aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/X86/X86Instr64bit.td
blob: dc15e4aa4ee9974956ab4282031e84c4c8184eab (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
//====- X86Instr64bit.td - Describe X86-64 Instructions ----*- tablegen -*-===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
//
// This file describes the X86-64 instruction set, defining the instructions,
// and properties of the instructions which are needed for code generation,
// machine code emission, and analysis.
//
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// Operand Definitions.
//

// 64-bits but only 32 bits are significant.
def i64i32imm  : Operand<i64>;
// 64-bits but only 8 bits are significant.
def i64i8imm   : Operand<i64>;

def lea64mem : Operand<i64> {
  let PrintMethod = "printlea64mem";
  let MIOperandInfo = (ops GR64, i8imm, GR64, i32imm);
}

def lea64_32mem : Operand<i32> {
  let PrintMethod = "printlea64_32mem";
  let MIOperandInfo = (ops GR32, i8imm, GR32, i32imm);
}

//===----------------------------------------------------------------------===//
// Complex Pattern Definitions.
//
def lea64addr : ComplexPattern<i64, 4, "SelectLEAAddr",
                        [add, mul, X86mul_imm, shl, or, frameindex, X86Wrapper],
                        []>;

//===----------------------------------------------------------------------===//
// Pattern fragments.
//

def i64immSExt8  : PatLeaf<(i64 imm), [{
  // i64immSExt8 predicate - True if the 64-bit immediate fits in a 8-bit
  // sign extended field.
  return (int64_t)N->getZExtValue() == (int8_t)N->getZExtValue();
}]>;

def i64immSExt32  : PatLeaf<(i64 imm), [{
  // i64immSExt32 predicate - True if the 64-bit immediate fits in a 32-bit
  // sign extended field.
  return (int64_t)N->getZExtValue() == (int32_t)N->getZExtValue();
}]>;

def i64immZExt32  : PatLeaf<(i64 imm), [{
  // i64immZExt32 predicate - True if the 64-bit immediate fits in a 32-bit
  // unsignedsign extended field.
  return (uint64_t)N->getZExtValue() == (uint32_t)N->getZExtValue();
}]>;

def sextloadi64i8  : PatFrag<(ops node:$ptr), (i64 (sextloadi8 node:$ptr))>;
def sextloadi64i16 : PatFrag<(ops node:$ptr), (i64 (sextloadi16 node:$ptr))>;
def sextloadi64i32 : PatFrag<(ops node:$ptr), (i64 (sextloadi32 node:$ptr))>;

def zextloadi64i1  : PatFrag<(ops node:$ptr), (i64 (zextloadi1 node:$ptr))>;
def zextloadi64i8  : PatFrag<(ops node:$ptr), (i64 (zextloadi8 node:$ptr))>;
def zextloadi64i16 : PatFrag<(ops node:$ptr), (i64 (zextloadi16 node:$ptr))>;
def zextloadi64i32 : PatFrag<(ops node:$ptr), (i64 (zextloadi32 node:$ptr))>;

def extloadi64i1   : PatFrag<(ops node:$ptr), (i64 (extloadi1 node:$ptr))>;
def extloadi64i8   : PatFrag<(ops node:$ptr), (i64 (extloadi8 node:$ptr))>;
def extloadi64i16  : PatFrag<(ops node:$ptr), (i64 (extloadi16 node:$ptr))>;
def extloadi64i32  : PatFrag<(ops node:$ptr), (i64 (extloadi32 node:$ptr))>;

//===----------------------------------------------------------------------===//
// Instruction list...
//

// ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into
// a stack adjustment and the codegen must know that they may modify the stack
// pointer before prolog-epilog rewriting occurs.
// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
// sub / add which can clobber EFLAGS.
let Defs = [RSP, EFLAGS], Uses = [RSP] in {
def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs), (ins i32imm:$amt),
                           "#ADJCALLSTACKDOWN",
                           [(X86callseq_start timm:$amt)]>,
                          Requires<[In64BitMode]>;
def ADJCALLSTACKUP64   : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
                           "#ADJCALLSTACKUP",
                           [(X86callseq_end timm:$amt1, timm:$amt2)]>,
                          Requires<[In64BitMode]>;
}

//===----------------------------------------------------------------------===//
//  Call Instructions...
//
let isCall = 1 in
  // All calls clobber the non-callee saved registers. RSP is marked as
  // a use to prevent stack-pointer assignments that appear immediately
  // before calls from potentially appearing dead. Uses for argument
  // registers are added manually.
  let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
              FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0, ST1,
              MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
              XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
              XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
      Uses = [RSP] in {
      
    // NOTE: this pattern doesn't match "X86call imm", because we do not know
    // that the offset between an arbitrary immediate and the call will fit in
    // the 32-bit pcrel field that we have.
    def CALL64pcrel32 : I<0xE8, RawFrm,
                          (outs), (ins i64i32imm:$dst, variable_ops),
                          "call\t${dst:call}", []>,
                        Requires<[In64BitMode]>;
    def CALL64r       : I<0xFF, MRM2r, (outs), (ins GR64:$dst, variable_ops),
                          "call\t{*}$dst", [(X86call GR64:$dst)]>;
    def CALL64m       : I<0xFF, MRM2m, (outs), (ins i64mem:$dst, variable_ops),
                          "call\t{*}$dst", [(X86call (loadi64 addr:$dst))]>;
  }



let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in
def TCRETURNdi64 : I<0, Pseudo, (outs), (ins i64imm:$dst, i32imm:$offset,
                                         variable_ops),
                 "#TC_RETURN $dst $offset",
                 []>;

let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in
def TCRETURNri64 : I<0, Pseudo, (outs), (ins GR64:$dst, i32imm:$offset,
                                         variable_ops),
                 "#TC_RETURN $dst $offset",
                 []>;


let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in
  def TAILJMPr64 : I<0xFF, MRM4r, (outs), (ins GR64:$dst),
                   "jmp{q}\t{*}$dst  # TAILCALL",
                   []>;     

// Branches
let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in {
  def JMP64r     : I<0xFF, MRM4r, (outs), (ins GR64:$dst), "jmp{q}\t{*}$dst",
                     [(brind GR64:$dst)]>;
  def JMP64m     : I<0xFF, MRM4m, (outs), (ins i64mem:$dst), "jmp{q}\t{*}$dst",
                     [(brind (loadi64 addr:$dst))]>;
}

//===----------------------------------------------------------------------===//
// EH Pseudo Instructions
//
let isTerminator = 1, isReturn = 1, isBarrier = 1,
    hasCtrlDep = 1 in {
def EH_RETURN64   : I<0xC3, RawFrm, (outs), (ins GR64:$addr),
                     "ret\t#eh_return, addr: $addr",
                     [(X86ehret GR64:$addr)]>;

}

//===----------------------------------------------------------------------===//
//  Miscellaneous Instructions...
//
let Defs = [RBP,RSP], Uses = [RBP,RSP], mayLoad = 1, neverHasSideEffects = 1 in
def LEAVE64  : I<0xC9, RawFrm,
                 (outs), (ins), "leave", []>;
let Defs = [RSP], Uses = [RSP], neverHasSideEffects=1 in {
let mayLoad = 1 in
def POP64r   : I<0x58, AddRegFrm,
                 (outs GR64:$reg), (ins), "pop{q}\t$reg", []>;
let mayStore = 1 in
def PUSH64r  : I<0x50, AddRegFrm,
                 (outs), (ins GR64:$reg), "push{q}\t$reg", []>;
}

let Defs = [RSP, EFLAGS], Uses = [RSP], mayLoad = 1 in
def POPFQ    : I<0x9D, RawFrm, (outs), (ins), "popf", []>, REX_W;
let Defs = [RSP], Uses = [RSP, EFLAGS], mayStore = 1 in
def PUSHFQ   : I<0x9C, RawFrm, (outs), (ins), "pushf", []>;

def LEA64_32r : I<0x8D, MRMSrcMem,
                  (outs GR32:$dst), (ins lea64_32mem:$src),
                  "lea{l}\t{$src|$dst}, {$dst|$src}",
                  [(set GR32:$dst, lea32addr:$src)]>, Requires<[In64BitMode]>;

let isReMaterializable = 1 in
def LEA64r   : RI<0x8D, MRMSrcMem, (outs GR64:$dst), (ins lea64mem:$src),
                  "lea{q}\t{$src|$dst}, {$dst|$src}",
                  [(set GR64:$dst, lea64addr:$src)]>;

let isTwoAddress = 1 in
def BSWAP64r : RI<0xC8, AddRegFrm, (outs GR64:$dst), (ins GR64:$src),
                  "bswap{q}\t$dst", 
                  [(set GR64:$dst, (bswap GR64:$src))]>, TB;

// Bit scan instructions.
let Defs = [EFLAGS] in {
def BSF64rr  : RI<0xBC, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src),
                  "bsf{q}\t{$src, $dst|$dst, $src}",
                  [(set GR64:$dst, (X86bsf GR64:$src)), (implicit EFLAGS)]>, TB;
def BSF64rm  : RI<0xBC, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
                  "bsf{q}\t{$src, $dst|$dst, $src}",
                  [(set GR64:$dst, (X86bsf (loadi64 addr:$src))),
                   (implicit EFLAGS)]>, TB;

def BSR64rr  : RI<0xBD, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src),
                  "bsr{q}\t{$src, $dst|$dst, $src}",
                  [(set GR64:$dst, (X86bsr GR64:$src)), (implicit EFLAGS)]>, TB;
def BSR64rm  : RI<0xBD, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
                  "bsr{q}\t{$src, $dst|$dst, $src}",
                  [(set GR64:$dst, (X86bsr (loadi64 addr:$src))),
                   (implicit EFLAGS)]>, TB;
} // Defs = [EFLAGS]

// Repeat string ops
let Defs = [RCX,RDI,RSI], Uses = [RCX,RDI,RSI] in
def REP_MOVSQ : RI<0xA5, RawFrm, (outs), (ins), "{rep;movsq|rep movsq}",
                   [(X86rep_movs i64)]>, REP;
let Defs = [RCX,RDI], Uses = [RAX,RCX,RDI] in
def REP_STOSQ : RI<0xAB, RawFrm, (outs), (ins), "{rep;stosq|rep stosq}",
                   [(X86rep_stos i64)]>, REP;

//===----------------------------------------------------------------------===//
//  Move Instructions...
//

let neverHasSideEffects = 1 in
def MOV64rr : RI<0x89, MRMDestReg, (outs GR64:$dst), (ins GR64:$src),
                 "mov{q}\t{$src, $dst|$dst, $src}", []>;

let isReMaterializable = 1, isAsCheapAsAMove = 1  in {
def MOV64ri : RIi64<0xB8, AddRegFrm, (outs GR64:$dst), (ins i64imm:$src),
                    "movabs{q}\t{$src, $dst|$dst, $src}",
                    [(set GR64:$dst, imm:$src)]>;
def MOV64ri32 : RIi32<0xC7, MRM0r, (outs GR64:$dst), (ins i64i32imm:$src),
                      "mov{q}\t{$src, $dst|$dst, $src}",
                      [(set GR64:$dst, i64immSExt32:$src)]>;
}

let canFoldAsLoad = 1 in
def MOV64rm : RI<0x8B, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
                 "mov{q}\t{$src, $dst|$dst, $src}",
                 [(set GR64:$dst, (load addr:$src))]>;

def MOV64mr : RI<0x89, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src),
                 "mov{q}\t{$src, $dst|$dst, $src}",
                 [(store GR64:$src, addr:$dst)]>;
def MOV64mi32 : RIi32<0xC7, MRM0m, (outs), (ins i64mem:$dst, i64i32imm:$src),
                      "mov{q}\t{$src, $dst|$dst, $src}",
                      [(store i64immSExt32:$src, addr:$dst)]>;

// Sign/Zero extenders

// MOVSX64rr8 always has a REX prefix and it has an 8-bit register
// operand, which makes it a rare instruction with an 8-bit register
// operand that can never access an h register. If support for h registers
// were generalized, this would require a special register class.
def MOVSX64rr8 : RI<0xBE, MRMSrcReg, (outs GR64:$dst), (ins GR8 :$src),
                    "movs{bq|x}\t{$src, $dst|$dst, $src}",
                    [(set GR64:$dst, (sext GR8:$src))]>, TB;
def MOVSX64rm8 : RI<0xBE, MRMSrcMem, (outs GR64:$dst), (ins i8mem :$src),
                    "movs{bq|x}\t{$src, $dst|$dst, $src}",
                    [(set GR64:$dst, (sextloadi64i8 addr:$src))]>, TB;
def MOVSX64rr16: RI<0xBF, MRMSrcReg, (outs GR64:$dst), (ins GR16:$src),
                    "movs{wq|x}\t{$src, $dst|$dst, $src}",
                    [(set GR64:$dst, (sext GR16:$src))]>, TB;
def MOVSX64rm16: RI<0xBF, MRMSrcMem, (outs GR64:$dst), (ins i16mem:$src),
                    "movs{wq|x}\t{$src, $dst|$dst, $src}",
                    [(set GR64:$dst, (sextloadi64i16 addr:$src))]>, TB;
def MOVSX64rr32: RI<0x63, MRMSrcReg, (outs GR64:$dst), (ins GR32:$src),
                    "movs{lq|xd}\t{$src, $dst|$dst, $src}",
                    [(set GR64:$dst, (sext GR32:$src))]>;
def MOVSX64rm32: RI<0x63, MRMSrcMem, (outs GR64:$dst), (ins i32mem:$src),
                    "movs{lq|xd}\t{$src, $dst|$dst, $src}",
                    [(set GR64:$dst, (sextloadi64i32 addr:$src))]>;

