::x86_sse2_ucomineq_sd: {
    unsigned Opc = 0;
    ISD::CondCode CC = ISD::SETCC_INVALID;
    switch (IntNo) {
    default: break;
    case Intrinsic::x86_sse_comieq_ss:
    case Intrinsic::x86_sse2_comieq_sd:
      Opc = X86ISD::COMI;
      CC = ISD::SETEQ;
      break;
    case Intrinsic::x86_sse_comilt_ss:
    case Intrinsic::x86_sse2_comilt_sd:
      Opc = X86ISD::COMI;
      CC = ISD::SETLT;
      break;
    case Intrinsic::x86_sse_comile_ss:
    case Intrinsic::x86_sse2_comile_sd:
      Opc = X86ISD::COMI;
      CC = ISD::SETLE;
      break;
    case Intrinsic::x86_sse_comigt_ss:
    case Intrinsic::x86_sse2_comigt_sd:
      Opc = X86ISD::COMI;
      CC = ISD::SETGT;
      break;
    case Intrinsic::x86_sse_comige_ss:
    case Intrinsic::x86_sse2_comige_sd:
      Opc = X86ISD::COMI;
      CC = ISD::SETGE;
      break;
    case Intrinsic::x86_sse_comineq_ss:
    case Intrinsic::x86_sse2_comineq_sd:
      Opc = X86ISD::COMI;
      CC = ISD::SETNE;
      break;
    case Intrinsic::x86_sse_ucomieq_ss:
    case Intrinsic::x86_sse2_ucomieq_sd:
      Opc = X86ISD::UCOMI;
      CC = ISD::SETEQ;
      break;
    case Intrinsic::x86_sse_ucomilt_ss:
    case Intrinsic::x86_sse2_ucomilt_sd:
      Opc = X86ISD::UCOMI;
      CC = ISD::SETLT;
      break;
    case Intrinsic::x86_sse_ucomile_ss:
    case Intrinsic::x86_sse2_ucomile_sd:
      Opc = X86ISD::UCOMI;
      CC = ISD::SETLE;
      break;
    case Intrinsic::x86_sse_ucomigt_ss:
    case Intrinsic::x86_sse2_ucomigt_sd:
      Opc = X86ISD::UCOMI;
      CC = ISD::SETGT;
      break;
    case Intrinsic::x86_sse_ucomige_ss:
    case Intrinsic::x86_sse2_ucomige_sd:
      Opc = X86ISD::UCOMI;
      CC = ISD::SETGE;
      break;
    case Intrinsic::x86_sse_ucomineq_ss:
    case Intrinsic::x86_sse2_ucomineq_sd:
      Opc = X86ISD::UCOMI;
      CC = ISD::SETNE;
      break;
    }

    unsigned X86CC;
    SDOperand LHS = Op.getOperand(1);
    SDOperand RHS = Op.getOperand(2);
    translateX86CC(CC, true, X86CC, LHS, RHS, DAG);

    SDOperand Cond = DAG.getNode(Opc, MVT::i32, LHS, RHS);
    SDOperand SetCC = DAG.getNode(X86ISD::SETCC, MVT::i8,
                                  DAG.getConstant(X86CC, MVT::i8), Cond);
    return DAG.getNode(ISD::ANY_EXTEND, MVT::i32, SetCC);
  }

  // Fix vector shift instructions where the last operand is a non-immediate
  // i32 value.
  case Intrinsic::x86_sse2_pslli_w:
  case Intrinsic::x86_sse2_pslli_d:
  case Intrinsic::x86_sse2_pslli_q:
  case Intrinsic::x86_sse2_psrli_w:
  case Intrinsic::x86_sse2_psrli_d:
  case Intrinsic::x86_sse2_psrli_q:
  case Intrinsic::x86_sse2_psrai_w:
  case Intrinsic::x86_sse2_psrai_d:
  case Intrinsic::x86_mmx_pslli_w:
  case Intrinsic::x86_mmx_pslli_d:
  case Intrinsic::x86_mmx_pslli_q:
  case Intrinsic::x86_mmx_psrli_w:
  case Intrinsic::x86_mmx_psrli_d:
  case Intrinsic::x86_mmx_psrli_q:
  case Intrinsic::x86_mmx_psrai_w:
  case Intrinsic::x86_mmx_psrai_d: {
    SDOperand ShAmt = Op.getOperand(2);
    if (isa<ConstantSDNode>(ShAmt))
      return SDOperand();

    unsigned NewIntNo = 0;
    MVT ShAmtVT = MVT::v4i32;
    switch (IntNo) {
    case Intrinsic::x86_sse2_pslli_w:
      NewIntNo = Intrinsic::x86_sse2_psll_w;
      break;
    case Intrinsic::x86_sse2_pslli_d:
      NewIntNo = Intrinsic::x86_sse2_psll_d;
      break;
    case Intrinsic::x86_sse2_pslli_q:
      NewIntNo = Intrinsic::x86_sse2_psll_q;
      break;
    case Intrinsic::x86_sse2_psrli_w:
      NewIntNo = Intrinsic::x86_sse2_psrl_w;
      break;
    case Intrinsic::x86_sse2_psrli_d:
      NewIntNo = Intrinsic::x86_sse2_psrl_d;
      break;
    case Intrinsic::x86_sse2_psrli_q:
      NewIntNo = Intrinsic::x86_sse2_psrl_q;
      break;
    case Intrinsic::x86_sse2_psrai_w:
      NewIntNo = Intrinsic::x86_sse2_psra_w;
      break;
    case Intrinsic::x86_sse2_psrai_d:
      NewIntNo = Intrinsic::x86_sse2_psra_d;
      break;
    default: {
      ShAmtVT = MVT::v2i32;
      switch (IntNo) {
      case Intrinsic::x86_mmx_pslli_w:
        NewIntNo = Intrinsic::x86_mmx_psll_w;
        break;
      case Intrinsic::x86_mmx_pslli_d:
        NewIntNo = Intrinsic::x86_mmx_psll_d;
        break;
      case Intrinsic::x86_mmx_pslli_q:
        NewIntNo = Intrinsic::x86_mmx_psll_q;
        break;
      case Intrinsic::x86_mmx_psrli_w:
        NewIntNo = Intrinsic::x86_mmx_psrl_w;
        break;
      case Intrinsic::x86_mmx_psrli_d:
        NewIntNo = Intrinsic::x86_mmx_psrl_d;
        break;
      case Intrinsic::x86_mmx_psrli_q:
        NewIntNo = Intrinsic::x86_mmx_psrl_q;
        break;
      case Intrinsic::x86_mmx_psrai_w:
        NewIntNo = Intrinsic::x86_mmx_psra_w;
        break;
      case Intrinsic::x86_mmx_psrai_d:
        NewIntNo = Intrinsic::x86_mmx_psra_d;
        break;
      default: abort();  // Can't reach here.
      }
      break;
    }
    }
    MVT VT = Op.getValueType();
    ShAmt = DAG.getNode(ISD::BIT_CONVERT, VT,
                        DAG.getNode(ISD::SCALAR_TO_VECTOR, ShAmtVT, ShAmt));
    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VT,
                       DAG.getConstant(NewIntNo, MVT::i32),
                       Op.getOperand(1), ShAmt);
  }
  }
}

SDOperand X86TargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) {
  // Depths > 0 not supported yet!
  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
    return SDOperand();
  
  // Just load the return address
  SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
  return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
}

SDOperand X86TargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) {
  // Depths > 0 not supported yet!
  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
    return SDOperand();
    
  SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
  return DAG.getNode(ISD::SUB, getPointerTy(), RetAddrFI, 
                     DAG.getIntPtrConstant(4));
}

