aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/X86/X86ISelLowering.h
blob: c8dc30a4f9cb5991c71a9d07735d63137b8b1b17 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
//===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that X86 uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//

#ifndef X86ISELLOWERING_H
#define X86ISELLOWERING_H

#include "X86Subtarget.h"
#include "X86RegisterInfo.h"
#include "X86MachineFunctionInfo.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/CodeGen/FastISel.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/CallingConvLower.h"

namespace llvm {
  namespace X86ISD {
    // X86 Specific DAG Nodes
    enum NodeType {
      // Start the numbering where the builtin ops leave off.
      FIRST_NUMBER = ISD::BUILTIN_OP_END,

      /// BSF - Bit scan forward.
      /// BSR - Bit scan reverse.
      BSF,
      BSR,

      /// SHLD, SHRD - Double shift instructions. These correspond to
      /// X86::SHLDxx and X86::SHRDxx instructions.
      SHLD,
      SHRD,

      /// FAND - Bitwise logical AND of floating point values. This corresponds
      /// to X86::ANDPS or X86::ANDPD.
      FAND,

      /// FOR - Bitwise logical OR of floating point values. This corresponds
      /// to X86::ORPS or X86::ORPD.
      FOR,

      /// FXOR - Bitwise logical XOR of floating point values. This corresponds
      /// to X86::XORPS or X86::XORPD.
      FXOR,

      /// FSRL - Bitwise logical right shift of floating point values. These
      /// corresponds to X86::PSRLDQ.
      FSRL,

      /// FILD, FILD_FLAG - This instruction implements SINT_TO_FP with the
      /// integer source in memory and FP reg result.  This corresponds to the
      /// X86::FILD*m instructions. It has three inputs (token chain, address,
      /// and source type) and two outputs (FP value and token chain). FILD_FLAG
      /// also produces a flag).
      FILD,
      FILD_FLAG,

      /// FP_TO_INT*_IN_MEM - This instruction implements FP_TO_SINT with the
      /// integer destination in memory and a FP reg source.  This corresponds
      /// to the X86::FIST*m instructions and the rounding mode change stuff. It
      /// has two inputs (token chain and address) and two outputs (int value
      /// and token chain).
      FP_TO_INT16_IN_MEM,
      FP_TO_INT32_IN_MEM,
      FP_TO_INT64_IN_MEM,

      /// FLD - This instruction implements an extending load to FP stack slots.
      /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain
      /// operand, ptr to load from, and a ValueType node indicating the type
      /// to load to.
      FLD,

      /// FST - This instruction implements a truncating store to FP stack
      /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a
      /// chain operand, value to store, address, and a ValueType to store it
      /// as.
      FST,

      /// CALL/TAILCALL - These operations represent an abstract X86 call
      /// instruction, which includes a bunch of information.  In particular the
      /// operands of these node are:
      ///
      ///     #0 - The incoming token chain
      ///     #1 - The callee
      ///     #2 - The number of arg bytes the caller pushes on the stack.
      ///     #3 - The number of arg bytes the callee pops off the stack.
      ///     #4 - The value to pass in AL/AX/EAX (optional)
      ///     #5 - The value to pass in DL/DX/EDX (optional)
      ///
      /// The result values of these nodes are:
      ///
      ///     #0 - The outgoing token chain
      ///     #1 - The first register result value (optional)
      ///     #2 - The second register result value (optional)
      ///
      /// The CALL vs TAILCALL distinction boils down to whether the callee is
      /// known not to modify the caller's stack frame, as is standard with
      /// LLVM.
      CALL,
      TAILCALL,
      
      /// RDTSC_DAG - This operation implements the lowering for 
      /// readcyclecounter
      RDTSC_DAG,

      /// X86 compare and logical compare instructions.
      CMP, COMI, UCOMI,

      /// X86 bit-test instructions.
      BT,

      /// X86 SetCC. Operand 1 is condition code, and operand 2 is the flag
      /// operand produced by a CMP instruction.
      SETCC,

      /// X86 conditional moves. Operand 1 and operand 2 are the two values
      /// to select from (operand 1 is a R/W operand). Operand 3 is the
      /// condition code, and operand 4 is the flag operand produced by a CMP
      /// or TEST instruction. It also writes a flag result.
      CMOV,