// Use movzbl instead of movzbq when the destination is a register; it's
// equivalent due to implicit zero-extending, and it has a smaller encoding.
def MOVZX64rr8 : I<0xB6, MRMSrcReg, (outs GR64:$dst), (ins GR8 :$src),
                   "movz{bl|x}\t{$src, ${dst:subreg32}|${dst:subreg32}, $src}",
                   [(set GR64:$dst, (zext GR8:$src))]>, TB;
def MOVZX64rm8 : I<0xB6, MRMSrcMem, (outs GR64:$dst), (ins i8mem :$src),
                   "movz{bl|x}\t{$src, ${dst:subreg32}|${dst:subreg32}, $src}",
                   [(set GR64:$dst, (zextloadi64i8 addr:$src))]>, TB;
// Use movzwl instead of movzwq when the destination is a register; it's
// equivalent due to implicit zero-extending, and it has a smaller encoding.
def MOVZX64rr16: I<0xB7, MRMSrcReg, (outs GR64:$dst), (ins GR16:$src),
                   "movz{wl|x}\t{$src, ${dst:subreg32}|${dst:subreg32}, $src}",
                   [(set GR64:$dst, (zext GR16:$src))]>, TB;
def MOVZX64rm16: I<0xB7, MRMSrcMem, (outs GR64:$dst), (ins i16mem:$src),
                   "movz{wl|x}\t{$src, ${dst:subreg32}|${dst:subreg32}, $src}",
                   [(set GR64:$dst, (zextloadi64i16 addr:$src))]>, TB;

// There's no movzlq instruction, but movl can be used for this purpose, using
// implicit zero-extension. The preferred way to do 32-bit-to-64-bit zero
// extension on x86-64 is to use a SUBREG_TO_REG to utilize implicit
// zero-extension, however this isn't possible when the 32-bit value is
// defined by a truncate or is copied from something where the high bits aren't
// necessarily all zero. In such cases, we fall back to these explicit zext
// instructions.
def MOVZX64rr32 : I<0x89, MRMDestReg, (outs GR64:$dst), (ins GR32:$src),
                    "mov{l}\t{$src, ${dst:subreg32}|${dst:subreg32}, $src}",
                    [(set GR64:$dst, (zext GR32:$src))]>;
def MOVZX64rm32 : I<0x8B, MRMSrcMem, (outs GR64:$dst), (ins i32mem:$src),
                    "mov{l}\t{$src, ${dst:subreg32}|${dst:subreg32}, $src}",
                    [(set GR64:$dst, (zextloadi64i32 addr:$src))]>;

// Any instruction that defines a 32-bit result leaves the high half of the
// register. Truncate can be lowered to EXTRACT_SUBREG, and CopyFromReg may
// be copying from a truncate, but any other 32-bit operation will zero-extend
// up to 64 bits.
def def32 : PatLeaf<(i32 GR32:$src), [{
  return N->getOpcode() != ISD::TRUNCATE &&
         N->getOpcode() != TargetInstrInfo::EXTRACT_SUBREG &&
         N->getOpcode() != ISD::CopyFromReg;
}]>;

// In the case of a 32-bit def that is known to implicitly zero-extend,
// we can use a SUBREG_TO_REG.
def : Pat<(i64 (zext def32:$src)),
          (SUBREG_TO_REG (i64 0), GR32:$src, x86_subreg_32bit)>;

let neverHasSideEffects = 1 in {
  let Defs = [RAX], Uses = [EAX] in
  def CDQE : RI<0x98, RawFrm, (outs), (ins),
               "{cltq|cdqe}", []>;     // RAX = signext(EAX)

  let Defs = [RAX,RDX], Uses = [RAX] in
  def CQO  : RI<0x99, RawFrm, (outs), (ins),
                "{cqto|cqo}", []>; // RDX:RAX = signext(RAX)
}

//===----------------------------------------------------------------------===//
//  Arithmetic Instructions...
//

let Defs = [EFLAGS] in {
let isTwoAddress = 1 in {
let isConvertibleToThreeAddress = 1 in {
let isCommutable = 1 in
// Register-Register Addition
def ADD64rr    : RI<0x01, MRMDestReg, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
                    "add{q}\t{$src2, $dst|$dst, $src2}",
                    [(set GR64:$dst, (add GR64:$src1, GR64:$src2)),
                     (implicit EFLAGS)]>;

// Register-Integer Addition
def ADD64ri8  : RIi8<0x83, MRM0r, (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
                     "add{q}\t{$src2, $dst|$dst, $src2}",
                     [(set GR64:$dst, (add GR64:$src1, i64immSExt8:$src2)),
                      (implicit EFLAGS)]>;
def ADD64ri32 : RIi32<0x81, MRM0r, (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
                      "add{q}\t{$src2, $dst|$dst, $src2}",
                      [(set GR64:$dst, (add GR64:$src1, i64immSExt32:$src2)),
                       (implicit EFLAGS)]>;
} // isConvertibleToThreeAddress

// Register-Memory Addition
def ADD64rm     : RI<0x03, MRMSrcMem, (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
                     "add{q}\t{$src2, $dst|$dst, $src2}",
                     [(set GR64:$dst, (add GR64:$src1, (load addr:$src2))),
                      (implicit EFLAGS)]>;
} // isTwoAddress

// Memory-Register Addition
def ADD64mr  : RI<0x01, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
                  "add{q}\t{$src2, $dst|$dst, $src2}",
                  [(store (add (load addr:$dst), GR64:$src2), addr:$dst),
                   (implicit EFLAGS)]>;
def ADD64mi8 : RIi8<0x83, MRM0m, (outs), (ins i64mem:$dst, i64i8imm :$src2),
                    "add{q}\t{$src2, $dst|$dst, $src2}",
                [(store (add (load addr:$dst), i64immSExt8:$src2), addr:$dst),
                 (implicit EFLAGS)]>;
def ADD64mi32 : RIi32<0x81, MRM0m, (outs), (ins i64mem:$dst, i64i32imm :$src2),
                      "add{q}\t{$src2, $dst|$dst, $src2}",
               [(store (add (load addr:$dst), i64immSExt32:$src2), addr:$dst),
                (implicit EFLAGS)]>;

let Uses = [EFLAGS] in {
let isTwoAddress = 1 in {
let isCommutable = 1 in
def ADC64rr  : RI<0x11, MRMDestReg, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
                  "adc{q}\t{$src2, $dst|$dst, $src2}",
                  [(set GR64:$dst, (adde GR64:$src1, GR64:$src2))]>;

def ADC64rm  : RI<0x13, MRMSrcMem , (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
                  "adc{q}\t{$src2, $dst|$dst, $src2}",
                  [(set GR64:$dst, (adde GR64:$src1, (load addr:$src2)))]>;

def ADC64ri8 : RIi8<0x83, MRM2r, (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
                    "adc{q}\t{$src2, $dst|$dst, $src2}",
                    [(set GR64:$dst, (adde GR64:$src1, i64immSExt8:$src2))]>;
def ADC64ri32 : RIi32<0x81, MRM2r, (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
                      "adc{q}\t{$src2, $dst|$dst, $src2}",
                      [(set GR64:$dst, (adde GR64:$src1, i64immSExt32:$src2))]>;
} // isTwoAddress

def ADC64mr  : RI<0x11, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
                  "adc{q}\t{$src2, $dst|$dst, $src2}",
                  [(store (adde (load addr:$dst), GR64:$src2), addr:$dst)]>;
def ADC64mi8 : RIi8<0x83, MRM2m, (outs), (ins i64mem:$dst, i64i8imm :$src2),
                    "adc{q}\t{$src2, $dst|$dst, $src2}",
                 [(store (adde (load addr:$dst), i64immSExt8:$src2), addr:$dst)]>;
def ADC64mi32 : RIi32<0x81, MRM2m, (outs), (ins i64mem:$dst, i64i32imm:$src2),
                      "adc{q}\t{$src2, $dst|$dst, $src2}",
                 [(store (adde (load addr:$dst), i64immSExt8:$src2), addr:$dst)]>;
} // Uses = [EFLAGS]

let isTwoAddress = 1 in {
// Register-Register Subtraction
def SUB64rr  : RI<0x29, MRMDestReg, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
                  "sub{q}\t{$src2, $dst|$dst, $src2}",
                  [(set GR64:$dst, (sub GR64:$src1, GR64:$src2)),
                   (implicit EFLAGS)]>;

// Register-Memory Subtraction
def SUB64rm  : RI<0x2B, MRMSrcMem, (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
                  "sub{q}\t{$src2, $dst|$dst, $src2}",
                  [(set GR64:$dst, (sub GR64:$src1, (load addr:$src2))),
                   (implicit EFLAGS)]>;

// Register-Integer Subtraction
def SUB64ri8 : RIi8<0x83, MRM5r, (outs GR64:$dst),
                                 (ins GR64:$src1, i64i8imm:$src2),
                    "sub{q}\t{$src2, $dst|$dst, $src2}",
                    [(set GR64:$dst, (sub GR64:$src1, i64immSExt8:$src2)),
                     (implicit EFLAGS)]>;
def SUB64ri32 : RIi32<0x81, MRM5r, (outs GR64:$dst),
                                   (ins GR64:$src1, i64i32imm:$src2),
                      "sub{q}\t{$src2, $dst|$dst, $src2}",
                      [(set GR64:$dst, (sub GR64:$src1, i64immSExt32:$src2)),
                       (implicit EFLAGS)]>;
} // isTwoAddress

// Memory-Register Subtraction
def SUB64mr  : RI<0x29, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2), 
                  "sub{q}\t{$src2, $dst|$dst, $src2}",
                  [(store (sub (load addr:$dst), GR64:$src2), addr:$dst),
                   (implicit EFLAGS)]>;

// Memory-Integer Subtraction
def SUB64mi8 : RIi8<0x83, MRM5m, (outs), (ins i64mem:$dst, i64i8imm :$src2), 
                    "sub{q}\t{$src2, $dst|$dst, $src2}",
                    [(store (sub (load addr:$dst), i64immSExt8:$src2),
                            addr:$dst),
                     (implicit EFLAGS)]>;
def SUB64mi32 : RIi32<0x81, MRM5m, (outs), (ins i64mem:$dst, i64i32imm:$src2),
                      "sub{q}\t{$src2, $dst|$dst, $src2}",
                      [(store (sub (load addr:$dst), i64immSExt32:$src2),
                              addr:$dst),
                       (implicit EFLAGS)]>;

let Uses = [EFLAGS] in {
let isTwoAddress = 1 in {
def SBB64rr    : RI<0x19, MRMDestReg, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
                    "sbb{q}\t{$src2, $dst|$dst, $src2}",
                    [(set GR64:$dst, (sube GR64:$src1, GR64:$src2))]>;

def SBB64rm  : RI<0x1B, MRMSrcMem, (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
                  "sbb{q}\t{$src2, $dst|$dst, $src2}",
                  [(set GR64:$dst, (sube GR64:$src1, (load addr:$src2)))]>;

def SBB64ri8 : RIi8<0x83, MRM3r, (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
                    "sbb{q}\t{$src2, $dst|$dst, $src2}",
                    [(set GR64:$dst, (sube GR64:$src1, i64immSExt8:$src2))]>;
def SBB64ri32 : RIi32<0x81, MRM3r, (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
                      "sbb{q}\t{$src2, $dst|$dst, $src2}",
                      [(set GR64:$dst, (sube GR64:$src1, i64immSExt32:$src2))]>;
} // isTwoAddress

def SBB64mr  : RI<0x19, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2), 
                  "sbb{q}\t{$src2, $dst|$dst, $src2}",
                  [(store (sube (load addr:$dst), GR64:$src2), addr:$dst)]>;
def SBB64mi8 : RIi8<0x83, MRM3m, (outs), (ins i64mem:$dst, i64i8imm :$src2), 
                    "sbb{q}\t{$src2, $dst|$dst, $src2}",
               [(store (sube (load addr:$dst), i64immSExt8:$src2), addr:$dst)]>;
def SBB64mi32 : RIi32<0x81, MRM3m, (outs), (ins i64mem:$dst, i64i32imm:$src2), 
                      "sbb{q}\t{$src2, $dst|$dst, $src2}",
              [(store (sube (load addr:$dst), i64immSExt32:$src2), addr:$dst)]>;
} // Uses = [EFLAGS]
} // Defs = [EFLAGS]

// Unsigned multiplication
let Defs = [RAX,RDX,EFLAGS], Uses = [RAX], neverHasSideEffects = 1 in {
def MUL64r : RI<0xF7, MRM4r, (outs), (ins GR64:$src),
                "mul{q}\t$src", []>;         // RAX,RDX = RAX*GR64
let mayLoad = 1 in
def MUL64m : RI<0xF7, MRM4m, (outs), (ins i64mem:$src),
                "mul{q}\t$src", []>;         // RAX,RDX = RAX*[mem64]

// Signed multiplication
def IMUL64r : RI<0xF7, MRM5r, (outs), (ins GR64:$src),
                 "imul{q}\t$src", []>;         // RAX,RDX = RAX*GR64
let mayLoad = 1 in
def IMUL64m : RI<0xF7, MRM5m, (outs), (ins i64mem:$src),
                 "imul{q}\t$src", []>;         // RAX,RDX = RAX*[mem64]
}

let Defs = [EFLAGS] in {
let isTwoAddress = 1 in {
let isCommutable = 1 in
// Register-Register Signed Integer Multiplication
def IMUL64rr : RI<0xAF, MRMSrcReg, (outs GR64:$dst),
                                   (ins GR64:$src1, GR64:$src2),
                  "imul{q}\t{$src2, $dst|$dst, $src2}",
                  [(set GR64:$dst, (mul GR64:$src1, GR64:$src2)),
                   (implicit EFLAGS)]>, TB;

// Register-Memory Signed Integer Multiplication
def IMUL64rm : RI<0xAF, MRMSrcMem, (outs GR64:$dst),
                                   (ins GR64:$src1, i64mem:$src2),
                  "imul{q}\t{$src2, $dst|$dst, $src2}",
                  [(set GR64:$dst, (mul GR64:$src1, (load addr:$src2))),
                   (implicit EFLAGS)]>, TB;
} // isTwoAddress

// Suprisingly enough, these are not two address instructions!