SDOperand X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDOperand Op,
                                                       SelectionDAG &DAG) {
  // Is not yet supported on x86-64
  if (Subtarget->is64Bit())
    return SDOperand();
  
  return DAG.getIntPtrConstant(8);
}

SDOperand X86TargetLowering::LowerEH_RETURN(SDOperand Op, SelectionDAG &DAG)
{
  assert(!Subtarget->is64Bit() &&
         "Lowering of eh_return builtin is not supported yet on x86-64");
    
  MachineFunction &MF = DAG.getMachineFunction();
  SDOperand Chain     = Op.getOperand(0);
  SDOperand Offset    = Op.getOperand(1);
  SDOperand Handler   = Op.getOperand(2);

  SDOperand Frame = DAG.getRegister(RegInfo->getFrameRegister(MF),
                                    getPointerTy());

  SDOperand StoreAddr = DAG.getNode(ISD::SUB, getPointerTy(), Frame,
                                    DAG.getIntPtrConstant(-4UL));
  StoreAddr = DAG.getNode(ISD::ADD, getPointerTy(), StoreAddr, Offset);
  Chain = DAG.getStore(Chain, Handler, StoreAddr, NULL, 0);
  Chain = DAG.getCopyToReg(Chain, X86::ECX, StoreAddr);
  MF.getRegInfo().addLiveOut(X86::ECX);

  return DAG.getNode(X86ISD::EH_RETURN, MVT::Other,
                     Chain, DAG.getRegister(X86::ECX, getPointerTy()));
}

SDOperand X86TargetLowering::LowerTRAMPOLINE(SDOperand Op,
                                             SelectionDAG &DAG) {
  SDOperand Root = Op.getOperand(0);
  SDOperand Trmp = Op.getOperand(1); // trampoline
  SDOperand FPtr = Op.getOperand(2); // nested function
  SDOperand Nest = Op.getOperand(3); // 'nest' parameter value

  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();

  const X86InstrInfo *TII =
    ((X86TargetMachine&)getTargetMachine()).getInstrInfo();

  if (Subtarget->is64Bit()) {
    SDOperand OutChains[6];

    // Large code-model.

    const unsigned char JMP64r  = TII->getBaseOpcodeFor(X86::JMP64r);
    const unsigned char MOV64ri = TII->getBaseOpcodeFor(X86::MOV64ri);

    const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
    const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);

    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix

    // Load the pointer to the nested function into R11.
    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
    SDOperand Addr = Trmp;
    OutChains[0] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr,
                                TrmpAddr, 0);

    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(2, MVT::i64));
    OutChains[1] = DAG.getStore(Root, FPtr, Addr, TrmpAddr, 2, false, 2);

    // Load the 'nest' parameter value into R10.
    // R10 is specified in X86CallingConv.td
    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(10, MVT::i64));
    OutChains[2] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr,
                                TrmpAddr, 10);

    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(12, MVT::i64));
    OutChains[3] = DAG.getStore(Root, Nest, Addr, TrmpAddr, 12, false, 2);

    // Jump to the nested function.
    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(20, MVT::i64));
    OutChains[4] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr,
                                TrmpAddr, 20);

    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(22, MVT::i64));
    OutChains[5] = DAG.getStore(Root, DAG.getConstant(ModRM, MVT::i8), Addr,
                                TrmpAddr, 22);

    SDOperand Ops[] =
      { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 6) };
    return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(), Ops, 2);
  } else {
    const Function *Func =
      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
    unsigned CC = Func->getCallingConv();
    unsigned NestReg;

    switch (CC) {
    default:
      assert(0 && "Unsupported calling convention");
    case CallingConv::C:
    case CallingConv::X86_StdCall: {
      // Pass 'nest' parameter in ECX.
      // Must be kept in sync with X86CallingConv.td
      NestReg = X86::ECX;

      // Check that ECX wasn't needed by an 'inreg' parameter.
      const FunctionType *FTy = Func->getFunctionType();
      const PAListPtr &Attrs = Func->getParamAttrs();

      if (!Attrs.isEmpty() && !Func->isVarArg()) {
        unsigned InRegCount = 0;
        unsigned Idx = 1;

        for (FunctionType::param_iterator I = FTy->param_begin(),
             E = FTy->param_end(); I != E; ++I, ++Idx)
          if (Attrs.paramHasAttr(Idx, ParamAttr::InReg))
            // FIXME: should only count parameters that are lowered to integers.
            InRegCount += (getTargetData()->getTypeSizeInBits(*I) + 31) / 32;

        if (InRegCount > 2) {
          cerr << "Nest register in use - reduce number of inreg parameters!\n";
          abort();
        }
      }
      break;
    }
    case CallingConv::X86_FastCall:
      // Pass 'nest' parameter in EAX.
      // Must be kept in sync with X86CallingConv.td
      NestReg = X86::EAX;
      break;
    }

    SDOperand OutChains[4];
    SDOperand Addr, Disp;

    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(10, MVT::i32));
    Disp = DAG.getNode(ISD::SUB, MVT::i32, FPtr, Addr);

    const unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri);
    const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
    OutChains[0] = DAG.getStore(Root, DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
                                Trmp, TrmpAddr, 0);

    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(1, MVT::i32));
    OutChains[1] = DAG.getStore(Root, Nest, Addr, TrmpAddr, 1, false, 1);

    const unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP);
    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(5, MVT::i32));
    OutChains[2] = DAG.getStore(Root, DAG.getConstant(JMP, MVT::i8), Addr,
                                TrmpAddr, 5, false, 1);

    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(6, MVT::i32));
    OutChains[3] = DAG.getStore(Root, Disp, Addr, TrmpAddr, 6, false, 1);

    SDOperand Ops[] =
      { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 4) };
    return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(), Ops, 2);
  }
}

SDOperand X86TargetLowering::LowerFLT_ROUNDS_(SDOperand Op, SelectionDAG &DAG) {
  /*
   The rounding mode is in bits 11:10 of FPSR, and has the following
   settings:
     00 Round to nearest
     01 Round to -inf
     10 Round to +inf
     11 Round to 0

  FLT_ROUNDS, on the other hand, expects the following:
    -1 Undefined
     0 Round to 0
     1 Round to nearest
     2 Round to +inf
     3 Round to -inf

  To perform the conversion, we do:
    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
  */

  MachineFunction &MF = DAG.getMachineFunction();
  const TargetMachine &TM = MF.getTarget();
  const TargetFrameInfo &TFI = *TM.getFrameInfo();
  unsigned StackAlignment = TFI.getStackAlignment();
  MVT VT = Op.getValueType();

  // Save FP Control Word to stack slot
  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment);
  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());

  SDOperand Chain = DAG.getNode(X86ISD::FNSTCW16m, MVT::Other,
                                DAG.getEntryNode(), StackSlot);

  // Load FP Control Word from stack slot
  SDOperand CWD = DAG.getLoad(MVT::i16, Chain, StackSlot, NULL, 0);

  // Transform as necessary
  SDOperand CWD1 =
    DAG.getNode(ISD::SRL, MVT::i16,
                DAG.getNode(ISD::AND, MVT::i16,
                            CWD, DAG.getConstant(0x800, MVT::i16)),
                DAG.getConstant(11, MVT::i8));
  SDOperand CWD2 =
    DAG.getNode(ISD::SRL, MVT::i16,
                DAG.getNode(ISD::AND, MVT::i16,
                            CWD, DAG.getConstant(0x400, MVT::i16)),
                DAG.getConstant(9, MVT::i8));

  SDOperand RetVal =
    DAG.getNode(ISD::AND, MVT::i16,
                DAG.getNode(ISD::ADD, MVT::i16,
                            DAG.getNode(ISD::OR, MVT::i16, CWD1, CWD2),
                            DAG.getConstant(1, MVT::i16)),
                DAG.getConstant(3, MVT::i16));


  return DAG.getNode((VT.getSizeInBits() < 16 ?
                      ISD::TRUNCATE : ISD::ZERO_EXTEND), VT, RetVal);
}

