aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/X86/X86ISelLowering.h
blob: c931b9b6667b3dd24627b7aee7030ca8aa7773ae (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
//===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that X86 uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//

#ifndef X86ISELLOWERING_H
#define X86ISELLOWERING_H

#include "X86MachineFunctionInfo.h"
#include "X86RegisterInfo.h"
#include "X86Subtarget.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/FastISel.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetOptions.h"

namespace llvm {
  namespace X86ISD {
    // X86 Specific DAG Nodes
    enum NodeType {
      // Start the numbering where the builtin ops leave off.
      FIRST_NUMBER = ISD::BUILTIN_OP_END,

      /// BSF - Bit scan forward.
      /// BSR - Bit scan reverse.
      BSF,
      BSR,

      /// SHLD, SHRD - Double shift instructions. These correspond to
      /// X86::SHLDxx and X86::SHRDxx instructions.
      SHLD,
      SHRD,

      /// FAND - Bitwise logical AND of floating point values. This corresponds
      /// to X86::ANDPS or X86::ANDPD.
      FAND,

      /// FOR - Bitwise logical OR of floating point values. This corresponds
      /// to X86::ORPS or X86::ORPD.
      FOR,

      /// FXOR - Bitwise logical XOR of floating point values. This corresponds
      /// to X86::XORPS or X86::XORPD.
      FXOR,

      /// FANDN - Bitwise logical ANDNOT of floating point values. This
      /// corresponds to X86::ANDNPS or X86::ANDNPD.
      FANDN,

      /// FSRL - Bitwise logical right shift of floating point values. These
      /// corresponds to X86::PSRLDQ.
      FSRL,

      /// CALL - These operations represent an abstract X86 call
      /// instruction, which includes a bunch of information.  In particular the
      /// operands of these node are:
      ///
      ///     #0 - The incoming token chain
      ///     #1 - The callee
      ///     #2 - The number of arg bytes the caller pushes on the stack.
      ///     #3 - The number of arg bytes the callee pops off the stack.
      ///     #4 - The value to pass in AL/AX/EAX (optional)
      ///     #5 - The value to pass in DL/DX/EDX (optional)
      ///
      /// The result values of these nodes are:
      ///
      ///     #0 - The outgoing token chain
      ///     #1 - The first register result value (optional)
      ///     #2 - The second register result value (optional)
      ///
      CALL,

      /// RDTSC_DAG - This operation implements the lowering for
      /// readcyclecounter
      RDTSC_DAG,

      /// X86 compare and logical compare instructions.
      CMP, COMI, UCOMI,

      /// X86 bit-test instructions.
      BT,

      /// X86 SetCC. Operand 0 is condition code, and operand 1 is the EFLAGS
      /// operand, usually produced by a CMP instruction.
      SETCC,

      // Same as SETCC except it's materialized with a sbb and the value is all
      // one's or all zero's.
      SETCC_CARRY,  // R = carry_bit ? ~0 : 0

      /// X86 FP SETCC, implemented with CMP{cc}SS/CMP{cc}SD.
      /// Operands are two FP values to compare; result is a mask of
      /// 0s or 1s.  Generally DTRT for C/C++ with NaNs.
      FSETCCss, FSETCCsd,

      /// X86 MOVMSK{pd|ps}, extracts sign bits of two or four FP values,
      /// result in an integer GPR.  Needs masking for scalar result.
      FGETSIGNx86,

      /// X86 conditional moves. Operand 0 and operand 1 are the two values
      /// to select from. Operand 2 is the condition code, and operand 3 is the
      /// flag operand produced by a CMP or TEST instruction. It also writes a
      /// flag result.
      CMOV,

      /// X86 conditional branches. Operand 0 is the chain operand, operand 1
      /// is the block to branch if condition is true, operand 2 is the
      /// condition code, and operand 3 is the flag operand produced by a CMP
      /// or TEST instruction.
      BRCOND,

      /// Return with a flag operand. Operand 0 is the chain operand, operand
      /// 1 is the number of bytes of stack to pop.
      RET_FLAG,

      /// REP_STOS - Repeat fill, corresponds to X86::REP_STOSx.
      REP_STOS,

      /// REP_MOVS - Repeat move, corresponds to X86::REP_MOVSx.
      REP_MOVS,

      /// GlobalBaseReg - On Darwin, this node represents the result of the popl
      /// at function entry, used for PIC code.
      GlobalBaseReg,

      /// Wrapper - A wrapper node for TargetConstantPool,
      /// TargetExternalSymbol, and TargetGlobalAddress.
      Wrapper,