// Register-Integer Signed Integer Multiplication
def IMUL64rri8 : RIi8<0x6B, MRMSrcReg,                      // GR64 = GR64*I8
                      (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
                      "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
                      [(set GR64:$dst, (mul GR64:$src1, i64immSExt8:$src2)),
                       (implicit EFLAGS)]>;
def IMUL64rri32 : RIi32<0x69, MRMSrcReg,                    // GR64 = GR64*I32
                        (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
                        "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
                       [(set GR64:$dst, (mul GR64:$src1, i64immSExt32:$src2)),
                        (implicit EFLAGS)]>;

// Memory-Integer Signed Integer Multiplication
def IMUL64rmi8 : RIi8<0x6B, MRMSrcMem,                      // GR64 = [mem64]*I8
                      (outs GR64:$dst), (ins i64mem:$src1, i64i8imm: $src2),
                      "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
                      [(set GR64:$dst, (mul (load addr:$src1),
                                            i64immSExt8:$src2)),
                       (implicit EFLAGS)]>;
def IMUL64rmi32 : RIi32<0x69, MRMSrcMem,                   // GR64 = [mem64]*I32
                        (outs GR64:$dst), (ins i64mem:$src1, i64i32imm:$src2),
                        "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
                        [(set GR64:$dst, (mul (load addr:$src1),
                                              i64immSExt32:$src2)),
                         (implicit EFLAGS)]>;
} // Defs = [EFLAGS]

// Unsigned division / remainder
let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in {
def DIV64r : RI<0xF7, MRM6r, (outs), (ins GR64:$src),        // RDX:RAX/r64 = RAX,RDX
                "div{q}\t$src", []>;
// Signed division / remainder
def IDIV64r: RI<0xF7, MRM7r, (outs), (ins GR64:$src),        // RDX:RAX/r64 = RAX,RDX
                "idiv{q}\t$src", []>;
let mayLoad = 1 in {
def DIV64m : RI<0xF7, MRM6m, (outs), (ins i64mem:$src),      // RDX:RAX/[mem64] = RAX,RDX
                "div{q}\t$src", []>;
def IDIV64m: RI<0xF7, MRM7m, (outs), (ins i64mem:$src),      // RDX:RAX/[mem64] = RAX,RDX
                "idiv{q}\t$src", []>;
}
}

// Unary instructions
let Defs = [EFLAGS], CodeSize = 2 in {
let isTwoAddress = 1 in
def NEG64r : RI<0xF7, MRM3r, (outs GR64:$dst), (ins GR64:$src), "neg{q}\t$dst",
                [(set GR64:$dst, (ineg GR64:$src)),
                 (implicit EFLAGS)]>;
def NEG64m : RI<0xF7, MRM3m, (outs), (ins i64mem:$dst), "neg{q}\t$dst",
                [(store (ineg (loadi64 addr:$dst)), addr:$dst),
                 (implicit EFLAGS)]>;

let isTwoAddress = 1, isConvertibleToThreeAddress = 1 in
def INC64r : RI<0xFF, MRM0r, (outs GR64:$dst), (ins GR64:$src), "inc{q}\t$dst",
                [(set GR64:$dst, (add GR64:$src, 1)),
                 (implicit EFLAGS)]>;
def INC64m : RI<0xFF, MRM0m, (outs), (ins i64mem:$dst), "inc{q}\t$dst",
                [(store (add (loadi64 addr:$dst), 1), addr:$dst),
                 (implicit EFLAGS)]>;

let isTwoAddress = 1, isConvertibleToThreeAddress = 1 in
def DEC64r : RI<0xFF, MRM1r, (outs GR64:$dst), (ins GR64:$src), "dec{q}\t$dst",
                [(set GR64:$dst, (add GR64:$src, -1)),
                 (implicit EFLAGS)]>;
def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
                [(store (add (loadi64 addr:$dst), -1), addr:$dst),
                 (implicit EFLAGS)]>;

// In 64-bit mode, single byte INC and DEC cannot be encoded.
let isTwoAddress = 1, isConvertibleToThreeAddress = 1 in {
// Can transform into LEA.
def INC64_16r : I<0xFF, MRM0r, (outs GR16:$dst), (ins GR16:$src), "inc{w}\t$dst",
                  [(set GR16:$dst, (add GR16:$src, 1)),
                   (implicit EFLAGS)]>,
                OpSize, Requires<[In64BitMode]>;
def INC64_32r : I<0xFF, MRM0r, (outs GR32:$dst), (ins GR32:$src), "inc{l}\t$dst",
                  [(set GR32:$dst, (add GR32:$src, 1)),
                   (implicit EFLAGS)]>,
                Requires<[In64BitMode]>;
def DEC64_16r : I<0xFF, MRM1r, (outs GR16:$dst), (ins GR16:$src), "dec{w}\t$dst",
                  [(set GR16:$dst, (add GR16:$src, -1)),
                   (implicit EFLAGS)]>,
                OpSize, Requires<[In64BitMode]>;
def DEC64_32r : I<0xFF, MRM1r, (outs GR32:$dst), (ins GR32:$src), "dec{l}\t$dst",
                  [(set GR32:$dst, (add GR32:$src, -1)),
                   (implicit EFLAGS)]>,
                Requires<[In64BitMode]>;
} // isConvertibleToThreeAddress

// These are duplicates of their 32-bit counterparts. Only needed so X86 knows
// how to unfold them.
let isTwoAddress = 0, CodeSize = 2 in {
  def INC64_16m : I<0xFF, MRM0m, (outs), (ins i16mem:$dst), "inc{w}\t$dst",
                    [(store (add (loadi16 addr:$dst), 1), addr:$dst),
                     (implicit EFLAGS)]>,
                  OpSize, Requires<[In64BitMode]>;
  def INC64_32m : I<0xFF, MRM0m, (outs), (ins i32mem:$dst), "inc{l}\t$dst",
                    [(store (add (loadi32 addr:$dst), 1), addr:$dst),
                     (implicit EFLAGS)]>,
                  Requires<[In64BitMode]>;
  def DEC64_16m : I<0xFF, MRM1m, (outs), (ins i16mem:$dst), "dec{w}\t$dst",
                    [(store (add (loadi16 addr:$dst), -1), addr:$dst),
                     (implicit EFLAGS)]>,
                  OpSize, Requires<[In64BitMode]>;
  def DEC64_32m : I<0xFF, MRM1m, (outs), (ins i32mem:$dst), "dec{l}\t$dst",
                    [(store (add (loadi32 addr:$dst), -1), addr:$dst),
                     (implicit EFLAGS)]>,
                  Requires<[In64BitMode]>;
}
} // Defs = [EFLAGS], CodeSize


let Defs = [EFLAGS] in {
// Shift instructions
let isTwoAddress = 1 in {
let Uses = [CL] in
def SHL64rCL : RI<0xD3, MRM4r, (outs GR64:$dst), (ins GR64:$src),
                  "shl{q}\t{%cl, $dst|$dst, %CL}",
                  [(set GR64:$dst, (shl GR64:$src, CL))]>;
let isConvertibleToThreeAddress = 1 in   // Can transform into LEA.
def SHL64ri  : RIi8<0xC1, MRM4r, (outs GR64:$dst), (ins GR64:$src1, i8imm:$src2),
                    "shl{q}\t{$src2, $dst|$dst, $src2}",
                    [(set GR64:$dst, (shl GR64:$src1, (i8 imm:$src2)))]>;
// NOTE: We don't use shifts of a register by one, because 'add reg,reg' is
// cheaper.
} // isTwoAddress

let Uses = [CL] in
def SHL64mCL : RI<0xD3, MRM4m, (outs), (ins i64mem:$dst),
                  "shl{q}\t{%cl, $dst|$dst, %CL}",
                  [(store (shl (loadi64 addr:$dst), CL), addr:$dst)]>;
def SHL64mi : RIi8<0xC1, MRM4m, (outs), (ins i64mem:$dst, i8imm:$src),
                  "shl{q}\t{$src, $dst|$dst, $src}",
                 [(store (shl (loadi64 addr:$dst), (i8 imm:$src)), addr:$dst)]>;
def SHL64m1 : RI<0xD1, MRM4m, (outs), (ins i64mem:$dst),
                  "shl{q}\t$dst",
                 [(store (shl (loadi64 addr:$dst), (i8 1)), addr:$dst)]>;

let isTwoAddress = 1 in {
let Uses = [CL] in
def SHR64rCL : RI<0xD3, MRM5r, (outs GR64:$dst), (ins GR64:$src),
                  "shr{q}\t{%cl, $dst|$dst, %CL}",
                  [(set GR64:$dst, (srl GR64:$src, CL))]>;
def SHR64ri : RIi8<0xC1, MRM5r, (outs GR64:$dst), (ins GR64:$src1, i8imm:$src2),
                  "shr{q}\t{$src2, $dst|$dst, $src2}",
                  [(set GR64:$dst, (srl GR64:$src1, (i8 imm:$src2)))]>;
def SHR64r1  : RI<0xD1, MRM5r, (outs GR64:$dst), (ins GR64:$src1),
                 "shr{q}\t$dst",
                 [(set GR64:$dst, (srl GR64:$src1, (i8 1)))]>;
} // isTwoAddress

let Uses = [CL] in
def SHR64mCL : RI<0xD3, MRM5m, (outs), (ins i64mem:$dst),
                  "shr{q}\t{%cl, $dst|$dst, %CL}",
                  [(store (srl (loadi64 addr:$dst), CL), addr:$dst)]>;
def SHR64mi : RIi8<0xC1, MRM5m, (outs), (ins i64mem:$dst, i8imm:$src),
                  "shr{q}\t{$src, $dst|$dst, $src}",
                 [(store (srl (loadi64 addr:$dst), (i8 imm:$src)), addr:$dst)]>;
def SHR64m1 : RI<0xD1, MRM5m, (outs), (ins i64mem:$dst),
                  "shr{q}\t$dst",
                 [(store (srl (loadi64 addr:$dst), (i8 1)), addr:$dst)]>;

let isTwoAddress = 1 in {
let Uses = [CL] in
def SAR64rCL : RI<0xD3, MRM7r, (outs GR64:$dst), (ins GR64:$src),
                 "sar{q}\t{%cl, $dst|$dst, %CL}",
                 [(set GR64:$dst, (sra GR64:$src, CL))]>;
def SAR64ri  : RIi8<0xC1, MRM7r, (outs GR64:$dst), (ins GR64:$src1, i8imm:$src2),
                   "sar{q}\t{$src2, $dst|$dst, $src2}",
                   [(set GR64:$dst, (sra GR64:$src1, (i8 imm:$src2)))]>;
def SAR64r1  : RI<0xD1, MRM7r, (outs GR64:$dst), (ins GR64:$src1),
                 "sar{q}\t$dst",
                 [(set GR64:$dst, (sra GR64:$src1, (i8 1)))]>;
} // isTwoAddress

let Uses = [CL] in
def SAR64mCL : RI<0xD3, MRM7m, (outs), (ins i64mem:$dst), 
                 "sar{q}\t{%cl, $dst|$dst, %CL}",
                 [(store (sra (loadi64 addr:$dst), CL), addr:$dst)]>;
def SAR64mi  : RIi8<0xC1, MRM7m, (outs), (ins i64mem:$dst, i8imm:$src),
                    "sar{q}\t{$src, $dst|$dst, $src}",
                 [(store (sra (loadi64 addr:$dst), (i8 imm:$src)), addr:$dst)]>;
def SAR64m1 : RI<0xD1, MRM7m, (outs), (ins i64mem:$dst),
                  "sar{q}\t$dst",
                 [(store (sra (loadi64 addr:$dst), (i8 1)), addr:$dst)]>;