      /// X86 conditional branches. Operand 1 is the chain operand, operand 2
      /// is the block to branch if condition is true, operand 3 is the
      /// condition code, and operand 4 is the flag operand produced by a CMP
      /// or TEST instruction.
      BRCOND,

      /// Return with a flag operand. Operand 1 is the chain operand, operand
      /// 2 is the number of bytes of stack to pop.
      RET_FLAG,

      /// REP_STOS - Repeat fill, corresponds to X86::REP_STOSx.
      REP_STOS,

      /// REP_MOVS - Repeat move, corresponds to X86::REP_MOVSx.
      REP_MOVS,

      /// GlobalBaseReg - On Darwin, this node represents the result of the popl
      /// at function entry, used for PIC code.
      GlobalBaseReg,

      /// Wrapper - A wrapper node for TargetConstantPool,
      /// TargetExternalSymbol, and TargetGlobalAddress.
      Wrapper,

      /// WrapperRIP - Special wrapper used under X86-64 PIC mode for RIP
      /// relative displacements.
      WrapperRIP,

      /// PEXTRB - Extract an 8-bit value from a vector and zero extend it to
      /// i32, corresponds to X86::PEXTRB.
      PEXTRB,

      /// PEXTRW - Extract a 16-bit value from a vector and zero extend it to
      /// i32, corresponds to X86::PEXTRW.
      PEXTRW,

      /// INSERTPS - Insert any element of a 4 x float vector into any element
      /// of a destination 4 x floatvector.
      INSERTPS,

      /// PINSRB - Insert the lower 8-bits of a 32-bit value to a vector,
      /// corresponds to X86::PINSRB.
      PINSRB,

      /// PINSRW - Insert the lower 16-bits of a 32-bit value to a vector,
      /// corresponds to X86::PINSRW.
      PINSRW,

      /// FMAX, FMIN - Floating point max and min.
      ///
      FMAX, FMIN,

      /// FRSQRT, FRCP - Floating point reciprocal-sqrt and reciprocal
      /// approximation.  Note that these typically require refinement
      /// in order to obtain suitable precision.
      FRSQRT, FRCP,

      // TLSADDR, THREAD_POINTER - Thread Local Storage.
      TLSADDR, THREAD_POINTER,

      // EH_RETURN - Exception Handling helpers.
      EH_RETURN,
      
      /// TC_RETURN - Tail call return.
      ///   operand #0 chain
      ///   operand #1 callee (register or absolute)
      ///   operand #2 stack adjustment
      ///   operand #3 optional in flag
      TC_RETURN,

      // LCMPXCHG_DAG, LCMPXCHG8_DAG - Compare and swap.
      LCMPXCHG_DAG,
      LCMPXCHG8_DAG,

      // ATOMADD64_DAG, ATOMSUB64_DAG, ATOMOR64_DAG, ATOMAND64_DAG, 
      // ATOMXOR64_DAG, ATOMNAND64_DAG, ATOMSWAP64_DAG - 
      // Atomic 64-bit binary operations.
      ATOMADD64_DAG,
      ATOMSUB64_DAG,
      ATOMOR64_DAG,
      ATOMXOR64_DAG,
      ATOMAND64_DAG,
      ATOMNAND64_DAG,
      ATOMSWAP64_DAG,

      // FNSTCW16m - Store FP control world into i16 memory.
      FNSTCW16m,

      // VZEXT_MOVL - Vector move low and zero extend.
      VZEXT_MOVL,

      // VZEXT_LOAD - Load, scalar_to_vector, and zero extend.
      VZEXT_LOAD,

      // VSHL, VSRL - Vector logical left / right shift.
      VSHL, VSRL,
      
      // CMPPD, CMPPS - Vector double/float comparison.
      CMPPD, CMPPS,
      
      // PCMP* - Vector integer comparisons.
      PCMPEQB, PCMPEQW, PCMPEQD, PCMPEQQ,
      PCMPGTB, PCMPGTW, PCMPGTD, PCMPGTQ,

      // ADD, SUB, SMUL, UMUL - Arithmetic operations with overflow/carry
      // intrinsics.
      ADD, SUB, SMUL, UMUL
    };
  }