SDOperand X86TargetLowering::LowerCTLZ(SDOperand Op, SelectionDAG &DAG) {
  MVT VT = Op.getValueType();
  MVT OpVT = VT;
  unsigned NumBits = VT.getSizeInBits();

  Op = Op.getOperand(0);
  if (VT == MVT::i8) {
    // Zero extend to i32 since there is not an i8 bsr.
    OpVT = MVT::i32;
    Op = DAG.getNode(ISD::ZERO_EXTEND, OpVT, Op);
  }

  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
  Op = DAG.getNode(X86ISD::BSR, VTs, Op);

  // If src is zero (i.e. bsr sets ZF), returns NumBits.
  SmallVector<SDOperand, 4> Ops;
  Ops.push_back(Op);
  Ops.push_back(DAG.getConstant(NumBits+NumBits-1, OpVT));
  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
  Ops.push_back(Op.getValue(1));
  Op = DAG.getNode(X86ISD::CMOV, OpVT, &Ops[0], 4);

  // Finally xor with NumBits-1.
  Op = DAG.getNode(ISD::XOR, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));

  if (VT == MVT::i8)
    Op = DAG.getNode(ISD::TRUNCATE, MVT::i8, Op);
  return Op;
}

SDOperand X86TargetLowering::LowerCTTZ(SDOperand Op, SelectionDAG &DAG) {
  MVT VT = Op.getValueType();
  MVT OpVT = VT;
  unsigned NumBits = VT.getSizeInBits();

  Op = Op.getOperand(0);
  if (VT == MVT::i8) {
    OpVT = MVT::i32;
    Op = DAG.getNode(ISD::ZERO_EXTEND, OpVT, Op);
  }

  // Issue a bsf (scan bits forward) which also sets EFLAGS.
  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
  Op = DAG.getNode(X86ISD::BSF, VTs, Op);

  // If src is zero (i.e. bsf sets ZF), returns NumBits.
  SmallVector<SDOperand, 4> Ops;
  Ops.push_back(Op);
  Ops.push_back(DAG.getConstant(NumBits, OpVT));
  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
  Ops.push_back(Op.getValue(1));
  Op = DAG.getNode(X86ISD::CMOV, OpVT, &Ops[0], 4);

  if (VT == MVT::i8)
    Op = DAG.getNode(ISD::TRUNCATE, MVT::i8, Op);
  return Op;
}

SDOperand X86TargetLowering::LowerLCS(SDOperand Op, SelectionDAG &DAG) {
  MVT T = cast<AtomicSDNode>(Op.Val)->getVT();
  unsigned Reg = 0;
  unsigned size = 0;
  switch(T.getSimpleVT()) {
  default:
    assert(false && "Invalid value type!");
  case MVT::i8:  Reg = X86::AL;  size = 1; break;
  case MVT::i16: Reg = X86::AX;  size = 2; break;
  case MVT::i32: Reg = X86::EAX; size = 4; break;
  case MVT::i64: 
    if (Subtarget->is64Bit()) {
      Reg = X86::RAX; size = 8;
    } else //Should go away when LowerType stuff lands
      return SDOperand(ExpandATOMIC_LCS(Op.Val, DAG), 0);
    break;
  };
  SDOperand cpIn = DAG.getCopyToReg(Op.getOperand(0), Reg,
                                    Op.getOperand(3), SDOperand());
  SDOperand Ops[] = { cpIn.getValue(0),
                      Op.getOperand(1),
                      Op.getOperand(2),
                      DAG.getTargetConstant(size, MVT::i8),
                      cpIn.getValue(1) };
  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
  SDOperand Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, Tys, Ops, 5);
  SDOperand cpOut = 
    DAG.getCopyFromReg(Result.getValue(0), Reg, T, Result.getValue(1));
  return cpOut;
}

SDNode* X86TargetLowering::ExpandATOMIC_LCS(SDNode* Op, SelectionDAG &DAG) {
  MVT T = cast<AtomicSDNode>(Op)->getVT();
  assert (T == MVT::i64 && "Only know how to expand i64 CAS");
  SDOperand cpInL, cpInH;
  cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(3),
                      DAG.getConstant(0, MVT::i32));
  cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(3),
                      DAG.getConstant(1, MVT::i32));
  cpInL = DAG.getCopyToReg(Op->getOperand(0), X86::EAX,
                           cpInL, SDOperand());
  cpInH = DAG.getCopyToReg(cpInL.getValue(0), X86::EDX,
                           cpInH, cpInL.getValue(1));
  SDOperand swapInL, swapInH;
  swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(2),
                        DAG.getConstant(0, MVT::i32));
  swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(2),
                        DAG.getConstant(1, MVT::i32));
  swapInL = DAG.getCopyToReg(cpInH.getValue(0), X86::EBX,
                             swapInL, cpInH.getValue(1));
  swapInH = DAG.getCopyToReg(swapInL.getValue(0), X86::ECX,
                             swapInH, swapInL.getValue(1));
  SDOperand Ops[] = { swapInH.getValue(0),
                      Op->getOperand(1),
                      swapInH.getValue(1)};
  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
  SDOperand Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, Tys, Ops, 3);
  SDOperand cpOutL = DAG.getCopyFromReg(Result.getValue(0), X86::EAX, MVT::i32, 
                                        Result.getValue(1));
  SDOperand cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), X86::EDX, MVT::i32, 
                                        cpOutL.getValue(2));
  SDOperand OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
  SDOperand ResultVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OpsF, 2);
  Tys = DAG.getVTList(MVT::i64, MVT::Other);
  return DAG.getNode(ISD::MERGE_VALUES, Tys, ResultVal, cpOutH.getValue(1)).Val;
}

SDNode* X86TargetLowering::ExpandATOMIC_LSS(SDNode* Op, SelectionDAG &DAG) {
  MVT T = cast<AtomicSDNode>(Op)->getVT();
  assert (T == MVT::i32 && "Only know how to expand i32 LSS");
  SDOperand negOp = DAG.getNode(ISD::SUB, T,
                                DAG.getConstant(0, T), Op->getOperand(2));
  return DAG.getAtomic(ISD::ATOMIC_LAS, Op->getOperand(0),
                       Op->getOperand(1), negOp, T).Val;
}

/// LowerOperation - Provide custom lowering hooks for some operations.
///
SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
  switch (Op.getOpcode()) {
  default: assert(0 && "Should not custom lower this!");
  case ISD::ATOMIC_LCS:         return LowerLCS(Op,DAG);
  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
  case ISD::SHL_PARTS:
  case ISD::SRA_PARTS:
  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
  case ISD::FABS:               return LowerFABS(Op, DAG);
  case ISD::FNEG:               return LowerFNEG(Op, DAG);
  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
  case ISD::SETCC:              return LowerSETCC(Op, DAG);
  case ISD::SELECT:             return LowerSELECT(Op, DAG);
  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
  case ISD::CALL:               return LowerCALL(Op, DAG);
  case ISD::RET:                return LowerRET(Op, DAG);
  case ISD::FORMAL_ARGUMENTS:   return LowerFORMAL_ARGUMENTS(Op, DAG);
  case ISD::VASTART:            return LowerVASTART(Op, DAG);
  case ISD::VAARG:              return LowerVAARG(Op, DAG);
  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
  case ISD::FRAME_TO_ARGS_OFFSET:
                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
      
  // FIXME: REMOVE THIS WHEN LegalizeDAGTypes lands.
  case ISD::READCYCLECOUNTER:
    return SDOperand(ExpandREADCYCLECOUNTER(Op.Val, DAG), 0);
  }
}