// Rotate instructions
let isTwoAddress = 1 in {
let Uses = [CL] in
def ROL64rCL : RI<0xD3, MRM0r, (outs GR64:$dst), (ins GR64:$src),
                  "rol{q}\t{%cl, $dst|$dst, %CL}",
                  [(set GR64:$dst, (rotl GR64:$src, CL))]>;
def ROL64ri  : RIi8<0xC1, MRM0r, (outs GR64:$dst), (ins GR64:$src1, i8imm:$src2),
                    "rol{q}\t{$src2, $dst|$dst, $src2}",
                    [(set GR64:$dst, (rotl GR64:$src1, (i8 imm:$src2)))]>;
def ROL64r1  : RI<0xD1, MRM0r, (outs GR64:$dst), (ins GR64:$src1),
                  "rol{q}\t$dst",
                  [(set GR64:$dst, (rotl GR64:$src1, (i8 1)))]>;
} // isTwoAddress

let Uses = [CL] in
def ROL64mCL :  I<0xD3, MRM0m, (outs), (ins i64mem:$dst),
                  "rol{q}\t{%cl, $dst|$dst, %CL}",
                  [(store (rotl (loadi64 addr:$dst), CL), addr:$dst)]>;
def ROL64mi  : RIi8<0xC1, MRM0m, (outs), (ins i64mem:$dst, i8imm:$src),
                    "rol{q}\t{$src, $dst|$dst, $src}",
                [(store (rotl (loadi64 addr:$dst), (i8 imm:$src)), addr:$dst)]>;
def ROL64m1  : RI<0xD1, MRM0m, (outs), (ins i64mem:$dst),
                 "rol{q}\t$dst",
               [(store (rotl (loadi64 addr:$dst), (i8 1)), addr:$dst)]>;

let isTwoAddress = 1 in {
let Uses = [CL] in
def ROR64rCL : RI<0xD3, MRM1r, (outs GR64:$dst), (ins GR64:$src),
                  "ror{q}\t{%cl, $dst|$dst, %CL}",
                  [(set GR64:$dst, (rotr GR64:$src, CL))]>;
def ROR64ri  : RIi8<0xC1, MRM1r, (outs GR64:$dst), (ins GR64:$src1, i8imm:$src2),
                    "ror{q}\t{$src2, $dst|$dst, $src2}",
                    [(set GR64:$dst, (rotr GR64:$src1, (i8 imm:$src2)))]>;
def ROR64r1  : RI<0xD1, MRM1r, (outs GR64:$dst), (ins GR64:$src1),
                  "ror{q}\t$dst",
                  [(set GR64:$dst, (rotr GR64:$src1, (i8 1)))]>;
} // isTwoAddress

let Uses = [CL] in
def ROR64mCL : RI<0xD3, MRM1m, (outs), (ins i64mem:$dst), 
                  "ror{q}\t{%cl, $dst|$dst, %CL}",
                  [(store (rotr (loadi64 addr:$dst), CL), addr:$dst)]>;
def ROR64mi  : RIi8<0xC1, MRM1m, (outs), (ins i64mem:$dst, i8imm:$src),
                    "ror{q}\t{$src, $dst|$dst, $src}",
                [(store (rotr (loadi64 addr:$dst), (i8 imm:$src)), addr:$dst)]>;
def ROR64m1  : RI<0xD1, MRM1m, (outs), (ins i64mem:$dst),
                 "ror{q}\t$dst",
               [(store (rotr (loadi64 addr:$dst), (i8 1)), addr:$dst)]>;

// Double shift instructions (generalizations of rotate)
let isTwoAddress = 1 in {
let Uses = [CL] in {
def SHLD64rrCL : RI<0xA5, MRMDestReg, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
                    "shld{q}\t{%cl, $src2, $dst|$dst, $src2, %CL}",
                    [(set GR64:$dst, (X86shld GR64:$src1, GR64:$src2, CL))]>, TB;
def SHRD64rrCL : RI<0xAD, MRMDestReg, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
                    "shrd{q}\t{%cl, $src2, $dst|$dst, $src2, %CL}",
                    [(set GR64:$dst, (X86shrd GR64:$src1, GR64:$src2, CL))]>, TB;
}

let isCommutable = 1 in {  // FIXME: Update X86InstrInfo::commuteInstruction
def SHLD64rri8 : RIi8<0xA4, MRMDestReg,
                      (outs GR64:$dst), (ins GR64:$src1, GR64:$src2, i8imm:$src3),
                      "shld{q}\t{$src3, $src2, $dst|$dst, $src2, $src3}",
                      [(set GR64:$dst, (X86shld GR64:$src1, GR64:$src2,
                                       (i8 imm:$src3)))]>,
                 TB;
def SHRD64rri8 : RIi8<0xAC, MRMDestReg,
                      (outs GR64:$dst), (ins GR64:$src1, GR64:$src2, i8imm:$src3),
                      "shrd{q}\t{$src3, $src2, $dst|$dst, $src2, $src3}",
                      [(set GR64:$dst, (X86shrd GR64:$src1, GR64:$src2,
                                       (i8 imm:$src3)))]>,
                 TB;
} // isCommutable
} // isTwoAddress

let Uses = [CL] in {
def SHLD64mrCL : RI<0xA5, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
                    "shld{q}\t{%cl, $src2, $dst|$dst, $src2, %CL}",
                    [(store (X86shld (loadi64 addr:$dst), GR64:$src2, CL),
                      addr:$dst)]>, TB;
def SHRD64mrCL : RI<0xAD, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
                    "shrd{q}\t{%cl, $src2, $dst|$dst, $src2, %CL}",
                    [(store (X86shrd (loadi64 addr:$dst), GR64:$src2, CL),
                      addr:$dst)]>, TB;
}
def SHLD64mri8 : RIi8<0xA4, MRMDestMem,
                      (outs), (ins i64mem:$dst, GR64:$src2, i8imm:$src3),
                      "shld{q}\t{$src3, $src2, $dst|$dst, $src2, $src3}",
                      [(store (X86shld (loadi64 addr:$dst), GR64:$src2,
                                       (i8 imm:$src3)), addr:$dst)]>,
                 TB;
def SHRD64mri8 : RIi8<0xAC, MRMDestMem, 
                      (outs), (ins i64mem:$dst, GR64:$src2, i8imm:$src3),
                      "shrd{q}\t{$src3, $src2, $dst|$dst, $src2, $src3}",
                      [(store (X86shrd (loadi64 addr:$dst), GR64:$src2,
                                       (i8 imm:$src3)), addr:$dst)]>,
                 TB;
} // Defs = [EFLAGS]

//===----------------------------------------------------------------------===//
//  Logical Instructions...
//

let isTwoAddress = 1 , AddedComplexity = 15 in
def NOT64r : RI<0xF7, MRM2r, (outs GR64:$dst), (ins GR64:$src), "not{q}\t$dst",
                [(set GR64:$dst, (not GR64:$src))]>;
def NOT64m : RI<0xF7, MRM2m, (outs), (ins i64mem:$dst), "not{q}\t$dst",
                [(store (not (loadi64 addr:$dst)), addr:$dst)]>;

let Defs = [EFLAGS] in {
let isTwoAddress = 1 in {
let isCommutable = 1 in
def AND64rr  : RI<0x21, MRMDestReg, 
                  (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
                  "and{q}\t{$src2, $dst|$dst, $src2}",
                  [(set GR64:$dst, (and GR64:$src1, GR64:$src2)),
                   (implicit EFLAGS)]>;
def AND64rm  : RI<0x23, MRMSrcMem,
                  (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
                  "and{q}\t{$src2, $dst|$dst, $src2}",
                  [(set GR64:$dst, (and GR64:$src1, (load addr:$src2))),
                   (implicit EFLAGS)]>;
def AND64ri8 : RIi8<0x83, MRM4r, 
                    (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
                    "and{q}\t{$src2, $dst|$dst, $src2}",
                    [(set GR64:$dst, (and GR64:$src1, i64immSExt8:$src2)),
                     (implicit EFLAGS)]>;
def AND64ri32  : RIi32<0x81, MRM4r, 
                       (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
                       "and{q}\t{$src2, $dst|$dst, $src2}",
                       [(set GR64:$dst, (and GR64:$src1, i64immSExt32:$src2)),
                        (implicit EFLAGS)]>;
} // isTwoAddress

def AND64mr  : RI<0x21, MRMDestMem,
                  (outs), (ins i64mem:$dst, GR64:$src),
                  "and{q}\t{$src, $dst|$dst, $src}",
                  [(store (and (load addr:$dst), GR64:$src), addr:$dst),
                   (implicit EFLAGS)]>;
def AND64mi8 : RIi8<0x83, MRM4m,
                    (outs), (ins i64mem:$dst, i64i8imm :$src),
                    "and{q}\t{$src, $dst|$dst, $src}",
                 [(store (and (load addr:$dst), i64immSExt8:$src), addr:$dst),
                  (implicit EFLAGS)]>;
def AND64mi32  : RIi32<0x81, MRM4m,
                       (outs), (ins i64mem:$dst, i64i32imm:$src),
                       "and{q}\t{$src, $dst|$dst, $src}",
             [(store (and (loadi64 addr:$dst), i64immSExt32:$src), addr:$dst),
              (implicit EFLAGS)]>;

let isTwoAddress = 1 in {
let isCommutable = 1 in
def OR64rr   : RI<0x09, MRMDestReg, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
                  "or{q}\t{$src2, $dst|$dst, $src2}",
                  [(set GR64:$dst, (or GR64:$src1, GR64:$src2)),
                   (implicit EFLAGS)]>;
def OR64rm   : RI<0x0B, MRMSrcMem , (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
                  "or{q}\t{$src2, $dst|$dst, $src2}",
                  [(set GR64:$dst, (or GR64:$src1, (load addr:$src2))),
                   (implicit EFLAGS)]>;
def OR64ri8  : RIi8<0x83, MRM1r, (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
                    "or{q}\t{$src2, $dst|$dst, $src2}",
                    [(set GR64:$dst, (or GR64:$src1, i64immSExt8:$src2)),
                     (implicit EFLAGS)]>;
def OR64ri32 : RIi32<0x81, MRM1r, (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
                     "or{q}\t{$src2, $dst|$dst, $src2}",
                     [(set GR64:$dst, (or GR64:$src1, i64immSExt32:$src2)),
                      (implicit EFLAGS)]>;
} // isTwoAddress

def OR64mr : RI<0x09, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src),
                "or{q}\t{$src, $dst|$dst, $src}",
                [(store (or (load addr:$dst), GR64:$src), addr:$dst),
                 (implicit EFLAGS)]>;
def OR64mi8  : RIi8<0x83, MRM1m, (outs), (ins i64mem:$dst, i64i8imm:$src),
                    "or{q}\t{$src, $dst|$dst, $src}",
                  [(store (or (load addr:$dst), i64immSExt8:$src), addr:$dst),
                   (implicit EFLAGS)]>;
def OR64mi32 : RIi32<0x81, MRM1m, (outs), (ins i64mem:$dst, i64i32imm:$src),
                     "or{q}\t{$src, $dst|$dst, $src}",
              [(store (or (loadi64 addr:$dst), i64immSExt32:$src), addr:$dst),
               (implicit EFLAGS)]>;

let isTwoAddress = 1 in {
let isCommutable = 1 in
def XOR64rr  : RI<0x31, MRMDestReg,  (outs GR64:$dst), (ins GR64:$src1, GR64:$src2), 
                  "xor{q}\t{$src2, $dst|$dst, $src2}",
                  [(set GR64:$dst, (xor GR64:$src1, GR64:$src2)),
                   (implicit EFLAGS)]>;
def XOR64rm  : RI<0x33, MRMSrcMem, (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2), 
                  "xor{q}\t{$src2, $dst|$dst, $src2}",
                  [(set GR64:$dst, (xor GR64:$src1, (load addr:$src2))),
                   (implicit EFLAGS)]>;
def XOR64ri8 : RIi8<0x83, MRM6r,  (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
                    "xor{q}\t{$src2, $dst|$dst, $src2}",
                    [(set GR64:$dst, (xor GR64:$src1, i64immSExt8:$src2)),
                     (implicit EFLAGS)]>;
def XOR64ri32 : RIi32<0x81, MRM6r, 
                      (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2), 
                      "xor{q}\t{$src2, $dst|$dst, $src2}",
                      [(set GR64:$dst, (xor GR64:$src1, i64immSExt32:$src2)),
                       (implicit EFLAGS)]>;
} // isTwoAddress

def XOR64mr  : RI<0x31, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src),
                  "xor{q}\t{$src, $dst|$dst, $src}",
                  [(store (xor (load addr:$dst), GR64:$src), addr:$dst),
                   (implicit EFLAGS)]>;
def XOR64mi8 : RIi8<0x83, MRM6m, (outs), (ins i64mem:$dst, i64i8imm :$src),
                    "xor{q}\t{$src, $dst|$dst, $src}",
                 [(store (xor (load addr:$dst), i64immSExt8:$src), addr:$dst),
                  (implicit EFLAGS)]>;
def XOR64mi32 : RIi32<0x81, MRM6m, (outs), (ins i64mem:$dst, i64i32imm:$src),
                      "xor{q}\t{$src, $dst|$dst, $src}",
             [(store (xor (loadi64 addr:$dst), i64immSExt32:$src), addr:$dst),
              (implicit EFLAGS)]>;
} // Defs = [EFLAGS]