      /// WrapperRIP - Special wrapper used under X86-64 PIC mode for RIP
      /// relative displacements.
      WrapperRIP,

      /// MOVDQ2Q - Copies a 64-bit value from the low word of an XMM vector
      /// to an MMX vector.  If you think this is too close to the previous
      /// mnemonic, so do I; blame Intel.
      MOVDQ2Q,

      /// MMX_MOVD2W - Copies a 32-bit value from the low word of a MMX
      /// vector to a GPR.
      MMX_MOVD2W,

      /// PEXTRB - Extract an 8-bit value from a vector and zero extend it to
      /// i32, corresponds to X86::PEXTRB.
      PEXTRB,

      /// PEXTRW - Extract a 16-bit value from a vector and zero extend it to
      /// i32, corresponds to X86::PEXTRW.
      PEXTRW,

      /// INSERTPS - Insert any element of a 4 x float vector into any element
      /// of a destination 4 x floatvector.
      INSERTPS,

      /// PINSRB - Insert the lower 8-bits of a 32-bit value to a vector,
      /// corresponds to X86::PINSRB.
      PINSRB,

      /// PINSRW - Insert the lower 16-bits of a 32-bit value to a vector,
      /// corresponds to X86::PINSRW.
      PINSRW, MMX_PINSRW,

      /// PSHUFB - Shuffle 16 8-bit values within a vector.
      PSHUFB,

      /// ANDNP - Bitwise Logical AND NOT of Packed FP values.
      ANDNP,

      /// PSIGN - Copy integer sign.
      PSIGN,

      /// BLENDV - Blend where the selector is a register.
      BLENDV,

      /// BLENDI - Blend where the selector is an immediate.
      BLENDI,

      // SUBUS - Integer sub with unsigned saturation.
      SUBUS,

      /// HADD - Integer horizontal add.
      HADD,

      /// HSUB - Integer horizontal sub.
      HSUB,

      /// FHADD - Floating point horizontal add.
      FHADD,

      /// FHSUB - Floating point horizontal sub.
      FHSUB,

      /// UMAX, UMIN - Unsigned integer max and min.
      UMAX, UMIN,

      /// SMAX, SMIN - Signed integer max and min.
      SMAX, SMIN,

      /// FMAX, FMIN - Floating point max and min.
      ///
      FMAX, FMIN,

      /// FMAXC, FMINC - Commutative FMIN and FMAX.
      FMAXC, FMINC,

      /// FRSQRT, FRCP - Floating point reciprocal-sqrt and reciprocal
      /// approximation.  Note that these typically require refinement
      /// in order to obtain suitable precision.
      FRSQRT, FRCP,

      // TLSADDR - Thread Local Storage.
      TLSADDR,

      // TLSBASEADDR - Thread Local Storage. A call to get the start address
      // of the TLS block for the current module.
      TLSBASEADDR,

      // TLSCALL - Thread Local Storage.  When calling to an OS provided
      // thunk at the address from an earlier relocation.
      TLSCALL,

      // EH_RETURN - Exception Handling helpers.
      EH_RETURN,

      // EH_SJLJ_SETJMP - SjLj exception handling setjmp.
      EH_SJLJ_SETJMP,

      // EH_SJLJ_LONGJMP - SjLj exception handling longjmp.
      EH_SJLJ_LONGJMP,

      /// TC_RETURN - Tail call return. See X86TargetLowering::LowerCall for
      /// the list of operands.
      TC_RETURN,

      // VZEXT_MOVL - Vector move low and zero extend.
      VZEXT_MOVL,

      // VSEXT_MOVL - Vector move low and sign extend.
      VSEXT_MOVL,

      // VZEXT - Vector integer zero-extend.
      VZEXT,

      // VSEXT - Vector integer signed-extend.
      VSEXT,

      // VFPEXT - Vector FP extend.
      VFPEXT,

      // VFPROUND - Vector FP round.
      VFPROUND,

      // VSHL, VSRL - 128-bit vector logical left / right shift
      VSHLDQ, VSRLDQ,

      // VSHL, VSRL, VSRA - Vector shift elements
      VSHL, VSRL, VSRA,

      // VSHLI, VSRLI, VSRAI - Vector shift elements by immediate
      VSHLI, VSRLI, VSRAI,

      // CMPP - Vector packed double/float comparison.
      CMPP,

      // PCMP* - Vector integer comparisons.
      PCMPEQ, PCMPGT,

      // ADD, SUB, SMUL, etc. - Arithmetic operations with FLAGS results.
      ADD, SUB, ADC, SBB, SMUL,
      INC, DEC, OR, XOR, AND,