/// ExpandOperation - Provide custom lowering hooks for expanding operations.
SDNode *X86TargetLowering::ExpandOperationResult(SDNode *N, SelectionDAG &DAG) {
  switch (N->getOpcode()) {
  default: assert(0 && "Should not custom lower this!");
  case ISD::FP_TO_SINT:         return ExpandFP_TO_SINT(N, DAG);
  case ISD::READCYCLECOUNTER:   return ExpandREADCYCLECOUNTER(N, DAG);
  case ISD::ATOMIC_LCS:         return ExpandATOMIC_LCS(N, DAG);
  case ISD::ATOMIC_LSS:         return ExpandATOMIC_LSS(N,DAG);
  }
}

const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
  switch (Opcode) {
  default: return NULL;
  case X86ISD::BSF:                return "X86ISD::BSF";
  case X86ISD::BSR:                return "X86ISD::BSR";
  case X86ISD::SHLD:               return "X86ISD::SHLD";
  case X86ISD::SHRD:               return "X86ISD::SHRD";
  case X86ISD::FAND:               return "X86ISD::FAND";
  case X86ISD::FOR:                return "X86ISD::FOR";
  case X86ISD::FXOR:               return "X86ISD::FXOR";
  case X86ISD::FSRL:               return "X86ISD::FSRL";
  case X86ISD::FILD:               return "X86ISD::FILD";
  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
  case X86ISD::FLD:                return "X86ISD::FLD";
  case X86ISD::FST:                return "X86ISD::FST";
  case X86ISD::CALL:               return "X86ISD::CALL";
  case X86ISD::TAILCALL:           return "X86ISD::TAILCALL";
  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
  case X86ISD::CMP:                return "X86ISD::CMP";
  case X86ISD::COMI:               return "X86ISD::COMI";
  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
  case X86ISD::SETCC:              return "X86ISD::SETCC";
  case X86ISD::CMOV:               return "X86ISD::CMOV";
  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
  case X86ISD::FMAX:               return "X86ISD::FMAX";
  case X86ISD::FMIN:               return "X86ISD::FMIN";
  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
  case X86ISD::FRCP:               return "X86ISD::FRCP";
  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
  case X86ISD::THREAD_POINTER:     return "X86ISD::THREAD_POINTER";
  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
  case X86ISD::VSHL:               return "X86ISD::VSHL";
  case X86ISD::VSRL:               return "X86ISD::VSRL";
  }
}

// isLegalAddressingMode - Return true if the addressing mode represented
// by AM is legal for this target, for a load/store of the specified type.
bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM, 
                                              const Type *Ty) const {
  // X86 supports extremely general addressing modes.
  
  // X86 allows a sign-extended 32-bit immediate field as a displacement.
  if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1)
    return false;
  
  if (AM.BaseGV) {
    // We can only fold this if we don't need an extra load.
    if (Subtarget->GVRequiresExtraLoad(AM.BaseGV, getTargetMachine(), false))
      return false;

    // X86-64 only supports addr of globals in small code model.
    if (Subtarget->is64Bit()) {
      if (getTargetMachine().getCodeModel() != CodeModel::Small)
        return false;
      // If lower 4G is not available, then we must use rip-relative addressing.
      if (AM.BaseOffs || AM.Scale > 1)
        return false;
    }
  }
  
  switch (AM.Scale) {
  case 0:
  case 1:
  case 2:
  case 4:
  case 8:
    // These scales always work.
    break;
  case 3:
  case 5:
  case 9:
    // These scales are formed with basereg+scalereg.  Only accept if there is
    // no basereg yet.
    if (AM.HasBaseReg)
      return false;
    break;
  default:  // Other stuff never works.
    return false;
  }
  
  return true;
}


bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
  if (!Ty1->isInteger() || !Ty2->isInteger())
    return false;
  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
  if (NumBits1 <= NumBits2)
    return false;
  return Subtarget->is64Bit() || NumBits1 < 64;
}

bool X86TargetLowering::isTruncateFree(MVT VT1, MVT VT2) const {
  if (!VT1.isInteger() || !VT2.isInteger())
    return false;
  unsigned NumBits1 = VT1.getSizeInBits();
  unsigned NumBits2 = VT2.getSizeInBits();
  if (NumBits1 <= NumBits2)
    return false;
  return Subtarget->is64Bit() || NumBits1 < 64;
}

/// isShuffleMaskLegal - Targets can use this to indicate that they only
/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
/// are assumed to be legal.
bool
X86TargetLowering::isShuffleMaskLegal(SDOperand Mask, MVT VT) const {
  // Only do shuffles on 128-bit vector types for now.
  if (VT.getSizeInBits() == 64) return false;
  return (Mask.Val->getNumOperands() <= 4 ||
          isIdentityMask(Mask.Val) ||
          isIdentityMask(Mask.Val, true) ||
          isSplatMask(Mask.Val)  ||
          isPSHUFHW_PSHUFLWMask(Mask.Val) ||
          X86::isUNPCKLMask(Mask.Val) ||
          X86::isUNPCKHMask(Mask.Val) ||
          X86::isUNPCKL_v_undef_Mask(Mask.Val) ||
          X86::isUNPCKH_v_undef_Mask(Mask.Val));
}

bool
X86TargetLowering::isVectorClearMaskLegal(const std::vector<SDOperand> &BVOps,
                                          MVT EVT, SelectionDAG &DAG) const {
  unsigned NumElts = BVOps.size();
  // Only do shuffles on 128-bit vector types for now.
  if (EVT.getSizeInBits() * NumElts == 64) return false;
  if (NumElts == 2) return true;
  if (NumElts == 4) {
    return (isMOVLMask(&BVOps[0], 4)  ||
            isCommutedMOVL(&BVOps[0], 4, true) ||
            isSHUFPMask(&BVOps[0], 4) || 
            isCommutedSHUFP(&BVOps[0], 4));
  }
  return false;
}

//===----------------------------------------------------------------------===//
//                           X86 Scheduler Hooks
//===----------------------------------------------------------------------===//

// private utility function
MachineBasicBlock *
X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
                                                       MachineBasicBlock *MBB,
                                                       unsigned regOpc,
                                                       unsigned immOpc,
                                                       bool invSrc) {
  // For the atomic bitwise operator, we generate
  //   thisMBB:
  //   newMBB:
  //     ld  t1 = [bitinstr.addr]
  //     op  t2 = t1, [bitinstr.val]
  //     mov EAX = t1
  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
  //     bz  newMBB
  //     fallthrough -->nextMBB
  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
  ilist<MachineBasicBlock>::iterator MBBIter = MBB;
  ++MBBIter;
  
  /// First build the CFG
  MachineFunction *F = MBB->getParent();
  MachineBasicBlock *thisMBB = MBB;
  MachineBasicBlock *newMBB = new MachineBasicBlock(LLVM_BB);
  MachineBasicBlock *nextMBB = new MachineBasicBlock(LLVM_BB);
  F->getBasicBlockList().insert(MBBIter, newMBB);
  F->getBasicBlockList().insert(MBBIter, nextMBB);
  
  // Move all successors to thisMBB to nextMBB
  nextMBB->transferSuccessors(thisMBB);
    
  // Update thisMBB to fall through to newMBB
  thisMBB->addSuccessor(newMBB);
  
  // newMBB jumps to itself and fall through to nextMBB
  newMBB->addSuccessor(nextMBB);
  newMBB->addSuccessor(newMBB);
  
  // Insert instructions into newMBB based on incoming instruction
  assert(bInstr->getNumOperands() < 8 && "unexpected number of operands");
  MachineOperand& destOper = bInstr->getOperand(0);
  MachineOperand* argOpers[6];
  int numArgs = bInstr->getNumOperands() - 1;
  for (int i=0; i < numArgs; ++i)
    argOpers[i] = &bInstr->getOperand(i+1);

  // x86 address has 4 operands: base, index, scale, and displacement
  int lastAddrIndx = 3; // [0,3]
  int valArgIndx = 4;
  