//===----------------------------------------------------------------------===//
//  Comparison Instructions...
//

// Integer comparison
let Defs = [EFLAGS] in {
let isCommutable = 1 in
def TEST64rr : RI<0x85, MRMDestReg, (outs), (ins GR64:$src1, GR64:$src2),
                  "test{q}\t{$src2, $src1|$src1, $src2}",
                  [(X86cmp (and GR64:$src1, GR64:$src2), 0),
                   (implicit EFLAGS)]>;
def TEST64rm : RI<0x85, MRMSrcMem, (outs), (ins GR64:$src1, i64mem:$src2),
                  "test{q}\t{$src2, $src1|$src1, $src2}",
                  [(X86cmp (and GR64:$src1, (loadi64 addr:$src2)), 0),
                   (implicit EFLAGS)]>;
def TEST64ri32 : RIi32<0xF7, MRM0r, (outs),
                                        (ins GR64:$src1, i64i32imm:$src2),
                       "test{q}\t{$src2, $src1|$src1, $src2}",
                     [(X86cmp (and GR64:$src1, i64immSExt32:$src2), 0),
                      (implicit EFLAGS)]>;
def TEST64mi32 : RIi32<0xF7, MRM0m, (outs),
                                        (ins i64mem:$src1, i64i32imm:$src2),
                       "test{q}\t{$src2, $src1|$src1, $src2}",
                [(X86cmp (and (loadi64 addr:$src1), i64immSExt32:$src2), 0),
                 (implicit EFLAGS)]>;

def CMP64rr : RI<0x39, MRMDestReg, (outs), (ins GR64:$src1, GR64:$src2),
                 "cmp{q}\t{$src2, $src1|$src1, $src2}",
                 [(X86cmp GR64:$src1, GR64:$src2),
                  (implicit EFLAGS)]>;
def CMP64mr : RI<0x39, MRMDestMem, (outs), (ins i64mem:$src1, GR64:$src2),
                 "cmp{q}\t{$src2, $src1|$src1, $src2}",
                 [(X86cmp (loadi64 addr:$src1), GR64:$src2),
                   (implicit EFLAGS)]>;
def CMP64rm : RI<0x3B, MRMSrcMem, (outs), (ins GR64:$src1, i64mem:$src2),
                 "cmp{q}\t{$src2, $src1|$src1, $src2}",
                 [(X86cmp GR64:$src1, (loadi64 addr:$src2)),
                  (implicit EFLAGS)]>;
def CMP64ri8 : RIi8<0x83, MRM7r, (outs), (ins GR64:$src1, i64i8imm:$src2),
                    "cmp{q}\t{$src2, $src1|$src1, $src2}",
                    [(X86cmp GR64:$src1, i64immSExt8:$src2),
                     (implicit EFLAGS)]>;
def CMP64ri32 : RIi32<0x81, MRM7r, (outs), (ins GR64:$src1, i64i32imm:$src2),
                      "cmp{q}\t{$src2, $src1|$src1, $src2}",
                      [(X86cmp GR64:$src1, i64immSExt32:$src2),
                       (implicit EFLAGS)]>;
def CMP64mi8 : RIi8<0x83, MRM7m, (outs), (ins i64mem:$src1, i64i8imm:$src2),
                    "cmp{q}\t{$src2, $src1|$src1, $src2}",
                    [(X86cmp (loadi64 addr:$src1), i64immSExt8:$src2),
                     (implicit EFLAGS)]>;
def CMP64mi32 : RIi32<0x81, MRM7m, (outs),
                                       (ins i64mem:$src1, i64i32imm:$src2),
                      "cmp{q}\t{$src2, $src1|$src1, $src2}",
                      [(X86cmp (loadi64 addr:$src1), i64immSExt32:$src2),
                       (implicit EFLAGS)]>;
} // Defs = [EFLAGS]

// Bit tests.
// TODO: BTC, BTR, and BTS
let Defs = [EFLAGS] in {
def BT64rr : RI<0xA3, MRMDestReg, (outs), (ins GR64:$src1, GR64:$src2),
               "bt{q}\t{$src2, $src1|$src1, $src2}",
               [(X86bt GR64:$src1, GR64:$src2),
                (implicit EFLAGS)]>, TB;

// Unlike with the register+register form, the memory+register form of the
// bt instruction does not ignore the high bits of the index. From ISel's
// perspective, this is pretty bizarre. Disable these instructions for now.
//def BT64mr : RI<0xA3, MRMDestMem, (outs), (ins i64mem:$src1, GR64:$src2),
//               "bt{q}\t{$src2, $src1|$src1, $src2}",
//               [(X86bt (loadi64 addr:$src1), GR64:$src2),
//                (implicit EFLAGS)]>, TB;

def BT64ri8 : Ii8<0xBA, MRM4r, (outs), (ins GR64:$src1, i64i8imm:$src2),
                "bt{q}\t{$src2, $src1|$src1, $src2}",
                [(X86bt GR64:$src1, i64immSExt8:$src2),
                 (implicit EFLAGS)]>, TB;
// Note that these instructions don't need FastBTMem because that
// only applies when the other operand is in a register. When it's
// an immediate, bt is still fast.
def BT64mi8 : Ii8<0xBA, MRM4m, (outs), (ins i64mem:$src1, i64i8imm:$src2),
                "bt{q}\t{$src2, $src1|$src1, $src2}",
                [(X86bt (loadi64 addr:$src1), i64immSExt8:$src2),
                 (implicit EFLAGS)]>, TB;
} // Defs = [EFLAGS]

// Conditional moves
let Uses = [EFLAGS], isTwoAddress = 1 in {
let isCommutable = 1 in {
def CMOVB64rr : RI<0x42, MRMSrcReg,       // if <u, GR64 = GR64
                   (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
                   "cmovb\t{$src2, $dst|$dst, $src2}",
                   [(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2,
                                     X86_COND_B, EFLAGS))]>, TB;
def CMOVAE64rr: RI<0x43, MRMSrcReg,       // if >=u, GR64 = GR64
                   (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
                   "cmovae\t{$src2, $dst|$dst, $src2}",
                   [(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2,
                                     X86_COND_AE, EFLAGS))]>, TB;
def CMOVE64rr : RI<0x44, MRMSrcReg,       // if ==, GR64 = GR64
                   (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
                   "cmove\t{$src2, $dst|$dst, $src2}",
                   [(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2,
                                     X86_COND_E, EFLAGS))]>, TB;
def CMOVNE64rr: RI<0x45, MRMSrcReg,       // if !=, GR64 = GR64
                   (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
                   "cmovne\t{$src2, $dst|$dst, $src2}",
                   [(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2,
                                    X86_COND_NE, EFLAGS))]>, TB;
def CMOVBE64rr: RI<0x46, MRMSrcReg,       // if <=u, GR64 = GR64
                   (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
                   "cmovbe\t{$src2, $dst|$dst, $src2}",
                   [(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2,
                                    X86_COND_BE, EFLAGS))]>, TB;
def CMOVA64rr : RI<0x47, MRMSrcReg,       // if >u, GR64 = GR64
                   (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
                   "cmova\t{$src2, $dst|$dst, $src2}",
                   [(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2,
                                    X86_COND_A, EFLAGS))]>, TB;
def CMOVL64rr : RI<0x4C, MRMSrcReg,       // if <s, GR64 = GR64
                   (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
                   "cmovl\t{$src2, $dst|$dst, $src2}",
                   [(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2,
                                    X86_COND_L, EFLAGS))]>, TB;
def CMOVGE64rr: RI<0x4D, MRMSrcReg,       // if >=s, GR64 = GR64
                   (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
                   "cmovge\t{$src2, $dst|$dst, $src2}",
                   [(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2,
                                    X86_COND_GE, EFLAGS))]>, TB;
def CMOVLE64rr: RI<0x4E, MRMSrcReg,       // if <=s, GR64 = GR64
                   (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
                   "cmovle\t{$src2, $dst|$dst, $src2}",
                   [(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2,
                                    X86_COND_LE, EFLAGS))]>, TB;
def CMOVG64rr : RI<0x4F, MRMSrcReg,       // if >s, GR64 = GR64
                   (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
                   "cmovg\t{$src2, $dst|$dst, $src2}",
                   [(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2,
                                    X86_COND_G, EFLAGS))]>, TB;
def CMOVS64rr : RI<0x48, MRMSrcReg,       // if signed, GR64 = GR64
                   (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
                   "cmovs\t{$src2, $dst|$dst, $src2}",
                   [(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2,
                                    X86_COND_S, EFLAGS))]>, TB;
def CMOVNS64rr: RI<0x49, MRMSrcReg,       // if !signed, GR64 = GR64
                   (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
                   "cmovns\t{$src2, $dst|$dst, $src2}",
                   [(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2,
                                    X86_COND_NS, EFLAGS))]>, TB;
def CMOVP64rr : RI<0x4A, MRMSrcReg,       // if parity, GR64 = GR64
                   (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
                   "cmovp\t{$src2, $dst|$dst, $src2}",
                   [(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2,
                                    X86_COND_P, EFLAGS))]>, TB;
def CMOVNP64rr : RI<0x4B, MRMSrcReg,       // if !parity, GR64 = GR64
                   (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
                   "cmovnp\t{$src2, $dst|$dst, $src2}",
                    [(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2,
                                     X86_COND_NP, EFLAGS))]>, TB;
def CMOVO64rr : RI<0x40, MRMSrcReg,       // if overflow, GR64 = GR64
                   (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
                   "cmovo\t{$src2, $dst|$dst, $src2}",
                   [(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2,
                                    X86_COND_O, EFLAGS))]>, TB;
def CMOVNO64rr : RI<0x41, MRMSrcReg,       // if !overflow, GR64 = GR64
                   (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
                   "cmovno\t{$src2, $dst|$dst, $src2}",
                    [(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2,
                                     X86_COND_NO, EFLAGS))]>, TB;
} // isCommutable = 1

def CMOVB64rm : RI<0x42, MRMSrcMem,       // if <u, GR64 = [mem64]
                   (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
                   "cmovb\t{$src2, $dst|$dst, $src2}",
                   [(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2),
                                     X86_COND_B, EFLAGS))]>, TB;
def CMOVAE64rm: RI<0x43, MRMSrcMem,       // if >=u, GR64 = [mem64]
                   (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
                   "cmovae\t{$src2, $dst|$dst, $src2}",
                   [(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2),
                                     X86_COND_AE, EFLAGS))]>, TB;
def CMOVE64rm : RI<0x44, MRMSrcMem,       // if ==, GR64 = [mem64]
                   (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
                   "cmove\t{$src2, $dst|$dst, $src2}",
                   [(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2),
                                     X86_COND_E, EFLAGS))]>, TB;
def CMOVNE64rm: RI<0x45, MRMSrcMem,       // if !=, GR64 = [mem64]
                   (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
                   "cmovne\t{$src2, $dst|$dst, $src2}",
                   [(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2),
                                    X86_COND_NE, EFLAGS))]>, TB;
def CMOVBE64rm: RI<0x46, MRMSrcMem,       // if <=u, GR64 = [mem64]
                   (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
                   "cmovbe\t{$src2, $dst|$dst, $src2}",
                   [(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2),
                                    X86_COND_BE, EFLAGS))]>, TB;
def CMOVA64rm : RI<0x47, MRMSrcMem,       // if >u, GR64 = [mem64]
                   (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
                   "cmova\t{$src2, $dst|$dst, $src2}",
                   [(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2),
                                    X86_COND_A, EFLAGS))]>, TB;
def CMOVL64rm : RI<0x4C, MRMSrcMem,       // if <s, GR64 = [mem64]
                   (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
                   "cmovl\t{$src2, $dst|$dst, $src2}",
                   [(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2),
                                    X86_COND_L, EFLAGS))]>, TB;
def CMOVGE64rm: RI<0x4D, MRMSrcMem,       // if >=s, GR64 = [mem64]
                   (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
                   "cmovge\t{$src2, $dst|$dst, $src2}",
                   [(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2),
                                    X86_COND_GE, EFLAGS))]>, TB;
def CMOVLE64rm: RI<0x4E, MRMSrcMem,       // if <=s, GR64 = [mem64]
                   (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
                   "cmovle\t{$src2, $dst|$dst, $src2}",
                   [(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2),
                                    X86_COND_LE, EFLAGS))]>, TB;
def CMOVG64rm : RI<0x4F, MRMSrcMem,       // if >s, GR64 = [mem64]
                   (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
                   "cmovg\t{$src2, $dst|$dst, $src2}",
                   [(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2),
                                    X86_COND_G, EFLAGS))]>, TB;
def CMOVS64rm : RI<0x48, MRMSrcMem,       // if signed, GR64 = [mem64]
                   (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
                   "cmovs\t{$src2, $dst|$dst, $src2}",
                   [(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2),
                                    X86_COND_S, EFLAGS))]>, TB;
def CMOVNS64rm: RI<0x49, MRMSrcMem,       // if !signed, GR64 = [mem64]
                   (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
                   "cmovns\t{$src2, $dst|$dst, $src2}",
                   [(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2),
                                    X86_COND_NS, EFLAGS))]>, TB;
def CMOVP64rm : RI<0x4A, MRMSrcMem,       // if parity, GR64 = [mem64]
                   (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
                   "cmovp\t{$src2, $dst|$dst, $src2}",
                   [(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2),
                                    X86_COND_P, EFLAGS))]>, TB;
def CMOVNP64rm : RI<0x4B, MRMSrcMem,       // if !parity, GR64 = [mem64]
                   (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
                   "cmovnp\t{$src2, $dst|$dst, $src2}",
                    [(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2),
                                     X86_COND_NP, EFLAGS))]>, TB;
def CMOVO64rm : RI<0x40, MRMSrcMem,       // if overflow, GR64 = [mem64]
                   (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
                   "cmovo\t{$src2, $dst|$dst, $src2}",
                   [(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2),
                                    X86_COND_O, EFLAGS))]>, TB;
def CMOVNO64rm : RI<0x41, MRMSrcMem,       // if !overflow, GR64 = [mem64]
                   (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
                   "cmovno\t{$src2, $dst|$dst, $src2}",
                    [(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2),
                                     X86_COND_NO, EFLAGS))]>, TB;
} // isTwoAddress