      BLSI,   // BLSI - Extract lowest set isolated bit
      BLSMSK, // BLSMSK - Get mask up to lowest set bit
      BLSR,   // BLSR - Reset lowest set bit

      UMUL, // LOW, HI, FLAGS = umul LHS, RHS

      // MUL_IMM - X86 specific multiply by immediate.
      MUL_IMM,

      // PTEST - Vector bitwise comparisons
      PTEST,

      // TESTP - Vector packed fp sign bitwise comparisons
      TESTP,

      // OR/AND test for masks
      KORTEST,
      KTEST,

      // Several flavors of instructions with vector shuffle behaviors.
      PALIGNR,
      PSHUFD,
      PSHUFHW,
      PSHUFLW,
      SHUFP,
      MOVDDUP,
      MOVSHDUP,
      MOVSLDUP,
      MOVLHPS,
      MOVLHPD,
      MOVHLPS,
      MOVLPS,
      MOVLPD,
      MOVSD,
      MOVSS,
      UNPCKL,
      UNPCKH,
      VPERMILP,
      VPERMV,
      VPERMV3,
      VPERMI,
      VPERM2X128,
      VBROADCAST,
      // masked broadcast
      VBROADCASTM,

      // PMULUDQ - Vector multiply packed unsigned doubleword integers
      PMULUDQ,

      // FMA nodes
      FMADD,
      FNMADD,
      FMSUB,
      FNMSUB,
      FMADDSUB,
      FMSUBADD,

      // VASTART_SAVE_XMM_REGS - Save xmm argument registers to the stack,
      // according to %al. An operator is needed so that this can be expanded
      // with control flow.
      VASTART_SAVE_XMM_REGS,

      // WIN_ALLOCA - Windows's _chkstk call to do stack probing.
      WIN_ALLOCA,

      // SEG_ALLOCA - For allocating variable amounts of stack space when using
      // segmented stacks. Check if the current stacklet has enough space, and
      // falls back to heap allocation if not.
      SEG_ALLOCA,

      // WIN_FTOL - Windows's _ftol2 runtime routine to do fptoui.
      WIN_FTOL,

      // Memory barrier
      MEMBARRIER,
      MFENCE,
      SFENCE,
      LFENCE,

      // FNSTSW16r - Store FP status word into i16 register.
      FNSTSW16r,

      // SAHF - Store contents of %ah into %eflags.
      SAHF,

      // RDRAND - Get a random integer and indicate whether it is valid in CF.
      RDRAND,

      // RDSEED - Get a NIST SP800-90B & C compliant random integer and
      // indicate whether it is valid in CF.
      RDSEED,

      // PCMP*STRI
      PCMPISTRI,
      PCMPESTRI,

      // XTEST - Test if in transactional execution.
      XTEST,

      // ATOMADD64_DAG, ATOMSUB64_DAG, ATOMOR64_DAG, ATOMAND64_DAG,
      // ATOMXOR64_DAG, ATOMNAND64_DAG, ATOMSWAP64_DAG -
      // Atomic 64-bit binary operations.
      ATOMADD64_DAG = ISD::FIRST_TARGET_MEMORY_OPCODE,
      ATOMSUB64_DAG,
      ATOMOR64_DAG,
      ATOMXOR64_DAG,
      ATOMAND64_DAG,
      ATOMNAND64_DAG,
      ATOMMAX64_DAG,
      ATOMMIN64_DAG,
      ATOMUMAX64_DAG,
      ATOMUMIN64_DAG,
      ATOMSWAP64_DAG,

      // LCMPXCHG_DAG, LCMPXCHG8_DAG, LCMPXCHG16_DAG - Compare and swap.
      LCMPXCHG_DAG,
      LCMPXCHG8_DAG,
      LCMPXCHG16_DAG,

      // VZEXT_LOAD - Load, scalar_to_vector, and zero extend.
      VZEXT_LOAD,

      // FNSTCW16m - Store FP control world into i16 memory.
      FNSTCW16m,

      /// FP_TO_INT*_IN_MEM - This instruction implements FP_TO_SINT with the
      /// integer destination in memory and a FP reg source.  This corresponds
      /// to the X86::FIST*m instructions and the rounding mode change stuff. It
      /// has two inputs (token chain and address) and two outputs (int value
      /// and token chain).
      FP_TO_INT16_IN_MEM,
      FP_TO_INT32_IN_MEM,
      FP_TO_INT64_IN_MEM,