  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
  MachineInstrBuilder MIB = BuildMI(newMBB, TII->get(X86::MOV32rm), t1);
  for (int i=0; i <= lastAddrIndx; ++i)
    (*MIB).addOperand(*argOpers[i]);

  unsigned tt = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
  if (invSrc) {
    MIB = BuildMI(newMBB, TII->get(X86::NOT32r), tt).addReg(t1);
  }
  else 
    tt = t1;

  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
  assert(   (argOpers[valArgIndx]->isReg() || argOpers[valArgIndx]->isImm())
         && "invalid operand");
  if (argOpers[valArgIndx]->isReg())
    MIB = BuildMI(newMBB, TII->get(regOpc), t2);
  else
    MIB = BuildMI(newMBB, TII->get(immOpc), t2);
  MIB.addReg(tt);
  (*MIB).addOperand(*argOpers[valArgIndx]);

  MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), X86::EAX);
  MIB.addReg(t1);
  
  MIB = BuildMI(newMBB, TII->get(X86::LCMPXCHG32));
  for (int i=0; i <= lastAddrIndx; ++i)
    (*MIB).addOperand(*argOpers[i]);
  MIB.addReg(t2);
  
  MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), destOper.getReg());
  MIB.addReg(X86::EAX);
  
  // insert branch
  BuildMI(newMBB, TII->get(X86::JNE)).addMBB(newMBB);

  delete bInstr;   // The pseudo instruction is gone now.
  return nextMBB;
}

// private utility function
MachineBasicBlock *
X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
                                                      MachineBasicBlock *MBB,
                                                      unsigned cmovOpc) {
  // For the atomic min/max operator, we generate
  //   thisMBB:
  //   newMBB:
  //     ld t1 = [min/max.addr]
  //     mov t2 = [min/max.val] 
  //     cmp  t1, t2
  //     cmov[cond] t2 = t1
  //     mov EAX = t1
  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
  //     bz   newMBB
  //     fallthrough -->nextMBB
  //
  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
  ilist<MachineBasicBlock>::iterator MBBIter = MBB;
  ++MBBIter;
  
  /// First build the CFG
  MachineFunction *F = MBB->getParent();
  MachineBasicBlock *thisMBB = MBB;
  MachineBasicBlock *newMBB = new MachineBasicBlock(LLVM_BB);
  MachineBasicBlock *nextMBB = new MachineBasicBlock(LLVM_BB);
  F->getBasicBlockList().insert(MBBIter, newMBB);
  F->getBasicBlockList().insert(MBBIter, nextMBB);
  
  // Move all successors to thisMBB to nextMBB
  nextMBB->transferSuccessors(thisMBB);
  
  // Update thisMBB to fall through to newMBB
  thisMBB->addSuccessor(newMBB);
  
  // newMBB jumps to newMBB and fall through to nextMBB
  newMBB->addSuccessor(nextMBB);
  newMBB->addSuccessor(newMBB);
  
  // Insert instructions into newMBB based on incoming instruction
  assert(mInstr->getNumOperands() < 8 && "unexpected number of operands");
  MachineOperand& destOper = mInstr->getOperand(0);
  MachineOperand* argOpers[6];
  int numArgs = mInstr->getNumOperands() - 1;
  for (int i=0; i < numArgs; ++i)
    argOpers[i] = &mInstr->getOperand(i+1);
  
  // x86 address has 4 operands: base, index, scale, and displacement
  int lastAddrIndx = 3; // [0,3]
  int valArgIndx = 4;
  
  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
  MachineInstrBuilder MIB = BuildMI(newMBB, TII->get(X86::MOV32rm), t1);
  for (int i=0; i <= lastAddrIndx; ++i)
    (*MIB).addOperand(*argOpers[i]);

  // We only support register and immediate values
  assert(   (argOpers[valArgIndx]->isReg() || argOpers[valArgIndx]->isImm())
         && "invalid operand");
  
  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);  
  if (argOpers[valArgIndx]->isReg())
    MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), t2);
  else 
    MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), t2);
  (*MIB).addOperand(*argOpers[valArgIndx]);

  MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), X86::EAX);
  MIB.addReg(t1);

  MIB = BuildMI(newMBB, TII->get(X86::CMP32rr));
  MIB.addReg(t1);
  MIB.addReg(t2);

  // Generate movc
  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
  MIB = BuildMI(newMBB, TII->get(cmovOpc),t3);
  MIB.addReg(t2);
  MIB.addReg(t1);

  // Cmp and exchange if none has modified the memory location
  MIB = BuildMI(newMBB, TII->get(X86::LCMPXCHG32));
  for (int i=0; i <= lastAddrIndx; ++i)
    (*MIB).addOperand(*argOpers[i]);
  MIB.addReg(t3);
  
  MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), destOper.getReg());
  MIB.addReg(X86::EAX);
  
  // insert branch
  BuildMI(newMBB, TII->get(X86::JNE)).addMBB(newMBB);

  delete mInstr;   // The pseudo instruction is gone now.
  return nextMBB;
}


MachineBasicBlock *
X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
                                               MachineBasicBlock *BB) {
  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
  switch (MI->getOpcode()) {
  default: assert(false && "Unexpected instr type to insert");
  case X86::CMOV_FR32:
  case X86::CMOV_FR64:
  case X86::CMOV_V4F32:
  case X86::CMOV_V2F64:
  case X86::CMOV_V2I64: {
    // To "insert" a SELECT_CC instruction, we actually have to insert the
    // diamond control-flow pattern.  The incoming instruction knows the
    // destination vreg to set, the condition code register to branch on, the
    // true/false values to select between, and a branch opcode to use.
    const BasicBlock *LLVM_BB = BB->getBasicBlock();
    ilist<MachineBasicBlock>::iterator It = BB;
    ++It;

    //  thisMBB:
    //  ...
    //   TrueVal = ...
    //   cmpTY ccX, r1, r2
    //   bCC copy1MBB
    //   fallthrough --> copy0MBB
    MachineBasicBlock *thisMBB = BB;
    MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
    MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
    unsigned Opc =
      X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
    BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB);
    MachineFunction *F = BB->getParent();
    F->getBasicBlockList().insert(It, copy0MBB);
    F->getBasicBlockList().insert(It, sinkMBB);
    // Update machine-CFG edges by transferring all successors of the current
    // block to the new block which will contain the Phi node for the select.
    sinkMBB->transferSuccessors(BB);

    // Add the true and fallthrough blocks as its successors.
    BB->addSuccessor(copy0MBB);
    BB->addSuccessor(sinkMBB);

    //  copy0MBB:
    //   %FalseValue = ...
    //   # fallthrough to sinkMBB
    BB = copy0MBB;

    // Update machine-CFG edges
    BB->addSuccessor(sinkMBB);

    //  sinkMBB:
    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
    //  ...
    BB = sinkMBB;
    BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg())
      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);

    delete MI;   // The pseudo instruction is gone now.
    return BB;
  }

  case X86::FP32_TO_INT16_IN_MEM:
  case X86::FP32_TO_INT32_IN_MEM:
  case X86::FP32_TO_INT64_IN_MEM:
  case X86::FP64_TO_INT16_IN_MEM:
  case X86::FP64_TO_INT32_IN_MEM:
  case X86::FP64_TO_INT64_IN_MEM:
  case X86::FP80_TO_INT16_IN_MEM:
  case X86::FP80_TO_INT32_IN_MEM:
  case X86::FP80_TO_INT64_IN_MEM: {
    // Change the floating point control register to use "round towards zero"
    // mode when truncating to an integer value.
    MachineFunction *F = BB->getParent();
    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
    addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx);

    // Load the old value of the high byte of the control word...
    unsigned OldCW =
      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
    addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx);

    // Set the high part to be round to zero...
    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx)
      .addImm(0xC7F);

    // Reload the modified control word now...
    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);

    // Restore the memory image of control word to original value
    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx)
      .addReg(OldCW);