  /// Define some predicates that are used for node matching.
  namespace X86 {
    /// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
    /// specifies a shuffle of elements that is suitable for input to PSHUFD.
    bool isPSHUFDMask(SDNode *N);

    /// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
    /// specifies a shuffle of elements that is suitable for input to PSHUFD.
    bool isPSHUFHWMask(SDNode *N);

    /// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
    /// specifies a shuffle of elements that is suitable for input to PSHUFD.
    bool isPSHUFLWMask(SDNode *N);

    /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
    /// specifies a shuffle of elements that is suitable for input to SHUFP*.
    bool isSHUFPMask(SDNode *N);

    /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
    /// specifies a shuffle of elements that is suitable for input to MOVHLPS.
    bool isMOVHLPSMask(SDNode *N);

    /// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
    /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
    /// <2, 3, 2, 3>
    bool isMOVHLPS_v_undef_Mask(SDNode *N);

    /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
    /// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
    bool isMOVLPMask(SDNode *N);

    /// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
    /// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
    /// as well as MOVLHPS.
    bool isMOVHPMask(SDNode *N);

    /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
    /// specifies a shuffle of elements that is suitable for input to UNPCKL.
    bool isUNPCKLMask(SDNode *N, bool V2IsSplat = false);

    /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
    /// specifies a shuffle of elements that is suitable for input to UNPCKH.
    bool isUNPCKHMask(SDNode *N, bool V2IsSplat = false);

    /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
    /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
    /// <0, 0, 1, 1>
    bool isUNPCKL_v_undef_Mask(SDNode *N);

    /// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
    /// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
    /// <2, 2, 3, 3>
    bool isUNPCKH_v_undef_Mask(SDNode *N);

    /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
    /// specifies a shuffle of elements that is suitable for input to MOVSS,
    /// MOVSD, and MOVD, i.e. setting the lowest element.
    bool isMOVLMask(SDNode *N);

    /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
    /// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
    bool isMOVSHDUPMask(SDNode *N);

    /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
    /// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
    bool isMOVSLDUPMask(SDNode *N);

    /// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand
    /// specifies a splat of a single element.
    bool isSplatMask(SDNode *N);

    /// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
    /// specifies a splat of zero element.
    bool isSplatLoMask(SDNode *N);

    /// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
    /// specifies a shuffle of elements that is suitable for input to MOVDDUP.
    bool isMOVDDUPMask(SDNode *N);

    /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
    /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
    /// instructions.
    unsigned getShuffleSHUFImmediate(SDNode *N);

    /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
    /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
    /// instructions.
    unsigned getShufflePSHUFHWImmediate(SDNode *N);

    /// getShufflePSHUFKWImmediate - Return the appropriate immediate to shuffle
    /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
    /// instructions.
    unsigned getShufflePSHUFLWImmediate(SDNode *N);
  }

  //===--------------------------------------------------------------------===//
  //  X86TargetLowering - X86 Implementation of the TargetLowering interface
  class X86TargetLowering : public TargetLowering {
    int VarArgsFrameIndex;            // FrameIndex for start of varargs area.
    int RegSaveFrameIndex;            // X86-64 vararg func register save area.
    unsigned VarArgsGPOffset;         // X86-64 vararg func int reg offset.
    unsigned VarArgsFPOffset;         // X86-64 vararg func fp reg offset.
    int BytesToPopOnReturn;           // Number of arg bytes ret should pop.
    int BytesCallerReserves;          // Number of arg bytes caller makes.

  public:
    explicit X86TargetLowering(X86TargetMachine &TM);

    /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
    /// jumptable.
    SDValue getPICJumpTableRelocBase(SDValue Table,
                                       SelectionDAG &DAG) const;

    // Return the number of bytes that a function should pop when it returns (in
    // addition to the space used by the return address).
    //
    unsigned getBytesToPopOnReturn() const { return BytesToPopOnReturn; }

    // Return the number of bytes that the caller reserves for arguments passed
    // to this function.
    unsigned getBytesCallerReserves() const { return BytesCallerReserves; }
 
    /// getStackPtrReg - Return the stack pointer register we are using: either
    /// ESP or RSP.
    unsigned getStackPtrReg() const { return X86StackPtr; }