      /// FILD, FILD_FLAG - This instruction implements SINT_TO_FP with the
      /// integer source in memory and FP reg result.  This corresponds to the
      /// X86::FILD*m instructions. It has three inputs (token chain, address,
      /// and source type) and two outputs (FP value and token chain). FILD_FLAG
      /// also produces a flag).
      FILD,
      FILD_FLAG,

      /// FLD - This instruction implements an extending load to FP stack slots.
      /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain
      /// operand, ptr to load from, and a ValueType node indicating the type
      /// to load to.
      FLD,

      /// FST - This instruction implements a truncating store to FP stack
      /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a
      /// chain operand, value to store, address, and a ValueType to store it
      /// as.
      FST,

      /// VAARG_64 - This instruction grabs the address of the next argument
      /// from a va_list. (reads and modifies the va_list in memory)
      VAARG_64

      // WARNING: Do not add anything in the end unless you want the node to
      // have memop! In fact, starting from ATOMADD64_DAG all opcodes will be
      // thought as target memory ops!
    };
  }

  /// Define some predicates that are used for node matching.
  namespace X86 {
    /// isVEXTRACT128Index - Return true if the specified
    /// EXTRACT_SUBVECTOR operand specifies a vector extract that is
    /// suitable for input to VEXTRACTF128, VEXTRACTI128 instructions.
    bool isVEXTRACT128Index(SDNode *N);

    /// isVINSERT128Index - Return true if the specified
    /// INSERT_SUBVECTOR operand specifies a subvector insert that is
    /// suitable for input to VINSERTF128, VINSERTI128 instructions.
    bool isVINSERT128Index(SDNode *N);

    /// isVEXTRACT256Index - Return true if the specified
    /// EXTRACT_SUBVECTOR operand specifies a vector extract that is
    /// suitable for input to VEXTRACTF64X4, VEXTRACTI64X4 instructions.
    bool isVEXTRACT256Index(SDNode *N);

    /// isVINSERT256Index - Return true if the specified
    /// INSERT_SUBVECTOR operand specifies a subvector insert that is
    /// suitable for input to VINSERTF64X4, VINSERTI64X4 instructions.
    bool isVINSERT256Index(SDNode *N);

    /// getExtractVEXTRACT128Immediate - Return the appropriate
    /// immediate to extract the specified EXTRACT_SUBVECTOR index
    /// with VEXTRACTF128, VEXTRACTI128 instructions.
    unsigned getExtractVEXTRACT128Immediate(SDNode *N);

    /// getInsertVINSERT128Immediate - Return the appropriate
    /// immediate to insert at the specified INSERT_SUBVECTOR index
    /// with VINSERTF128, VINSERT128 instructions.
    unsigned getInsertVINSERT128Immediate(SDNode *N);

    /// getExtractVEXTRACT256Immediate - Return the appropriate
    /// immediate to extract the specified EXTRACT_SUBVECTOR index
    /// with VEXTRACTF64X4, VEXTRACTI64x4 instructions.
    unsigned getExtractVEXTRACT256Immediate(SDNode *N);

    /// getInsertVINSERT256Immediate - Return the appropriate
    /// immediate to insert at the specified INSERT_SUBVECTOR index
    /// with VINSERTF64x4, VINSERTI64x4 instructions.
    unsigned getInsertVINSERT256Immediate(SDNode *N);

    /// isZeroNode - Returns true if Elt is a constant zero or a floating point
    /// constant +0.0.
    bool isZeroNode(SDValue Elt);

    /// isOffsetSuitableForCodeModel - Returns true of the given offset can be
    /// fit into displacement field of the instruction.
    bool isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
                                      bool hasSymbolicDisplacement = true);


    /// isCalleePop - Determines whether the callee is required to pop its
    /// own arguments. Callee pop is necessary to support tail calls.
    bool isCalleePop(CallingConv::ID CallingConv,
                     bool is64Bit, bool IsVarArg, bool TailCallOpt);
  }

  //===--------------------------------------------------------------------===//
  //  X86TargetLowering - X86 Implementation of the TargetLowering interface
  class X86TargetLowering : public TargetLowering {
  public:
    explicit X86TargetLowering(X86TargetMachine &TM);

    virtual unsigned getJumpTableEncoding() const;

    virtual MVT getScalarShiftAmountTy(EVT LHSTy) const { return MVT::i8; }

    virtual const MCExpr *
    LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
                              const MachineBasicBlock *MBB, unsigned uid,
                              MCContext &Ctx) const;