//===----------------------------------------------------------------------===//
//  Conversion Instructions...
//

// f64 -> signed i64
def Int_CVTSD2SI64rr: RSDI<0x2D, MRMSrcReg, (outs GR64:$dst), (ins VR128:$src),
                           "cvtsd2si{q}\t{$src, $dst|$dst, $src}",
                           [(set GR64:$dst,
                             (int_x86_sse2_cvtsd2si64 VR128:$src))]>;
def Int_CVTSD2SI64rm: RSDI<0x2D, MRMSrcMem, (outs GR64:$dst), (ins f128mem:$src),
                           "cvtsd2si{q}\t{$src, $dst|$dst, $src}",
                           [(set GR64:$dst, (int_x86_sse2_cvtsd2si64
                                             (load addr:$src)))]>;
def CVTTSD2SI64rr: RSDI<0x2C, MRMSrcReg, (outs GR64:$dst), (ins FR64:$src),
                        "cvttsd2si{q}\t{$src, $dst|$dst, $src}",
                        [(set GR64:$dst, (fp_to_sint FR64:$src))]>;
def CVTTSD2SI64rm: RSDI<0x2C, MRMSrcMem, (outs GR64:$dst), (ins f64mem:$src),
                        "cvttsd2si{q}\t{$src, $dst|$dst, $src}",
                        [(set GR64:$dst, (fp_to_sint (loadf64 addr:$src)))]>;
def Int_CVTTSD2SI64rr: RSDI<0x2C, MRMSrcReg, (outs GR64:$dst), (ins VR128:$src),
                            "cvttsd2si{q}\t{$src, $dst|$dst, $src}",
                            [(set GR64:$dst,
                              (int_x86_sse2_cvttsd2si64 VR128:$src))]>;
def Int_CVTTSD2SI64rm: RSDI<0x2C, MRMSrcMem, (outs GR64:$dst), (ins f128mem:$src),
                            "cvttsd2si{q}\t{$src, $dst|$dst, $src}",
                            [(set GR64:$dst,
                              (int_x86_sse2_cvttsd2si64
                               (load addr:$src)))]>;

// Signed i64 -> f64
def CVTSI2SD64rr: RSDI<0x2A, MRMSrcReg, (outs FR64:$dst), (ins GR64:$src),
                       "cvtsi2sd{q}\t{$src, $dst|$dst, $src}",
                       [(set FR64:$dst, (sint_to_fp GR64:$src))]>;
def CVTSI2SD64rm: RSDI<0x2A, MRMSrcMem, (outs FR64:$dst), (ins i64mem:$src),
                       "cvtsi2sd{q}\t{$src, $dst|$dst, $src}",
                       [(set FR64:$dst, (sint_to_fp (loadi64 addr:$src)))]>;

let isTwoAddress = 1 in {
def Int_CVTSI2SD64rr: RSDI<0x2A, MRMSrcReg,
                           (outs VR128:$dst), (ins VR128:$src1, GR64:$src2),
                           "cvtsi2sd{q}\t{$src2, $dst|$dst, $src2}",
                           [(set VR128:$dst,
                             (int_x86_sse2_cvtsi642sd VR128:$src1,
                              GR64:$src2))]>;
def Int_CVTSI2SD64rm: RSDI<0x2A, MRMSrcMem,
                           (outs VR128:$dst), (ins VR128:$src1, i64mem:$src2),
                           "cvtsi2sd{q}\t{$src2, $dst|$dst, $src2}",
                           [(set VR128:$dst,
                             (int_x86_sse2_cvtsi642sd VR128:$src1,
                              (loadi64 addr:$src2)))]>;
} // isTwoAddress

// Signed i64 -> f32
def CVTSI2SS64rr: RSSI<0x2A, MRMSrcReg, (outs FR32:$dst), (ins GR64:$src),
                       "cvtsi2ss{q}\t{$src, $dst|$dst, $src}",
                       [(set FR32:$dst, (sint_to_fp GR64:$src))]>;
def CVTSI2SS64rm: RSSI<0x2A, MRMSrcMem, (outs FR32:$dst), (ins i64mem:$src),
                       "cvtsi2ss{q}\t{$src, $dst|$dst, $src}",
                       [(set FR32:$dst, (sint_to_fp (loadi64 addr:$src)))]>;

let isTwoAddress = 1 in {
  def Int_CVTSI2SS64rr : RSSI<0x2A, MRMSrcReg,
                              (outs VR128:$dst), (ins VR128:$src1, GR64:$src2),
                              "cvtsi2ss{q}\t{$src2, $dst|$dst, $src2}",
                              [(set VR128:$dst,
                                (int_x86_sse_cvtsi642ss VR128:$src1,
                                 GR64:$src2))]>;
  def Int_CVTSI2SS64rm : RSSI<0x2A, MRMSrcMem,
                              (outs VR128:$dst), (ins VR128:$src1, i64mem:$src2),
                              "cvtsi2ss{q}\t{$src2, $dst|$dst, $src2}",
                              [(set VR128:$dst,
                                (int_x86_sse_cvtsi642ss VR128:$src1,
                                 (loadi64 addr:$src2)))]>;
}

// f32 -> signed i64
def Int_CVTSS2SI64rr: RSSI<0x2D, MRMSrcReg, (outs GR64:$dst), (ins VR128:$src),
                           "cvtss2si{q}\t{$src, $dst|$dst, $src}",
                           [(set GR64:$dst,
                             (int_x86_sse_cvtss2si64 VR128:$src))]>;
def Int_CVTSS2SI64rm: RSSI<0x2D, MRMSrcMem, (outs GR64:$dst), (ins f32mem:$src),
                           "cvtss2si{q}\t{$src, $dst|$dst, $src}",
                           [(set GR64:$dst, (int_x86_sse_cvtss2si64
                                             (load addr:$src)))]>;
def CVTTSS2SI64rr: RSSI<0x2C, MRMSrcReg, (outs GR64:$dst), (ins FR32:$src),
                        "cvttss2si{q}\t{$src, $dst|$dst, $src}",
                        [(set GR64:$dst, (fp_to_sint FR32:$src))]>;
def CVTTSS2SI64rm: RSSI<0x2C, MRMSrcMem, (outs GR64:$dst), (ins f32mem:$src),
                        "cvttss2si{q}\t{$src, $dst|$dst, $src}",
                        [(set GR64:$dst, (fp_to_sint (loadf32 addr:$src)))]>;
def Int_CVTTSS2SI64rr: RSSI<0x2C, MRMSrcReg, (outs GR64:$dst), (ins VR128:$src),
                            "cvttss2si{q}\t{$src, $dst|$dst, $src}",
                            [(set GR64:$dst,
                              (int_x86_sse_cvttss2si64 VR128:$src))]>;
def Int_CVTTSS2SI64rm: RSSI<0x2C, MRMSrcMem, (outs GR64:$dst), (ins f32mem:$src),
                            "cvttss2si{q}\t{$src, $dst|$dst, $src}",
                            [(set GR64:$dst,
                              (int_x86_sse_cvttss2si64 (load addr:$src)))]>;

//===----------------------------------------------------------------------===//
// Alias Instructions
//===----------------------------------------------------------------------===//

// Alias instructions that map movr0 to xor. Use xorl instead of xorq; it's
// equivalent due to implicit zero-extending, and it sometimes has a smaller
// encoding.
// FIXME: remove when we can teach regalloc that xor reg, reg is ok.
// FIXME: AddedComplexity gives MOV64r0 a higher priority than MOV64ri32. Remove
// when we have a better way to specify isel priority.
let Defs = [EFLAGS], AddedComplexity = 1,
    isReMaterializable = 1, isAsCheapAsAMove = 1 in
def MOV64r0  : I<0x31, MRMInitReg,  (outs GR64:$dst), (ins),
                "xor{l}\t${dst:subreg32}, ${dst:subreg32}",
                [(set GR64:$dst, 0)]>;

// Materialize i64 constant where top 32-bits are zero.
let AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1 in
def MOV64ri64i32 : Ii32<0xB8, AddRegFrm, (outs GR64:$dst), (ins i64i32imm:$src),
                        "mov{l}\t{$src, ${dst:subreg32}|${dst:subreg32}, $src}",
                        [(set GR64:$dst, i64immZExt32:$src)]>;

//===----------------------------------------------------------------------===//
// Thread Local Storage Instructions
//===----------------------------------------------------------------------===//

// All calls clobber the non-callee saved registers. RSP is marked as
// a use to prevent stack-pointer assignments that appear immediately
// before calls from potentially appearing dead.
let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
            FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0, ST1,
            MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
            XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
            XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
    Uses = [RSP] in
def TLS_addr64 : I<0, Pseudo, (outs), (ins i64imm:$sym),
                   ".byte\t0x66; "
                   "leaq\t${sym:mem}(%rip), %rdi; "
                   ".word\t0x6666; "
                   "rex64; "
                   "call\t__tls_get_addr@PLT",
                  [(X86tlsaddr tglobaltlsaddr:$sym)]>,
                  Requires<[In64BitMode]>;

let AddedComplexity = 5 in
def MOV64GSrm : RI<0x8B, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
                 "movq\t%gs:$src, $dst",
                 [(set GR64:$dst, (gsload addr:$src))]>, SegGS;

let AddedComplexity = 5 in
def MOV64FSrm : RI<0x8B, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
                 "movq\t%fs:$src, $dst",
                 [(set GR64:$dst, (fsload addr:$src))]>, SegFS;

//===----------------------------------------------------------------------===//
// Atomic Instructions
//===----------------------------------------------------------------------===//

let Defs = [RAX, EFLAGS], Uses = [RAX] in {
def LCMPXCHG64 : RI<0xB1, MRMDestMem, (outs), (ins i64mem:$ptr, GR64:$swap),
               "lock\n\t"
               "cmpxchgq\t$swap,$ptr",
               [(X86cas addr:$ptr, GR64:$swap, 8)]>, TB, LOCK;
}

let Constraints = "$val = $dst" in {
let Defs = [EFLAGS] in
def LXADD64 : RI<0xC1, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$ptr,GR64:$val),
               "lock\n\t"
               "xadd\t$val, $ptr",
               [(set GR64:$dst, (atomic_load_add_64 addr:$ptr, GR64:$val))]>,
                TB, LOCK;
def XCHG64rm : RI<0x87, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$ptr,GR64:$val),
                  "xchg\t$val, $ptr", 
                  [(set GR64:$dst, (atomic_swap_64 addr:$ptr, GR64:$val))]>;
}

// Atomic exchange, and, or, xor
let Constraints = "$val = $dst", Defs = [EFLAGS],
                  usesCustomDAGSchedInserter = 1 in {
def ATOMAND64 : I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
               "#ATOMAND64 PSEUDO!", 
               [(set GR64:$dst, (atomic_load_and_64 addr:$ptr, GR64:$val))]>;
def ATOMOR64 : I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
               "#ATOMOR64 PSEUDO!", 
               [(set GR64:$dst, (atomic_load_or_64 addr:$ptr, GR64:$val))]>;
def ATOMXOR64 : I<0, Pseudo,(outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
               "#ATOMXOR64 PSEUDO!", 
               [(set GR64:$dst, (atomic_load_xor_64 addr:$ptr, GR64:$val))]>;
def ATOMNAND64 : I<0, Pseudo,(outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
               "#ATOMNAND64 PSEUDO!", 
               [(set GR64:$dst, (atomic_load_nand_64 addr:$ptr, GR64:$val))]>;
def ATOMMIN64: I<0, Pseudo, (outs GR64:$dst), (ins i64mem:$ptr, GR64:$val),
               "#ATOMMIN64 PSEUDO!", 
               [(set GR64:$dst, (atomic_load_min_64 addr:$ptr, GR64:$val))]>;
def ATOMMAX64: I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
               "#ATOMMAX64 PSEUDO!", 
               [(set GR64:$dst, (atomic_load_max_64 addr:$ptr, GR64:$val))]>;
def ATOMUMIN64: I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
               "#ATOMUMIN64 PSEUDO!", 
               [(set GR64:$dst, (atomic_load_umin_64 addr:$ptr, GR64:$val))]>;
def ATOMUMAX64: I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
               "#ATOMUMAX64 PSEUDO!", 
               [(set GR64:$dst, (atomic_load_umax_64 addr:$ptr, GR64:$val))]>;
}