    /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
    /// function arguments in the caller parameter area. For X86, aggregates
    /// that contains are placed at 16-byte boundaries while the rest are at
    /// 4-byte boundaries.
    virtual unsigned getByValTypeAlignment(const Type *Ty) const;

    /// getOptimalMemOpType - Returns the target specific optimal type for load
    /// and store operations as a result of memset, memcpy, and memmove
    /// lowering. It returns MVT::iAny if SelectionDAG should be responsible for
    /// determining it.
    virtual
    MVT getOptimalMemOpType(uint64_t Size, unsigned Align,
                            bool isSrcConst, bool isSrcStr) const;
    
    /// LowerOperation - Provide custom lowering hooks for some operations.
    ///
    virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG);

    /// ReplaceNodeResults - Replace the results of node with an illegal result
    /// type with new values built out of custom code.
    ///
    virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
                                    SelectionDAG &DAG);

    
    virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;

    virtual MachineBasicBlock *EmitInstrWithCustomInserter(MachineInstr *MI,
                                                        MachineBasicBlock *MBB);

 
    /// getTargetNodeName - This method returns the name of a target specific
    /// DAG node.
    virtual const char *getTargetNodeName(unsigned Opcode) const;

    /// getSetCCResultType - Return the ISD::SETCC ValueType
    virtual MVT getSetCCResultType(MVT VT) const;

    /// computeMaskedBitsForTargetNode - Determine which of the bits specified 
    /// in Mask are known to be either zero or one and return them in the 
    /// KnownZero/KnownOne bitsets.
    virtual void computeMaskedBitsForTargetNode(const SDValue Op,
                                                const APInt &Mask,
                                                APInt &KnownZero, 
                                                APInt &KnownOne,
                                                const SelectionDAG &DAG,
                                                unsigned Depth = 0) const;

    virtual bool
    isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) const;
    
    SDValue getReturnAddressFrameIndex(SelectionDAG &DAG);

    ConstraintType getConstraintType(const std::string &Constraint) const;
     
    std::vector<unsigned> 
      getRegClassForInlineAsmConstraint(const std::string &Constraint,
                                        MVT VT) const;

    virtual const char *LowerXConstraint(MVT ConstraintVT) const;

    /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
    /// vector.  If it is invalid, don't add anything to Ops. If hasMemory is
    /// true it means one of the asm constraint of the inline asm instruction
    /// being processed is 'm'.
    virtual void LowerAsmOperandForConstraint(SDValue Op,
                                              char ConstraintLetter,
                                              bool hasMemory,
                                              std::vector<SDValue> &Ops,
                                              SelectionDAG &DAG) const;
    
    /// getRegForInlineAsmConstraint - Given a physical register constraint
    /// (e.g. {edx}), return the register number and the register class for the
    /// register.  This should only be used for C_Register constraints.  On
    /// error, this returns a register number of 0.
    std::pair<unsigned, const TargetRegisterClass*> 
      getRegForInlineAsmConstraint(const std::string &Constraint,
                                   MVT VT) const;
    
    /// isLegalAddressingMode - Return true if the addressing mode represented
    /// by AM is legal for this target, for a load/store of the specified type.
    virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty)const;

    /// isTruncateFree - Return true if it's free to truncate a value of
    /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
    /// register EAX to i16 by referencing its sub-register AX.
    virtual bool isTruncateFree(const Type *Ty1, const Type *Ty2) const;
    virtual bool isTruncateFree(MVT VT1, MVT VT2) const;
  
    /// isShuffleMaskLegal - Targets can use this to indicate that they only
    /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
    /// By default, if a target supports the VECTOR_SHUFFLE node, all mask
    /// values are assumed to be legal.
    virtual bool isShuffleMaskLegal(SDValue Mask, MVT VT) const;

    /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
    /// used by Targets can use this to indicate if there is a suitable
    /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
    /// pool entry.
    virtual bool isVectorClearMaskLegal(const std::vector<SDValue> &BVOps,
                                        MVT EVT, SelectionDAG &DAG) const;