    /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
    /// jumptable.
    virtual SDValue getPICJumpTableRelocBase(SDValue Table,
                                             SelectionDAG &DAG) const;
    virtual const MCExpr *
    getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
                                 unsigned JTI, MCContext &Ctx) const;

    /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
    /// function arguments in the caller parameter area. For X86, aggregates
    /// that contains are placed at 16-byte boundaries while the rest are at
    /// 4-byte boundaries.
    virtual unsigned getByValTypeAlignment(Type *Ty) const;

    /// getOptimalMemOpType - Returns the target specific optimal type for load
    /// and store operations as a result of memset, memcpy, and memmove
    /// lowering. If DstAlign is zero that means it's safe to destination
    /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
    /// means there isn't a need to check it against alignment requirement,
    /// probably because the source does not need to be loaded. If 'IsMemset' is
    /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
    /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
    /// source is constant so it does not need to be loaded.
    /// It returns EVT::Other if the type should be determined using generic
    /// target-independent logic.
    virtual EVT
    getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
                        bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc,
                        MachineFunction &MF) const;

    /// isSafeMemOpType - Returns true if it's safe to use load / store of the
    /// specified type to expand memcpy / memset inline. This is mostly true
    /// for all types except for some special cases. For example, on X86
    /// targets without SSE2 f64 load / store are done with fldl / fstpl which
    /// also does type conversion. Note the specified type doesn't have to be
    /// legal as the hook is used before type legalization.
    virtual bool isSafeMemOpType(MVT VT) const;

    /// allowsUnalignedMemoryAccesses - Returns true if the target allows
    /// unaligned memory accesses. of the specified type. Returns whether it
    /// is "fast" by reference in the second argument.
    virtual bool allowsUnalignedMemoryAccesses(EVT VT, bool *Fast) const;

    /// LowerOperation - Provide custom lowering hooks for some operations.
    ///
    virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;

    /// ReplaceNodeResults - Replace the results of node with an illegal result
    /// type with new values built out of custom code.
    ///
    virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
                                    SelectionDAG &DAG) const;


    virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;

    /// isTypeDesirableForOp - Return true if the target has native support for
    /// the specified value type and it is 'desirable' to use the type for the
    /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
    /// instruction encodings are longer and some i16 instructions are slow.
    virtual bool isTypeDesirableForOp(unsigned Opc, EVT VT) const;

    /// isTypeDesirable - Return true if the target has native support for the
    /// specified value type and it is 'desirable' to use the type. e.g. On x86
    /// i16 is legal, but undesirable since i16 instruction encodings are longer
    /// and some i16 instructions are slow.
    virtual bool IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const;

    virtual MachineBasicBlock *
      EmitInstrWithCustomInserter(MachineInstr *MI,
                                  MachineBasicBlock *MBB) const;


    /// getTargetNodeName - This method returns the name of a target specific
    /// DAG node.
    virtual const char *getTargetNodeName(unsigned Opcode) const;

    /// getSetCCResultType - Return the value type to use for ISD::SETCC.
    virtual EVT getSetCCResultType(LLVMContext &Context, EVT VT) const;

    /// computeMaskedBitsForTargetNode - Determine which of the bits specified
    /// in Mask are known to be either zero or one and return them in the
    /// KnownZero/KnownOne bitsets.
    virtual void computeMaskedBitsForTargetNode(const SDValue Op,
                                                APInt &KnownZero,
                                                APInt &KnownOne,
                                                const SelectionDAG &DAG,
                                                unsigned Depth = 0) const;

    // ComputeNumSignBitsForTargetNode - Determine the number of bits in the
    // operation that are sign bits.
    virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
                                                     unsigned Depth) const;

    virtual bool
    isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;

    SDValue getReturnAddressFrameIndex(SelectionDAG &DAG) const;

    virtual bool ExpandInlineAsm(CallInst *CI) const;

    ConstraintType getConstraintType(const std::string &Constraint) const;

    /// Examine constraint string and operand type and determine a weight value.
    /// The operand object must already have been set up with the operand type.
    virtual ConstraintWeight getSingleConstraintMatchWeight(
      AsmOperandInfo &info, const char *constraint) const;

    virtual const char *LowerXConstraint(EVT ConstraintVT) const;

    /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
    /// vector.  If it is invalid, don't add anything to Ops. If hasMemory is
    /// true it means one of the asm constraint of the inline asm instruction
    /// being processed is 'm'.
    virtual void LowerAsmOperandForConstraint(SDValue Op,
                                              std::string &Constraint,
                                              std::vector<SDValue> &Ops,
                                              SelectionDAG &DAG) const;