//===----------------------------------------------------------------------===//
// Non-Instruction Patterns
//===----------------------------------------------------------------------===//

// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable
def : Pat<(i64 (X86Wrapper tconstpool  :$dst)),
          (MOV64ri tconstpool  :$dst)>, Requires<[NotSmallCode]>;
def : Pat<(i64 (X86Wrapper tjumptable  :$dst)),
          (MOV64ri tjumptable  :$dst)>, Requires<[NotSmallCode]>;
def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
          (MOV64ri tglobaladdr :$dst)>, Requires<[NotSmallCode]>;
def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
          (MOV64ri texternalsym:$dst)>, Requires<[NotSmallCode]>;

def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst),
          (MOV64mi32 addr:$dst, tconstpool:$src)>,
          Requires<[SmallCode, IsStatic]>;
def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst),
          (MOV64mi32 addr:$dst, tjumptable:$src)>,
          Requires<[SmallCode, IsStatic]>;
def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst),
          (MOV64mi32 addr:$dst, tglobaladdr:$src)>,
          Requires<[SmallCode, IsStatic]>;
def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst),
          (MOV64mi32 addr:$dst, texternalsym:$src)>,
          Requires<[SmallCode, IsStatic]>;

// Calls
// Direct PC relative function call for small code model. 32-bit displacement
// sign extended to 64-bit.
def : Pat<(X86call (i64 tglobaladdr:$dst)),
          (CALL64pcrel32 tglobaladdr:$dst)>;
def : Pat<(X86call (i64 texternalsym:$dst)),
          (CALL64pcrel32 texternalsym:$dst)>;

def : Pat<(X86tailcall (i64 tglobaladdr:$dst)),
          (CALL64pcrel32 tglobaladdr:$dst)>;
def : Pat<(X86tailcall (i64 texternalsym:$dst)),
          (CALL64pcrel32 texternalsym:$dst)>;

def : Pat<(X86tailcall GR64:$dst),
          (CALL64r GR64:$dst)>;


// tailcall stuff
def : Pat<(X86tailcall GR32:$dst),
          (TAILCALL)>;
def : Pat<(X86tailcall (i64 tglobaladdr:$dst)),
          (TAILCALL)>;
def : Pat<(X86tailcall (i64 texternalsym:$dst)),
          (TAILCALL)>;

def : Pat<(X86tcret GR64:$dst, imm:$off),
          (TCRETURNri64 GR64:$dst, imm:$off)>;

def : Pat<(X86tcret (i64 tglobaladdr:$dst), imm:$off),
          (TCRETURNdi64 texternalsym:$dst, imm:$off)>;

def : Pat<(X86tcret (i64 texternalsym:$dst), imm:$off),
          (TCRETURNdi64 texternalsym:$dst, imm:$off)>;

// Comparisons.

// TEST R,R is smaller than CMP R,0
def : Pat<(parallel (X86cmp GR64:$src1, 0), (implicit EFLAGS)),
          (TEST64rr GR64:$src1, GR64:$src1)>;

// Conditional moves with folded loads with operands swapped and conditions
// inverted.
def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_B, EFLAGS),
          (CMOVAE64rm GR64:$src2, addr:$src1)>;
def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_AE, EFLAGS),
          (CMOVB64rm GR64:$src2, addr:$src1)>;
def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_E, EFLAGS),
          (CMOVNE64rm GR64:$src2, addr:$src1)>;
def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_NE, EFLAGS),
          (CMOVE64rm GR64:$src2, addr:$src1)>;
def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_BE, EFLAGS),
          (CMOVA64rm GR64:$src2, addr:$src1)>;
def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_A, EFLAGS),
          (CMOVBE64rm GR64:$src2, addr:$src1)>;
def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_L, EFLAGS),
          (CMOVGE64rm GR64:$src2, addr:$src1)>;
def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_GE, EFLAGS),
          (CMOVL64rm GR64:$src2, addr:$src1)>;
def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_LE, EFLAGS),
          (CMOVG64rm GR64:$src2, addr:$src1)>;
def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_G, EFLAGS),
          (CMOVLE64rm GR64:$src2, addr:$src1)>;
def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_P, EFLAGS),
          (CMOVNP64rm GR64:$src2, addr:$src1)>;
def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_NP, EFLAGS),
          (CMOVP64rm GR64:$src2, addr:$src1)>;
def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_S, EFLAGS),
          (CMOVNS64rm GR64:$src2, addr:$src1)>;
def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_NS, EFLAGS),
          (CMOVS64rm GR64:$src2, addr:$src1)>;
def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_O, EFLAGS),
          (CMOVNO64rm GR64:$src2, addr:$src1)>;
def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_NO, EFLAGS),
          (CMOVO64rm GR64:$src2, addr:$src1)>;

// zextload bool -> zextload byte
def : Pat<(zextloadi64i1 addr:$src), (MOVZX64rm8 addr:$src)>;

// extload
// When extloading from 16-bit and smaller memory locations into 64-bit registers,
// use zero-extending loads so that the entire 64-bit register is defined, avoiding
// partial-register updates.
def : Pat<(extloadi64i1 addr:$src),  (MOVZX64rm8  addr:$src)>;
def : Pat<(extloadi64i8 addr:$src),  (MOVZX64rm8  addr:$src)>;
def : Pat<(extloadi64i16 addr:$src), (MOVZX64rm16 addr:$src)>;
// For other extloads, use subregs, since the high contents of the register are
// defined after an extload.
def : Pat<(extloadi64i32 addr:$src),
          (INSERT_SUBREG (i64 (IMPLICIT_DEF)), (MOV32rm addr:$src),
                         x86_subreg_32bit)>;
def : Pat<(extloadi16i1 addr:$src), 
          (INSERT_SUBREG (i16 (IMPLICIT_DEF)), (MOV8rm addr:$src), 
                         x86_subreg_8bit)>,
         Requires<[In64BitMode]>;
def : Pat<(extloadi16i8 addr:$src), 
          (INSERT_SUBREG (i16 (IMPLICIT_DEF)), (MOV8rm addr:$src), 
                         x86_subreg_8bit)>,
         Requires<[In64BitMode]>;

// anyext
def : Pat<(i64 (anyext GR8:$src)),
          (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR8:$src, x86_subreg_8bit)>;
def : Pat<(i64 (anyext GR16:$src)),
          (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR16:$src, x86_subreg_16bit)>;
def : Pat<(i64 (anyext GR32:$src)), 
          (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, x86_subreg_32bit)>;
def : Pat<(i16 (anyext GR8:$src)),
          (INSERT_SUBREG (i16 (IMPLICIT_DEF)), GR8:$src, x86_subreg_8bit)>,
         Requires<[In64BitMode]>;
def : Pat<(i32 (anyext GR8:$src)),
          (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR8:$src, x86_subreg_8bit)>,
         Requires<[In64BitMode]>;

//===----------------------------------------------------------------------===//
// Some peepholes
//===----------------------------------------------------------------------===//

// Odd encoding trick: -128 fits into an 8-bit immediate field while
// +128 doesn't, so in this special case use a sub instead of an add.
def : Pat<(add GR64:$src1, 128),
          (SUB64ri8 GR64:$src1, -128)>;
def : Pat<(store (add (loadi64 addr:$dst), 128), addr:$dst),
          (SUB64mi8 addr:$dst, -128)>;

// The same trick applies for 32-bit immediate fields in 64-bit
// instructions.
def : Pat<(add GR64:$src1, 0x0000000080000000),
          (SUB64ri32 GR64:$src1, 0xffffffff80000000)>;
def : Pat<(store (add (loadi64 addr:$dst), 0x00000000800000000), addr:$dst),
          (SUB64mi32 addr:$dst, 0xffffffff80000000)>;

// r & (2^32-1) ==> movz
def : Pat<(and GR64:$src, 0x00000000FFFFFFFF),
          (MOVZX64rr32 (EXTRACT_SUBREG GR64:$src, x86_subreg_32bit))>;
// r & (2^16-1) ==> movz
def : Pat<(and GR64:$src, 0xffff),
          (MOVZX64rr16 (i16 (EXTRACT_SUBREG GR64:$src, x86_subreg_16bit)))>;
// r & (2^8-1) ==> movz
def : Pat<(and GR64:$src, 0xff),
          (MOVZX64rr8 (i8 (EXTRACT_SUBREG GR64:$src, x86_subreg_8bit)))>;
// r & (2^8-1) ==> movz
def : Pat<(and GR32:$src1, 0xff),
           (MOVZX32rr8 (EXTRACT_SUBREG GR32:$src1, x86_subreg_8bit))>,
      Requires<[In64BitMode]>;
// r & (2^8-1) ==> movz
def : Pat<(and GR16:$src1, 0xff),
           (MOVZX16rr8 (i8 (EXTRACT_SUBREG GR16:$src1, x86_subreg_8bit)))>,
      Requires<[In64BitMode]>;

// sext_inreg patterns
def : Pat<(sext_inreg GR64:$src, i32),
          (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, x86_subreg_32bit))>;
def : Pat<(sext_inreg GR64:$src, i16),
          (MOVSX64rr16 (EXTRACT_SUBREG GR64:$src, x86_subreg_16bit))>;
def : Pat<(sext_inreg GR64:$src, i8),
          (MOVSX64rr8 (EXTRACT_SUBREG GR64:$src, x86_subreg_8bit))>;
def : Pat<(sext_inreg GR32:$src, i8),
          (MOVSX32rr8 (EXTRACT_SUBREG GR32:$src, x86_subreg_8bit))>,
      Requires<[In64BitMode]>;
def : Pat<(sext_inreg GR16:$src, i8),
          (MOVSX16rr8 (i8 (EXTRACT_SUBREG GR16:$src, x86_subreg_8bit)))>,
      Requires<[In64BitMode]>;

// trunc patterns
def : Pat<(i32 (trunc GR64:$src)),
          (EXTRACT_SUBREG GR64:$src, x86_subreg_32bit)>;
def : Pat<(i16 (trunc GR64:$src)),
          (EXTRACT_SUBREG GR64:$src, x86_subreg_16bit)>;
def : Pat<(i8 (trunc GR64:$src)),
          (EXTRACT_SUBREG GR64:$src, x86_subreg_8bit)>;
def : Pat<(i8 (trunc GR32:$src)),
          (EXTRACT_SUBREG GR32:$src, x86_subreg_8bit)>,
      Requires<[In64BitMode]>;
def : Pat<(i8 (trunc GR16:$src)),
          (EXTRACT_SUBREG GR16:$src, x86_subreg_8bit)>,
      Requires<[In64BitMode]>;

// h-register tricks.
// For now, be conservative on x86-64 and use an h-register extract only if the
// value is immediately zero-extended or stored, which are somewhat common
// cases. This uses a bunch of code to prevent a register requiring a REX prefix
// from being allocated in the same instruction as the h register, as there's
// currently no way to describe this requirement to the register allocator.

// h-register extract and zero-extend.
def : Pat<(and (srl_su GR64:$src, (i8 8)), (i64 255)),
          (SUBREG_TO_REG
            (i64 0),
            (MOVZX32_NOREXrr8
              (EXTRACT_SUBREG (COPY_TO_REGCLASS GR64:$src, GR64_ABCD),
                              x86_subreg_8bit_hi)),
            x86_subreg_32bit)>;
def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
          (MOVZX32_NOREXrr8
            (EXTRACT_SUBREG (COPY_TO_REGCLASS GR32:$src, GR32_ABCD),
                            x86_subreg_8bit_hi))>,
      Requires<[In64BitMode]>;
def : Pat<(srl_su GR16:$src, (i8 8)),
          (EXTRACT_SUBREG
            (MOVZX32_NOREXrr8
              (EXTRACT_SUBREG (COPY_TO_REGCLASS GR16:$src, GR16_ABCD),
                              x86_subreg_8bit_hi)),
            x86_subreg_16bit)>,
      Requires<[In64BitMode]>;
def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
          (MOVZX32_NOREXrr8
            (EXTRACT_SUBREG (COPY_TO_REGCLASS GR16:$src, GR16_ABCD),
                            x86_subreg_8bit_hi))>,
      Requires<[In64BitMode]>;
def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))),
          (SUBREG_TO_REG
            (i64 0),
            (MOVZX32_NOREXrr8
              (EXTRACT_SUBREG (COPY_TO_REGCLASS GR16:$src, GR16_ABCD),
                              x86_subreg_8bit_hi)),
            x86_subreg_32bit)>;

// h-register extract and store.
def : Pat<(store (i8 (trunc_su (srl_su GR64:$src, (i8 8)))), addr:$dst),
          (MOV8mr_NOREX
            addr:$dst,
            (EXTRACT_SUBREG (COPY_TO_REGCLASS GR64:$src, GR64_ABCD),
                            x86_subreg_8bit_hi))>;
def : Pat<(store (i8 (trunc_su (srl_su GR32:$src, (i8 8)))), addr:$dst),
          (MOV8mr_NOREX
            addr:$dst,
            (EXTRACT_SUBREG (COPY_TO_REGCLASS GR32:$src, GR32_ABCD),
                            x86_subreg_8bit_hi))>,
      Requires<[In64BitMode]>;
def : Pat<(store (i8 (trunc_su (srl_su GR16:$src, (i8 8)))), addr:$dst),
          (MOV8mr_NOREX
            addr:$dst,
            (EXTRACT_SUBREG (COPY_TO_REGCLASS GR16:$src, GR16_ABCD),
                            x86_subreg_8bit_hi))>,
      Requires<[In64BitMode]>;