    // Get the X86 opcode to use.
    unsigned Opc;
    switch (MI->getOpcode()) {
    default: assert(0 && "illegal opcode!");
    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
    }

    X86AddressMode AM;
    MachineOperand &Op = MI->getOperand(0);
    if (Op.isRegister()) {
      AM.BaseType = X86AddressMode::RegBase;
      AM.Base.Reg = Op.getReg();
    } else {
      AM.BaseType = X86AddressMode::FrameIndexBase;
      AM.Base.FrameIndex = Op.getIndex();
    }
    Op = MI->getOperand(1);
    if (Op.isImmediate())
      AM.Scale = Op.getImm();
    Op = MI->getOperand(2);
    if (Op.isImmediate())
      AM.IndexReg = Op.getImm();
    Op = MI->getOperand(3);
    if (Op.isGlobalAddress()) {
      AM.GV = Op.getGlobal();
    } else {
      AM.Disp = Op.getImm();
    }
    addFullAddress(BuildMI(BB, TII->get(Opc)), AM)
                      .addReg(MI->getOperand(4).getReg());

    // Reload the original control word now.
    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);

    delete MI;   // The pseudo instruction is gone now.
    return BB;
  }
  case X86::ATOMAND32:
    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
                                                       X86::AND32ri);
  case X86::ATOMOR32:
    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr, 
                                                       X86::OR32ri);
  case X86::ATOMXOR32:
    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
                                                       X86::XOR32ri);
  case X86::ATOMNAND32:
    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
                                               X86::AND32ri, true);
  case X86::ATOMMIN32:
    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
  case X86::ATOMMAX32:
    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
  case X86::ATOMUMIN32:
    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
  case X86::ATOMUMAX32:
    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
  }
}

//===----------------------------------------------------------------------===//
//                           X86 Optimization Hooks
//===----------------------------------------------------------------------===//

void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
                                                       const APInt &Mask,
                                                       APInt &KnownZero,
                                                       APInt &KnownOne,
                                                       const SelectionDAG &DAG,
                                                       unsigned Depth) const {
  unsigned Opc = Op.getOpcode();
  assert((Opc >= ISD::BUILTIN_OP_END ||
          Opc == ISD::INTRINSIC_WO_CHAIN ||
          Opc == ISD::INTRINSIC_W_CHAIN ||
          Opc == ISD::INTRINSIC_VOID) &&
         "Should use MaskedValueIsZero if you don't know whether Op"
         " is a target node!");

  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
  switch (Opc) {
  default: break;
  case X86ISD::SETCC:
    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
                                       Mask.getBitWidth() - 1);
    break;
  }
}

/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
/// node is a GlobalAddress + offset.
bool X86TargetLowering::isGAPlusOffset(SDNode *N,
                                       GlobalValue* &GA, int64_t &Offset) const{
  if (N->getOpcode() == X86ISD::Wrapper) {
    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
      return true;
    }
  }
  return TargetLowering::isGAPlusOffset(N, GA, Offset);
}

static bool isBaseAlignmentOfN(unsigned N, SDNode *Base,
                               const TargetLowering &TLI) {
  GlobalValue *GV;
  int64_t Offset = 0;
  if (TLI.isGAPlusOffset(Base, GV, Offset))
    return (GV->getAlignment() >= N && (Offset % N) == 0);
  // DAG combine handles the stack object case.
  return false;
}

static bool EltsFromConsecutiveLoads(SDNode *N, SDOperand PermMask,
                                     unsigned NumElems, MVT EVT,
                                     SDNode *&Base,
                                     SelectionDAG &DAG, MachineFrameInfo *MFI,
                                     const TargetLowering &TLI) {
  Base = NULL;
  for (unsigned i = 0; i < NumElems; ++i) {
    SDOperand Idx = PermMask.getOperand(i);
    if (Idx.getOpcode() == ISD::UNDEF) {
      if (!Base)
        return false;
      continue;
    }

    unsigned Index = cast<ConstantSDNode>(Idx)->getValue();
    SDOperand Elt = DAG.getShuffleScalarElt(N, Index);
    if (!Elt.Val ||
        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.Val)))
      return false;
    if (!Base) {
      Base = Elt.Val;
      if (Base->getOpcode() == ISD::UNDEF)
        return false;
      continue;
    }
    if (Elt.getOpcode() == ISD::UNDEF)
      continue;

    if (!TLI.isConsecutiveLoad(Elt.Val, Base,
                               EVT.getSizeInBits()/8, i, MFI))
      return false;
  }
  return true;
}

/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
/// if the load addresses are consecutive, non-overlapping, and in the right
/// order.
static SDOperand PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
                                       const TargetLowering &TLI) {
  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
  MVT VT = N->getValueType(0);
  MVT EVT = VT.getVectorElementType();
  SDOperand PermMask = N->getOperand(2);
  unsigned NumElems = PermMask.getNumOperands();
  SDNode *Base = NULL;
  if (!EltsFromConsecutiveLoads(N, PermMask, NumElems, EVT, Base,
                                DAG, MFI, TLI))
    return SDOperand();

  LoadSDNode *LD = cast<LoadSDNode>(Base);
  if (isBaseAlignmentOfN(16, Base->getOperand(1).Val, TLI))
    return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
                       LD->getSrcValueOffset(), LD->isVolatile());
  return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
                     LD->getSrcValueOffset(), LD->isVolatile(),
                     LD->getAlignment());
}

/// PerformBuildVectorCombine - build_vector 0,(load i64 / f64) -> movq / movsd.
static SDOperand PerformBuildVectorCombine(SDNode *N, SelectionDAG &DAG,
                                           const X86Subtarget *Subtarget,
                                           const TargetLowering &TLI) {
  unsigned NumOps = N->getNumOperands();

  // Ignore single operand BUILD_VECTOR.
  if (NumOps == 1)
    return SDOperand();

  MVT VT = N->getValueType(0);
  MVT EVT = VT.getVectorElementType();
  if ((EVT != MVT::i64 && EVT != MVT::f64) || Subtarget->is64Bit())
    // We are looking for load i64 and zero extend. We want to transform
    // it before legalizer has a chance to expand it. Also look for i64
    // BUILD_PAIR bit casted to f64.
    return SDOperand();
  // This must be an insertion into a zero vector.
  SDOperand HighElt = N->getOperand(1);
  if (!isZeroNode(HighElt))
    return SDOperand();

  // Value must be a load.
  SDNode *Base = N->getOperand(0).Val;
  if (!isa<LoadSDNode>(Base)) {
    if (Base->getOpcode() != ISD::BIT_CONVERT)
      return SDOperand();
    Base = Base->getOperand(0).Val;
    if (!isa<LoadSDNode>(Base))
      return SDOperand();
  }

  // Transform it into VZEXT_LOAD addr.
  LoadSDNode *LD = cast<LoadSDNode>(Base);
  
  // Load must not be an extload.
  if (LD->getExtensionType() != ISD::NON_EXTLOAD)
    return SDOperand();
  
  return DAG.getNode(X86ISD::VZEXT_LOAD, VT, LD->getChain(), LD->getBasePtr());
}                                           

/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
static SDOperand PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
                                      const X86Subtarget *Subtarget) {
  SDOperand Cond = N->getOperand(0);