    /// getRegForInlineAsmConstraint - Given a physical register constraint
    /// (e.g. {edx}), return the register number and the register class for the
    /// register.  This should only be used for C_Register constraints.  On
    /// error, this returns a register number of 0.
    std::pair<unsigned, const TargetRegisterClass*>
      getRegForInlineAsmConstraint(const std::string &Constraint,
                                   MVT VT) const;

    /// isLegalAddressingMode - Return true if the addressing mode represented
    /// by AM is legal for this target, for a load/store of the specified type.
    virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty)const;

    /// isLegalICmpImmediate - Return true if the specified immediate is legal
    /// icmp immediate, that is the target has icmp instructions which can
    /// compare a register against the immediate without having to materialize
    /// the immediate into a register.
    virtual bool isLegalICmpImmediate(int64_t Imm) const;

    /// isLegalAddImmediate - Return true if the specified immediate is legal
    /// add immediate, that is the target has add instructions which can
    /// add a register and the immediate without having to materialize
    /// the immediate into a register.
    virtual bool isLegalAddImmediate(int64_t Imm) const;

    /// isTruncateFree - Return true if it's free to truncate a value of
    /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
    /// register EAX to i16 by referencing its sub-register AX.
    virtual bool isTruncateFree(Type *Ty1, Type *Ty2) const;
    virtual bool isTruncateFree(EVT VT1, EVT VT2) const;

    virtual bool allowTruncateForTailCall(Type *Ty1, Type *Ty2) const;

    /// isZExtFree - Return true if any actual instruction that defines a
    /// value of type Ty1 implicit zero-extends the value to Ty2 in the result
    /// register. This does not necessarily include registers defined in
    /// unknown ways, such as incoming arguments, or copies from unknown
    /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
    /// does not necessarily apply to truncate instructions. e.g. on x86-64,
    /// all instructions that define 32-bit values implicit zero-extend the
    /// result out to 64 bits.
    virtual bool isZExtFree(Type *Ty1, Type *Ty2) const;
    virtual bool isZExtFree(EVT VT1, EVT VT2) const;
    virtual bool isZExtFree(SDValue Val, EVT VT2) const;

    /// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster
    /// than a pair of fmul and fadd instructions. fmuladd intrinsics will be
    /// expanded to FMAs when this method returns true, otherwise fmuladd is
    /// expanded to fmul + fadd.
    virtual bool isFMAFasterThanFMulAndFAdd(EVT VT) const;

    /// isNarrowingProfitable - Return true if it's profitable to narrow
    /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
    /// from i32 to i8 but not from i32 to i16.
    virtual bool isNarrowingProfitable(EVT VT1, EVT VT2) const;

    /// isFPImmLegal - Returns true if the target can instruction select the
    /// specified FP immediate natively. If false, the legalizer will
    /// materialize the FP immediate as a load from a constant pool.
    virtual bool isFPImmLegal(const APFloat &Imm, EVT VT) const;

    /// isShuffleMaskLegal - Targets can use this to indicate that they only
    /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
    /// By default, if a target supports the VECTOR_SHUFFLE node, all mask
    /// values are assumed to be legal.
    virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
                                    EVT VT) const;

    /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
    /// used by Targets can use this to indicate if there is a suitable
    /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
    /// pool entry.
    virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
                                        EVT VT) const;

    /// ShouldShrinkFPConstant - If true, then instruction selection should
    /// seek to shrink the FP constant of the specified type to a smaller type
    /// in order to save space and / or reduce runtime.
    virtual bool ShouldShrinkFPConstant(EVT VT) const {
      // Don't shrink FP constpool if SSE2 is available since cvtss2sd is more
      // expensive than a straight movsd. On the other hand, it's important to
      // shrink long double fp constant since fldt is very slow.
      return !X86ScalarSSEf64 || VT == MVT::f80;
    }

    const X86Subtarget* getSubtarget() const {
      return Subtarget;
    }

    /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
    /// computed in an SSE register, not on the X87 floating point stack.
    bool isScalarFPTypeInSSEReg(EVT VT) const {
      return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
      (VT == MVT::f32 && X86ScalarSSEf32);   // f32 is when SSE1
    }

    /// isTargetFTOL - Return true if the target uses the MSVC _ftol2 routine
    /// for fptoui.
    bool isTargetFTOL() const {
      return Subtarget->isTargetWindows() && !Subtarget->is64Bit();
    }