    /// ShouldShrinkFPConstant - If true, then instruction selection should
    /// seek to shrink the FP constant of the specified type to a smaller type
    /// in order to save space and / or reduce runtime.
    virtual bool ShouldShrinkFPConstant(MVT VT) const {
      // Don't shrink FP constpool if SSE2 is available since cvtss2sd is more
      // expensive than a straight movsd. On the other hand, it's important to
      // shrink long double fp constant since fldt is very slow.
      return !X86ScalarSSEf64 || VT == MVT::f80;
    }
    
    /// IsEligibleForTailCallOptimization - Check whether the call is eligible
    /// for tail call optimization. Target which want to do tail call
    /// optimization should implement this function.
    virtual bool IsEligibleForTailCallOptimization(CallSDNode *TheCall, 
                                                   SDValue Ret, 
                                                   SelectionDAG &DAG) const;

    virtual const X86Subtarget* getSubtarget() {
      return Subtarget;
    }

    /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
    /// computed in an SSE register, not on the X87 floating point stack.
    bool isScalarFPTypeInSSEReg(MVT VT) const {
      return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
      (VT == MVT::f32 && X86ScalarSSEf32);   // f32 is when SSE1
    }

    /// getWidenVectorType: given a vector type, returns the type to widen
    /// to (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
    /// If there is no vector type that we want to widen to, returns MVT::Other
    /// When and were to widen is target dependent based on the cost of
    /// scalarizing vs using the wider vector type.
    virtual MVT getWidenVectorType(MVT VT) const;

    /// createFastISel - This method returns a target specific FastISel object,
    /// or null if the target does not support "fast" ISel.
    virtual FastISel *
    createFastISel(MachineFunction &mf,
                   MachineModuleInfo *mmi, DwarfWriter *dw,
                   DenseMap<const Value *, unsigned> &,
                   DenseMap<const BasicBlock *, MachineBasicBlock *> &,
                   DenseMap<const AllocaInst *, int> &
#ifndef NDEBUG
                   , SmallSet<Instruction*, 8> &
#endif
                   );
    
  private:
    /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
    /// make the right decision when generating code for different targets.
    const X86Subtarget *Subtarget;
    const X86RegisterInfo *RegInfo;
    const TargetData *TD;

    /// X86StackPtr - X86 physical register used as stack ptr.
    unsigned X86StackPtr;
   
    /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87 
    /// floating point ops.
    /// When SSE is available, use it for f32 operations.
    /// When SSE2 is available, use it for f64 operations.
    bool X86ScalarSSEf32;
    bool X86ScalarSSEf64;

    SDNode *LowerCallResult(SDValue Chain, SDValue InFlag, CallSDNode *TheCall,
                            unsigned CallingConv, SelectionDAG &DAG);

    SDValue LowerMemArgument(SDValue Op, SelectionDAG &DAG,
                               const CCValAssign &VA,  MachineFrameInfo *MFI,
                               unsigned CC, SDValue Root, unsigned i);

    SDValue LowerMemOpCallTo(CallSDNode *TheCall, SelectionDAG &DAG,
                               const SDValue &StackPtr,
                               const CCValAssign &VA, SDValue Chain,
                               SDValue Arg, ISD::ArgFlagsTy Flags);

    // Call lowering helpers.
    bool IsCalleePop(bool isVarArg, unsigned CallingConv);
    bool CallRequiresGOTPtrInReg(bool Is64Bit, bool IsTailCall);
    bool CallRequiresFnAddressInReg(bool Is64Bit, bool IsTailCall);
    SDValue EmitTailCallLoadRetAddr(SelectionDAG &DAG, SDValue &OutRetAddr,
                                SDValue Chain, bool IsTailCall, bool Is64Bit,
                                int FPDiff);

    CCAssignFn *CCAssignFnForNode(unsigned CallingConv) const;
    NameDecorationStyle NameDecorationForFORMAL_ARGUMENTS(SDValue Op);
    unsigned GetAlignedArgumentStackSize(unsigned StackSize, SelectionDAG &DAG);

    std::pair<SDValue,SDValue> FP_TO_SINTHelper(SDValue Op, 
                                                    SelectionDAG &DAG);
    
    SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG);
    SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG);
    SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG);
    SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG);
    SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG);
    SDValue LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG);
    SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG);
    SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG);
    SDValue LowerGlobalAddress(const GlobalValue *GV, int64_t Offset,
                               SelectionDAG &DAG) const;
    SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG);
    SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG);
    SDValue LowerExternalSymbol(SDValue Op, SelectionDAG &DAG);
    SDValue LowerShift(SDValue Op, SelectionDAG &DAG);
    SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG);
    SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG);
    SDValue LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG);
    SDValue LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG);
    SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG);
    SDValue LowerFABS(SDValue Op, SelectionDAG &DAG);
    SDValue LowerFNEG(SDValue Op, SelectionDAG &DAG);
    SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG);
    SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG);
    SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG);
    SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG);
    SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG);
    SDValue LowerMEMSET(SDValue Op, SelectionDAG &DAG);
    SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG);
    SDValue LowerCALL(SDValue Op, SelectionDAG &DAG);
    SDValue LowerRET(SDValue Op, SelectionDAG &DAG);
    SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG);
    SDValue LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG);
    SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG);
    SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG);
    SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG);
    SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG);
    SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG);
    SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG);
    SDValue LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG);
    SDValue LowerEH_RETURN(SDValue Op, SelectionDAG &DAG);
    SDValue LowerTRAMPOLINE(SDValue Op, SelectionDAG &DAG);
    SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG);
    SDValue LowerCTLZ(SDValue Op, SelectionDAG &DAG);
    SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG);
    SDValue LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG);
    SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG);

    SDValue LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG);
    SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG);
    SDValue LowerREADCYCLECOUNTER(SDValue Op, SelectionDAG &DAG);

    void ReplaceATOMIC_BINARY_64(SDNode *N, SmallVectorImpl<SDValue> &Results,
                                 SelectionDAG &DAG, unsigned NewOp);

    SDValue EmitTargetCodeForMemset(SelectionDAG &DAG,
                                    SDValue Chain,
                                    SDValue Dst, SDValue Src,
                                    SDValue Size, unsigned Align,
                                    const Value *DstSV, uint64_t DstSVOff);
    SDValue EmitTargetCodeForMemcpy(SelectionDAG &DAG,
                                    SDValue Chain,
                                    SDValue Dst, SDValue Src,
                                    SDValue Size, unsigned Align,
                                    bool AlwaysInline,
                                    const Value *DstSV, uint64_t DstSVOff,
                                    const Value *SrcSV, uint64_t SrcSVOff);
    
    /// Utility function to emit atomic bitwise operations (and, or, xor).
    // It takes the bitwise instruction to expand, the associated machine basic
    // block, and the associated X86 opcodes for reg/reg and reg/imm.
    MachineBasicBlock *EmitAtomicBitwiseWithCustomInserter(
                                                    MachineInstr *BInstr,
                                                    MachineBasicBlock *BB,
                                                    unsigned regOpc,
                                                    unsigned immOpc,
                                                    unsigned loadOpc,
                                                    unsigned cxchgOpc,
                                                    unsigned copyOpc,
                                                    unsigned notOpc,
                                                    unsigned EAXreg,
                                                    TargetRegisterClass *RC,
                                                    bool invSrc = false);

    MachineBasicBlock *EmitAtomicBit6432WithCustomInserter(
                                                    MachineInstr *BInstr,
                                                    MachineBasicBlock *BB,
                                                    unsigned regOpcL,
                                                    unsigned regOpcH,
                                                    unsigned immOpcL,
                                                    unsigned immOpcH,
                                                    bool invSrc = false);
    
    /// Utility function to emit atomic min and max.  It takes the min/max
    // instruction to expand, the associated basic block, and the associated
    // cmov opcode for moving the min or max value.
    MachineBasicBlock *EmitAtomicMinMaxWithCustomInserter(MachineInstr *BInstr,
                                                          MachineBasicBlock *BB,
                                                          unsigned cmovOpc);
  };

  namespace X86 {
    FastISel *createFastISel(MachineFunction &mf,
                           MachineModuleInfo *mmi, DwarfWriter *dw,
                           DenseMap<const Value *, unsigned> &,
                           DenseMap<const BasicBlock *, MachineBasicBlock *> &,
                           DenseMap<const AllocaInst *, int> &
#ifndef NDEBUG
                           , SmallSet<Instruction*, 8> &
#endif
                           );
  }
}

#endif    // X86ISELLOWERING_H