  // If we have SSE[12] support, try to form min/max nodes.
  if (Subtarget->hasSSE2() &&
      (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) {
    if (Cond.getOpcode() == ISD::SETCC) {
      // Get the LHS/RHS of the select.
      SDOperand LHS = N->getOperand(1);
      SDOperand RHS = N->getOperand(2);
      ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();

      unsigned Opcode = 0;
      if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
        switch (CC) {
        default: break;
        case ISD::SETOLE: // (X <= Y) ? X : Y -> min
        case ISD::SETULE:
        case ISD::SETLE:
          if (!UnsafeFPMath) break;
          // FALL THROUGH.
        case ISD::SETOLT:  // (X olt/lt Y) ? X : Y -> min
        case ISD::SETLT:
          Opcode = X86ISD::FMIN;
          break;

        case ISD::SETOGT: // (X > Y) ? X : Y -> max
        case ISD::SETUGT:
        case ISD::SETGT:
          if (!UnsafeFPMath) break;
          // FALL THROUGH.
        case ISD::SETUGE:  // (X uge/ge Y) ? X : Y -> max
        case ISD::SETGE:
          Opcode = X86ISD::FMAX;
          break;
        }
      } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
        switch (CC) {
        default: break;
        case ISD::SETOGT: // (X > Y) ? Y : X -> min
        case ISD::SETUGT:
        case ISD::SETGT:
          if (!UnsafeFPMath) break;
          // FALL THROUGH.
        case ISD::SETUGE:  // (X uge/ge Y) ? Y : X -> min
        case ISD::SETGE:
          Opcode = X86ISD::FMIN;
          break;

        case ISD::SETOLE:   // (X <= Y) ? Y : X -> max
        case ISD::SETULE:
        case ISD::SETLE:
          if (!UnsafeFPMath) break;
          // FALL THROUGH.
        case ISD::SETOLT:   // (X olt/lt Y) ? Y : X -> max
        case ISD::SETLT:
          Opcode = X86ISD::FMAX;
          break;
        }
      }

      if (Opcode)
        return DAG.getNode(Opcode, N->getValueType(0), LHS, RHS);
    }

  }

  return SDOperand();
}

/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
static SDOperand PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
                                     const X86Subtarget *Subtarget) {
  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
  // the FP state in cases where an emms may be missing.
  // A preferable solution to the general problem is to figure out the right
  // places to insert EMMS.  This qualifies as a quick hack.
  StoreSDNode *St = cast<StoreSDNode>(N);
  if (St->getValue().getValueType().isVector() &&
      St->getValue().getValueType().getSizeInBits() == 64 &&
      isa<LoadSDNode>(St->getValue()) &&
      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
      St->getChain().hasOneUse() && !St->isVolatile()) {
    SDNode* LdVal = St->getValue().Val;
    LoadSDNode *Ld = 0;
    int TokenFactorIndex = -1;
    SmallVector<SDOperand, 8> Ops;
    SDNode* ChainVal = St->getChain().Val;
    // Must be a store of a load.  We currently handle two cases:  the load
    // is a direct child, and it's under an intervening TokenFactor.  It is
    // possible to dig deeper under nested TokenFactors.
    if (ChainVal == LdVal)
      Ld = cast<LoadSDNode>(St->getChain());
    else if (St->getValue().hasOneUse() &&
             ChainVal->getOpcode() == ISD::TokenFactor) {
      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
        if (ChainVal->getOperand(i).Val == LdVal) {
          TokenFactorIndex = i;
          Ld = cast<LoadSDNode>(St->getValue());
        } else
          Ops.push_back(ChainVal->getOperand(i));
      }
    }
    if (Ld) {
      // If we are a 64-bit capable x86, lower to a single movq load/store pair.
      if (Subtarget->is64Bit()) {
        SDOperand NewLd = DAG.getLoad(MVT::i64, Ld->getChain(), 
                                      Ld->getBasePtr(), Ld->getSrcValue(), 
                                      Ld->getSrcValueOffset(), Ld->isVolatile(),
                                      Ld->getAlignment());
        SDOperand NewChain = NewLd.getValue(1);
        if (TokenFactorIndex != -1) {
          Ops.push_back(NewChain);
          NewChain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Ops[0], 
                                 Ops.size());
        }
        return DAG.getStore(NewChain, NewLd, St->getBasePtr(),
                            St->getSrcValue(), St->getSrcValueOffset(),
                            St->isVolatile(), St->getAlignment());
      }

      // Otherwise, lower to two 32-bit copies.
      SDOperand LoAddr = Ld->getBasePtr();
      SDOperand HiAddr = DAG.getNode(ISD::ADD, MVT::i32, LoAddr,
                                     DAG.getConstant(4, MVT::i32));

      SDOperand LoLd = DAG.getLoad(MVT::i32, Ld->getChain(), LoAddr,
                                   Ld->getSrcValue(), Ld->getSrcValueOffset(),
                                   Ld->isVolatile(), Ld->getAlignment());
      SDOperand HiLd = DAG.getLoad(MVT::i32, Ld->getChain(), HiAddr,
                                   Ld->getSrcValue(), Ld->getSrcValueOffset()+4,
                                   Ld->isVolatile(), 
                                   MinAlign(Ld->getAlignment(), 4));

      SDOperand NewChain = LoLd.getValue(1);
      if (TokenFactorIndex != -1) {
        Ops.push_back(LoLd);
        Ops.push_back(HiLd);
        NewChain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Ops[0], 
                               Ops.size());
      }

      LoAddr = St->getBasePtr();
      HiAddr = DAG.getNode(ISD::ADD, MVT::i32, LoAddr,
                           DAG.getConstant(4, MVT::i32));

      SDOperand LoSt = DAG.getStore(NewChain, LoLd, LoAddr,
                          St->getSrcValue(), St->getSrcValueOffset(),
                          St->isVolatile(), St->getAlignment());
      SDOperand HiSt = DAG.getStore(NewChain, HiLd, HiAddr,
                                    St->getSrcValue(), St->getSrcValueOffset()+4,
                                    St->isVolatile(), 
                                    MinAlign(St->getAlignment(), 4));
      return DAG.getNode(ISD::TokenFactor, MVT::Other, LoSt, HiSt);
    }
  }
  return SDOperand();
}

/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
/// X86ISD::FXOR nodes.
static SDOperand PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
  // F[X]OR(0.0, x) -> x
  // F[X]OR(x, 0.0) -> x
  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
    if (C->getValueAPF().isPosZero())
      return N->getOperand(1);
  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
    if (C->getValueAPF().isPosZero())
      return N->getOperand(0);
  return SDOperand();
}

/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
static SDOperand PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
  // FAND(0.0, x) -> 0.0
  // FAND(x, 0.0) -> 0.0
  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
    if (C->getValueAPF().isPosZero())
      return N->getOperand(0);
  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
    if (C->getValueAPF().isPosZero())
      return N->getOperand(1);
  return SDOperand();
}


SDOperand X86TargetLowering::PerformDAGCombine(SDNode *N,
                                               DAGCombinerInfo &DCI) const {
  SelectionDAG &DAG = DCI.DAG;
  switch (N->getOpcode()) {
  default: break;
  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
  case ISD::BUILD_VECTOR:
    return PerformBuildVectorCombine(N, DAG, Subtarget, *this);
  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
  case X86ISD::FXOR:
  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
  }

  return SDOperand();
}

//===----------------------------------------------------------------------===//
//                           X86 Inline Assembly Support
//===----------------------------------------------------------------------===//

/// getConstraintType - Given a constraint letter, return the type of
/// constraint it is for this target.
X86TargetLowering::ConstraintType
X86TargetLowering::getConstraintType(const std::string &Constraint) const {
  if (Constraint.size() == 1) {
    switch (Constraint[0]) {
    case 'A':
    case 'f':
    case 'r':
    case 'R':
    case 'l':
    case 'q':
    case 'Q':
    case 'x':
    case 'y':
    case 'Y':
      return C_RegisterClass;
    default:
      break;
    }
  }
  return TargetLowering::getConstraintType(Constraint);
}