    /// isIntegerTypeFTOL - Return true if the MSVC _ftol2 routine should be
    /// used for fptoui to the given type.
    bool isIntegerTypeFTOL(EVT VT) const {
      return isTargetFTOL() && VT == MVT::i64;
    }

    /// createFastISel - This method returns a target specific FastISel object,
    /// or null if the target does not support "fast" ISel.
    virtual FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
                                     const TargetLibraryInfo *libInfo) const;

    /// getStackCookieLocation - Return true if the target stores stack
    /// protector cookies at a fixed offset in some non-standard address
    /// space, and populates the address space and offset as
    /// appropriate.
    virtual bool getStackCookieLocation(unsigned &AddressSpace, unsigned &Offset) const;

    SDValue BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain, SDValue StackSlot,
                      SelectionDAG &DAG) const;

    /// \brief Reset the operation actions based on target options.
    virtual void resetOperationActions();

  protected:
    std::pair<const TargetRegisterClass*, uint8_t>
    findRepresentativeClass(MVT VT) const;

  private:
    /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
    /// make the right decision when generating code for different targets.
    const X86Subtarget *Subtarget;
    const DataLayout *TD;

    /// Used to store the TargetOptions so that we don't waste time resetting
    /// the operation actions unless we have to.
    TargetOptions TO;

    /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
    /// floating point ops.
    /// When SSE is available, use it for f32 operations.
    /// When SSE2 is available, use it for f64 operations.
    bool X86ScalarSSEf32;
    bool X86ScalarSSEf64;

    /// LegalFPImmediates - A list of legal fp immediates.
    std::vector<APFloat> LegalFPImmediates;

    /// addLegalFPImmediate - Indicate that this x86 target can instruction
    /// select the specified FP immediate natively.
    void addLegalFPImmediate(const APFloat& Imm) {
      LegalFPImmediates.push_back(Imm);
    }

    SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
                            CallingConv::ID CallConv, bool isVarArg,
                            const SmallVectorImpl<ISD::InputArg> &Ins,
                            SDLoc dl, SelectionDAG &DAG,
                            SmallVectorImpl<SDValue> &InVals) const;
    SDValue LowerMemArgument(SDValue Chain,
                             CallingConv::ID CallConv,
                             const SmallVectorImpl<ISD::InputArg> &ArgInfo,
                             SDLoc dl, SelectionDAG &DAG,
                             const CCValAssign &VA,  MachineFrameInfo *MFI,
                              unsigned i) const;
    SDValue LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg,
                             SDLoc dl, SelectionDAG &DAG,
                             const CCValAssign &VA,
                             ISD::ArgFlagsTy Flags) const;

    // Call lowering helpers.

    /// IsEligibleForTailCallOptimization - Check whether the call is eligible
    /// for tail call optimization. Targets which want to do tail call
    /// optimization should implement this function.
    bool IsEligibleForTailCallOptimization(SDValue Callee,
                                           CallingConv::ID CalleeCC,
                                           bool isVarArg,
                                           bool isCalleeStructRet,
                                           bool isCallerStructRet,
                                           Type *RetTy,
                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
                                    const SmallVectorImpl<SDValue> &OutVals,
                                    const SmallVectorImpl<ISD::InputArg> &Ins,
                                           SelectionDAG& DAG) const;
    bool IsCalleePop(bool isVarArg, CallingConv::ID CallConv) const;
    SDValue EmitTailCallLoadRetAddr(SelectionDAG &DAG, SDValue &OutRetAddr,
                                SDValue Chain, bool IsTailCall, bool Is64Bit,
                                int FPDiff, SDLoc dl) const;

    unsigned GetAlignedArgumentStackSize(unsigned StackSize,
                                         SelectionDAG &DAG) const;

    std::pair<SDValue,SDValue> FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
                                               bool isSigned,
                                               bool isReplace) const;

    SDValue LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, SDLoc dl,
                                   SelectionDAG &DAG) const;
    SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerBUILD_VECTORvXi1(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerGlobalAddress(const GlobalValue *GV, SDLoc dl,
                               int64_t Offset, SelectionDAG &DAG) const;
    SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerShiftParts(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerBITCAST(SDValue op, SelectionDAG &DAG) const;
    SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) const;
    SDValue lowerUINT_TO_FP_vec(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerZERO_EXTEND(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerZERO_EXTEND_AVX512(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerSIGN_EXTEND(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerSIGN_EXTEND_AVX512(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerANY_EXTEND(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerFABS(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerFNEG(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerToBT(SDValue And, ISD::CondCode CC,
                      SDLoc dl, SelectionDAG &DAG) const;
    SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerMEMSET(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const;
    SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
    SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerShift(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const;