/// LowerXConstraint - try to replace an X constraint, which matches anything,
/// with another that has more specific requirements based on the type of the
/// corresponding operand.
const char *X86TargetLowering::
LowerXConstraint(MVT ConstraintVT) const {
  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
  // 'f' like normal targets.
  if (ConstraintVT.isFloatingPoint()) {
    if (Subtarget->hasSSE2())
      return "Y";
    if (Subtarget->hasSSE1())
      return "x";
  }
  
  return TargetLowering::LowerXConstraint(ConstraintVT);
}

/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
/// vector.  If it is invalid, don't add anything to Ops.
void X86TargetLowering::LowerAsmOperandForConstraint(SDOperand Op,
                                                     char Constraint,
                                                     std::vector<SDOperand>&Ops,
                                                     SelectionDAG &DAG) const {
  SDOperand Result(0, 0);
  
  switch (Constraint) {
  default: break;
  case 'I':
    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
      if (C->getValue() <= 31) {
        Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
        break;
      }
    }
    return;
  case 'N':
    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
      if (C->getValue() <= 255) {
        Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
        break;
      }
    }
    return;
  case 'i': {
    // Literal immediates are always ok.
    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
      Result = DAG.getTargetConstant(CST->getValue(), Op.getValueType());
      break;
    }

    // If we are in non-pic codegen mode, we allow the address of a global (with
    // an optional displacement) to be used with 'i'.
    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
    int64_t Offset = 0;
    
    // Match either (GA) or (GA+C)
    if (GA) {
      Offset = GA->getOffset();
    } else if (Op.getOpcode() == ISD::ADD) {
      ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
      if (C && GA) {
        Offset = GA->getOffset()+C->getValue();
      } else {
        C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
        if (C && GA)
          Offset = GA->getOffset()+C->getValue();
        else
          C = 0, GA = 0;
      }
    }
    
    if (GA) {
      // If addressing this global requires a load (e.g. in PIC mode), we can't
      // match.
      if (Subtarget->GVRequiresExtraLoad(GA->getGlobal(), getTargetMachine(),
                                         false))
        return;

      Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
                                      Offset);
      Result = Op;
      break;
    }

    // Otherwise, not valid for this mode.
    return;
  }
  }
  
  if (Result.Val) {
    Ops.push_back(Result);
    return;
  }
  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
}

std::vector<unsigned> X86TargetLowering::
getRegClassForInlineAsmConstraint(const std::string &Constraint,
                                  MVT VT) const {
  if (Constraint.size() == 1) {
    // FIXME: not handling fp-stack yet!
    switch (Constraint[0]) {      // GCC X86 Constraint Letters
    default: break;  // Unknown constraint letter
    case 'A':   // EAX/EDX
      if (VT == MVT::i32 || VT == MVT::i64)
        return make_vector<unsigned>(X86::EAX, X86::EDX, 0);
      break;
    case 'q':   // Q_REGS (GENERAL_REGS in 64-bit mode)
    case 'Q':   // Q_REGS
      if (VT == MVT::i32)
        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
      else if (VT == MVT::i16)
        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
      else if (VT == MVT::i8)
        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
      else if (VT == MVT::i64)
        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
      break;
    }
  }

  return std::vector<unsigned>();
}

std::pair<unsigned, const TargetRegisterClass*>
X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
                                                MVT VT) const {
  // First, see if this is a constraint that directly corresponds to an LLVM
  // register class.
  if (Constraint.size() == 1) {
    // GCC Constraint Letters
    switch (Constraint[0]) {
    default: break;
    case 'r':   // GENERAL_REGS
    case 'R':   // LEGACY_REGS
    case 'l':   // INDEX_REGS
      if (VT == MVT::i64 && Subtarget->is64Bit())
        return std::make_pair(0U, X86::GR64RegisterClass);
      if (VT == MVT::i32)
        return std::make_pair(0U, X86::GR32RegisterClass);
      else if (VT == MVT::i16)
        return std::make_pair(0U, X86::GR16RegisterClass);
      else if (VT == MVT::i8)
        return std::make_pair(0U, X86::GR8RegisterClass);
      break;
    case 'f':  // FP Stack registers.
      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
      // value to the correct fpstack register class.
      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
        return std::make_pair(0U, X86::RFP32RegisterClass);
      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
        return std::make_pair(0U, X86::RFP64RegisterClass);
      return std::make_pair(0U, X86::RFP80RegisterClass);
    case 'y':   // MMX_REGS if MMX allowed.
      if (!Subtarget->hasMMX()) break;
      return std::make_pair(0U, X86::VR64RegisterClass);
      break;
    case 'Y':   // SSE_REGS if SSE2 allowed
      if (!Subtarget->hasSSE2()) break;
      // FALL THROUGH.
    case 'x':   // SSE_REGS if SSE1 allowed
      if (!Subtarget->hasSSE1()) break;

      switch (VT.getSimpleVT()) {
      default: break;
      // Scalar SSE types.
      case MVT::f32:
      case MVT::i32:
        return std::make_pair(0U, X86::FR32RegisterClass);
      case MVT::f64:
      case MVT::i64:
        return std::make_pair(0U, X86::FR64RegisterClass);
      // Vector types.
      case MVT::v16i8:
      case MVT::v8i16:
      case MVT::v4i32:
      case MVT::v2i64:
      case MVT::v4f32:
      case MVT::v2f64:
        return std::make_pair(0U, X86::VR128RegisterClass);
      }
      break;
    }
  }
  
  // Use the default implementation in TargetLowering to convert the register
  // constraint into a member of a register class.
  std::pair<unsigned, const TargetRegisterClass*> Res;
  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);

  // Not found as a standard register?
  if (Res.second == 0) {
    // GCC calls "st(0)" just plain "st".
    if (StringsEqualNoCase("{st}", Constraint)) {
      Res.first = X86::ST0;
      Res.second = X86::RFP80RegisterClass;
    }

    return Res;
  }

  // Otherwise, check to see if this is a register class of the wrong value
  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
  // turn into {ax},{dx}.
  if (Res.second->hasType(VT))
    return Res;   // Correct type already, nothing to do.

  // All of the single-register GCC register classes map their values onto
  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
  // really want an 8-bit or 32-bit register, map to the appropriate register
  // class and return the appropriate register.
  if (Res.second != X86::GR16RegisterClass)
    return Res;

  if (VT == MVT::i8) {
    unsigned DestReg = 0;
    switch (Res.first) {
    default: break;
    case X86::AX: DestReg = X86::AL; break;
    case X86::DX: DestReg = X86::DL; break;
    case X86::CX: DestReg = X86::CL; break;
    case X86::BX: DestReg = X86::BL; break;
    }
    if (DestReg) {
      Res.first = DestReg;
      Res.second = Res.second = X86::GR8RegisterClass;
    }
  } else if (VT == MVT::i32) {
    unsigned DestReg = 0;
    switch (Res.first) {
    default: break;
    case X86::AX: DestReg = X86::EAX; break;
    case X86::DX: DestReg = X86::EDX; break;
    case X86::CX: DestReg = X86::ECX; break;
    case X86::BX: DestReg = X86::EBX; break;
    case X86::SI: DestReg = X86::ESI; break;
    case X86::DI: DestReg = X86::EDI; break;
    case X86::BP: DestReg = X86::EBP; break;
    case X86::SP: DestReg = X86::ESP; break;
    }
    if (DestReg) {
      Res.first = DestReg;
      Res.second = Res.second = X86::GR32RegisterClass;
    }
  } else if (VT == MVT::i64) {
    unsigned DestReg = 0;
    switch (Res.first) {
    default: break;
    case X86::AX: DestReg = X86::RAX; break;
    case X86::DX: DestReg = X86::RDX; break;
    case X86::CX: DestReg = X86::RCX; break;
    case X86::BX: DestReg = X86::RBX; break;
    case X86::SI: DestReg = X86::RSI; break;
    case X86::DI: DestReg = X86::RDI; break;
    case X86::BP: DestReg = X86::RBP; break;
    case X86::SP: DestReg = X86::RSP; break;
    }
    if (DestReg) {
      Res.first = DestReg;
      Res.second = Res.second = X86::GR64RegisterClass;
    }
  }

  return Res;
}