    // Utility functions to help LowerVECTOR_SHUFFLE & LowerBUILD_VECTOR
    SDValue LowerVectorBroadcast(SDValue Op, SelectionDAG &DAG) const;
    SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG) const;
    SDValue buildFromShuffleMostly(SDValue Op, SelectionDAG &DAG) const;

    SDValue LowerVectorAllZeroTest(SDValue Op, SelectionDAG &DAG) const;

    SDValue LowerVectorIntExtend(SDValue Op, SelectionDAG &DAG) const;

    virtual SDValue
      LowerFormalArguments(SDValue Chain,
                           CallingConv::ID CallConv, bool isVarArg,
                           const SmallVectorImpl<ISD::InputArg> &Ins,
                           SDLoc dl, SelectionDAG &DAG,
                           SmallVectorImpl<SDValue> &InVals) const;
    virtual SDValue
      LowerCall(CallLoweringInfo &CLI,
                SmallVectorImpl<SDValue> &InVals) const;

    virtual SDValue
      LowerReturn(SDValue Chain,
                  CallingConv::ID CallConv, bool isVarArg,
                  const SmallVectorImpl<ISD::OutputArg> &Outs,
                  const SmallVectorImpl<SDValue> &OutVals,
                  SDLoc dl, SelectionDAG &DAG) const;

    virtual bool isUsedByReturnOnly(SDNode *N, SDValue &Chain) const;

    virtual bool mayBeEmittedAsTailCall(CallInst *CI) const;

    virtual MVT
    getTypeForExtArgOrReturn(MVT VT, ISD::NodeType ExtendKind) const;

    virtual bool
    CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
                   bool isVarArg,
                   const SmallVectorImpl<ISD::OutputArg> &Outs,
                   LLVMContext &Context) const;

    /// Utility function to emit atomic-load-arith operations (and, or, xor,
    /// nand, max, min, umax, umin). It takes the corresponding instruction to
    /// expand, the associated machine basic block, and the associated X86
    /// opcodes for reg/reg.
    MachineBasicBlock *EmitAtomicLoadArith(MachineInstr *MI,
                                           MachineBasicBlock *MBB) const;

    /// Utility function to emit atomic-load-arith operations (and, or, xor,
    /// nand, add, sub, swap) for 64-bit operands on 32-bit target.
    MachineBasicBlock *EmitAtomicLoadArith6432(MachineInstr *MI,
                                               MachineBasicBlock *MBB) const;

    // Utility function to emit the low-level va_arg code for X86-64.
    MachineBasicBlock *EmitVAARG64WithCustomInserter(
                       MachineInstr *MI,
                       MachineBasicBlock *MBB) const;

    /// Utility function to emit the xmm reg save portion of va_start.
    MachineBasicBlock *EmitVAStartSaveXMMRegsWithCustomInserter(
                                                   MachineInstr *BInstr,
                                                   MachineBasicBlock *BB) const;

    MachineBasicBlock *EmitLoweredSelect(MachineInstr *I,
                                         MachineBasicBlock *BB) const;

    MachineBasicBlock *EmitLoweredWinAlloca(MachineInstr *MI,
                                              MachineBasicBlock *BB) const;

    MachineBasicBlock *EmitLoweredSegAlloca(MachineInstr *MI,
                                            MachineBasicBlock *BB,
                                            bool Is64Bit) const;

    MachineBasicBlock *EmitLoweredTLSCall(MachineInstr *MI,
                                          MachineBasicBlock *BB) const;

    MachineBasicBlock *emitLoweredTLSAddr(MachineInstr *MI,
                                          MachineBasicBlock *BB) const;

    MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr *MI,
                                        MachineBasicBlock *MBB) const;

    MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr *MI,
                                         MachineBasicBlock *MBB) const;

    /// Emit nodes that will be selected as "test Op0,Op0", or something
    /// equivalent, for use with the given x86 condition code.
    SDValue EmitTest(SDValue Op0, unsigned X86CC, SelectionDAG &DAG) const;

    /// Emit nodes that will be selected as "cmp Op0,Op1", or something
    /// equivalent, for use with the given x86 condition code.
    SDValue EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
                    SelectionDAG &DAG) const;

    /// Convert a comparison if required by the subtarget.
    SDValue ConvertCmpIfNecessary(SDValue Cmp, SelectionDAG &DAG) const;
  };

  namespace X86 {
    FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
                             const TargetLibraryInfo *libInfo);
  }
}

#endif    // X86ISELLOWERING_H