// (shl x, 1) ==> (add x, x)
def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>;

// (shl x (and y, 63)) ==> (shl x, y)
def : Pat<(shl GR64:$src1, (and CL:$amt, 63)),
          (SHL64rCL GR64:$src1)>;
def : Pat<(store (shl (loadi64 addr:$dst), (and CL:$amt, 63)), addr:$dst),
          (SHL64mCL addr:$dst)>;

def : Pat<(srl GR64:$src1, (and CL:$amt, 63)),
          (SHR64rCL GR64:$src1)>;
def : Pat<(store (srl (loadi64 addr:$dst), (and CL:$amt, 63)), addr:$dst),
          (SHR64mCL addr:$dst)>;

def : Pat<(sra GR64:$src1, (and CL:$amt, 63)),
          (SAR64rCL GR64:$src1)>;
def : Pat<(store (sra (loadi64 addr:$dst), (and CL:$amt, 63)), addr:$dst),
          (SAR64mCL addr:$dst)>;

// (or (x >> c) | (y << (64 - c))) ==> (shrd64 x, y, c)
def : Pat<(or (srl GR64:$src1, CL:$amt),
              (shl GR64:$src2, (sub 64, CL:$amt))),
          (SHRD64rrCL GR64:$src1, GR64:$src2)>;

def : Pat<(store (or (srl (loadi64 addr:$dst), CL:$amt),
                     (shl GR64:$src2, (sub 64, CL:$amt))), addr:$dst),
          (SHRD64mrCL addr:$dst, GR64:$src2)>;

def : Pat<(or (srl GR64:$src1, (i8 (trunc RCX:$amt))),
              (shl GR64:$src2, (i8 (trunc (sub 64, RCX:$amt))))),
          (SHRD64rrCL GR64:$src1, GR64:$src2)>;

def : Pat<(store (or (srl (loadi64 addr:$dst), (i8 (trunc RCX:$amt))),
                     (shl GR64:$src2, (i8 (trunc (sub 64, RCX:$amt))))),
                 addr:$dst),
          (SHRD64mrCL addr:$dst, GR64:$src2)>;

def : Pat<(shrd GR64:$src1, (i8 imm:$amt1), GR64:$src2, (i8 imm:$amt2)),
          (SHRD64rri8 GR64:$src1, GR64:$src2, (i8 imm:$amt1))>;

def : Pat<(store (shrd (loadi64 addr:$dst), (i8 imm:$amt1),
                       GR64:$src2, (i8 imm:$amt2)), addr:$dst),
          (SHRD64mri8 addr:$dst, GR64:$src2, (i8 imm:$amt1))>;

// (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
def : Pat<(or (shl GR64:$src1, CL:$amt),
              (srl GR64:$src2, (sub 64, CL:$amt))),
          (SHLD64rrCL GR64:$src1, GR64:$src2)>;

def : Pat<(store (or (shl (loadi64 addr:$dst), CL:$amt),
                     (srl GR64:$src2, (sub 64, CL:$amt))), addr:$dst),
          (SHLD64mrCL addr:$dst, GR64:$src2)>;

def : Pat<(or (shl GR64:$src1, (i8 (trunc RCX:$amt))),
              (srl GR64:$src2, (i8 (trunc (sub 64, RCX:$amt))))),
          (SHLD64rrCL GR64:$src1, GR64:$src2)>;

def : Pat<(store (or (shl (loadi64 addr:$dst), (i8 (trunc RCX:$amt))),
                     (srl GR64:$src2, (i8 (trunc (sub 64, RCX:$amt))))),
                 addr:$dst),
          (SHLD64mrCL addr:$dst, GR64:$src2)>;

def : Pat<(shld GR64:$src1, (i8 imm:$amt1), GR64:$src2, (i8 imm:$amt2)),
          (SHLD64rri8 GR64:$src1, GR64:$src2, (i8 imm:$amt1))>;

def : Pat<(store (shld (loadi64 addr:$dst), (i8 imm:$amt1),
                       GR64:$src2, (i8 imm:$amt2)), addr:$dst),
          (SHLD64mri8 addr:$dst, GR64:$src2, (i8 imm:$amt1))>;

// X86 specific add which produces a flag.
def : Pat<(addc GR64:$src1, GR64:$src2),
          (ADD64rr GR64:$src1, GR64:$src2)>;
def : Pat<(addc GR64:$src1, (load addr:$src2)),
          (ADD64rm GR64:$src1, addr:$src2)>;
def : Pat<(addc GR64:$src1, i64immSExt8:$src2),
          (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
def : Pat<(addc GR64:$src1, i64immSExt32:$src2),
          (ADD64ri32 GR64:$src1, imm:$src2)>;

def : Pat<(subc GR64:$src1, GR64:$src2),
          (SUB64rr GR64:$src1, GR64:$src2)>;
def : Pat<(subc GR64:$src1, (load addr:$src2)),
          (SUB64rm GR64:$src1, addr:$src2)>;
def : Pat<(subc GR64:$src1, i64immSExt8:$src2),
          (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>;
def : Pat<(subc GR64:$src1, imm:$src2),
          (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>;

//===----------------------------------------------------------------------===//
// EFLAGS-defining Patterns
//===----------------------------------------------------------------------===//

// Register-Register Addition with EFLAGS result
def : Pat<(parallel (X86add_flag GR64:$src1, GR64:$src2),
                    (implicit EFLAGS)),
          (ADD64rr GR64:$src1, GR64:$src2)>;

// Register-Integer Addition with EFLAGS result
def : Pat<(parallel (X86add_flag GR64:$src1, i64immSExt8:$src2),
                    (implicit EFLAGS)),
          (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
def : Pat<(parallel (X86add_flag GR64:$src1, i64immSExt32:$src2),
                    (implicit EFLAGS)),
          (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>;

// Register-Memory Addition with EFLAGS result
def : Pat<(parallel (X86add_flag GR64:$src1, (loadi64 addr:$src2)),
                    (implicit EFLAGS)),
          (ADD64rm GR64:$src1, addr:$src2)>;

// Memory-Register Addition with EFLAGS result
def : Pat<(parallel (store (X86add_flag (loadi64 addr:$dst), GR64:$src2),
                           addr:$dst),
                    (implicit EFLAGS)),
          (ADD64mr addr:$dst, GR64:$src2)>;
def : Pat<(parallel (store (X86add_flag (loadi64 addr:$dst), i64immSExt8:$src2),
                           addr:$dst),
                    (implicit EFLAGS)),
          (ADD64mi8 addr:$dst, i64immSExt8:$src2)>;
def : Pat<(parallel (store (X86add_flag (loadi64 addr:$dst), i64immSExt32:$src2),
                           addr:$dst),
                    (implicit EFLAGS)),
          (ADD64mi32 addr:$dst, i64immSExt32:$src2)>;

// Register-Register Subtraction with EFLAGS result
def : Pat<(parallel (X86sub_flag GR64:$src1, GR64:$src2),
                    (implicit EFLAGS)),
          (SUB64rr GR64:$src1, GR64:$src2)>;

// Register-Memory Subtraction with EFLAGS result
def : Pat<(parallel (X86sub_flag GR64:$src1, (loadi64 addr:$src2)),
                    (implicit EFLAGS)),
          (SUB64rm GR64:$src1, addr:$src2)>;

// Register-Integer Subtraction with EFLAGS result
def : Pat<(parallel (X86sub_flag GR64:$src1, i64immSExt8:$src2),
                    (implicit EFLAGS)),
          (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>;
def : Pat<(parallel (X86sub_flag GR64:$src1, i64immSExt32:$src2),
                    (implicit EFLAGS)),
          (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>;

// Memory-Register Subtraction with EFLAGS result
def : Pat<(parallel (store (X86sub_flag (loadi64 addr:$dst), GR64:$src2),
                           addr:$dst),
                    (implicit EFLAGS)),
          (SUB64mr addr:$dst, GR64:$src2)>;

// Memory-Integer Subtraction with EFLAGS result
def : Pat<(parallel (store (X86sub_flag (loadi64 addr:$dst), i64immSExt8:$src2),
                           addr:$dst),
                    (implicit EFLAGS)),
          (SUB64mi8 addr:$dst, i64immSExt8:$src2)>;
def : Pat<(parallel (store (X86sub_flag (loadi64 addr:$dst), i64immSExt32:$src2),
                           addr:$dst),
                    (implicit EFLAGS)),
          (SUB64mi32 addr:$dst, i64immSExt32:$src2)>;

// Register-Register Signed Integer Multiplication with EFLAGS result
def : Pat<(parallel (X86smul_flag GR64:$src1, GR64:$src2),
                    (implicit EFLAGS)),
          (IMUL64rr GR64:$src1, GR64:$src2)>;

// Register-Memory Signed Integer Multiplication with EFLAGS result
def : Pat<(parallel (X86smul_flag GR64:$src1, (loadi64 addr:$src2)),
                    (implicit EFLAGS)),
          (IMUL64rm GR64:$src1, addr:$src2)>;

// Register-Integer Signed Integer Multiplication with EFLAGS result
def : Pat<(parallel (X86smul_flag GR64:$src1, i64immSExt8:$src2),
                    (implicit EFLAGS)),
          (IMUL64rri8 GR64:$src1, i64immSExt8:$src2)>;
def : Pat<(parallel (X86smul_flag GR64:$src1, i64immSExt32:$src2),
                    (implicit EFLAGS)),
          (IMUL64rri32 GR64:$src1, i64immSExt32:$src2)>;

// Memory-Integer Signed Integer Multiplication with EFLAGS result
def : Pat<(parallel (X86smul_flag (loadi64 addr:$src1), i64immSExt8:$src2),
                    (implicit EFLAGS)),
          (IMUL64rmi8 addr:$src1, i64immSExt8:$src2)>;
def : Pat<(parallel (X86smul_flag (loadi64 addr:$src1), i64immSExt32:$src2),
                    (implicit EFLAGS)),
          (IMUL64rmi32 addr:$src1, i64immSExt32:$src2)>;

// INC and DEC with EFLAGS result. Note that these do not set CF.
def : Pat<(parallel (X86inc_flag GR16:$src), (implicit EFLAGS)),
          (INC64_16r GR16:$src)>, Requires<[In64BitMode]>;
def : Pat<(parallel (store (i16 (X86inc_flag (loadi16 addr:$dst))), addr:$dst),
                    (implicit EFLAGS)),
          (INC64_16m addr:$dst)>, Requires<[In64BitMode]>;
def : Pat<(parallel (X86dec_flag GR16:$src), (implicit EFLAGS)),
          (DEC64_16r GR16:$src)>, Requires<[In64BitMode]>;
def : Pat<(parallel (store (i16 (X86dec_flag (loadi16 addr:$dst))), addr:$dst),
                    (implicit EFLAGS)),
          (DEC64_16m addr:$dst)>, Requires<[In64BitMode]>;

def : Pat<(parallel (X86inc_flag GR32:$src), (implicit EFLAGS)),
          (INC64_32r GR32:$src)>, Requires<[In64BitMode]>;
def : Pat<(parallel (store (i32 (X86inc_flag (loadi32 addr:$dst))), addr:$dst),
                    (implicit EFLAGS)),
          (INC64_32m addr:$dst)>, Requires<[In64BitMode]>;
def : Pat<(parallel (X86dec_flag GR32:$src), (implicit EFLAGS)),
          (DEC64_32r GR32:$src)>, Requires<[In64BitMode]>;
def : Pat<(parallel (store (i32 (X86dec_flag (loadi32 addr:$dst))), addr:$dst),
                    (implicit EFLAGS)),
          (DEC64_32m addr:$dst)>, Requires<[In64BitMode]>;

def : Pat<(parallel (X86inc_flag GR64:$src), (implicit EFLAGS)),
          (INC64r GR64:$src)>;
def : Pat<(parallel (store (i64 (X86inc_flag (loadi64 addr:$dst))), addr:$dst),
                    (implicit EFLAGS)),
          (INC64m addr:$dst)>;
def : Pat<(parallel (X86dec_flag GR64:$src), (implicit EFLAGS)),
          (DEC64r GR64:$src)>;
def : Pat<(parallel (store (i64 (X86dec_flag (loadi64 addr:$dst))), addr:$dst),
                    (implicit EFLAGS)),
          (DEC64m addr:$dst)>;

//===----------------------------------------------------------------------===//
// X86-64 SSE Instructions
//===----------------------------------------------------------------------===//

// Move instructions...

def MOV64toPQIrr : RPDI<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR64:$src),
                        "mov{d|q}\t{$src, $dst|$dst, $src}",
                        [(set VR128:$dst,
                          (v2i64 (scalar_to_vector GR64:$src)))]>;
def MOVPQIto64rr  : RPDI<0x7E, MRMDestReg, (outs GR64:$dst), (ins VR128:$src),
                         "mov{d|q}\t{$src, $dst|$dst, $src}",
                         [(set GR64:$dst, (vector_extract (v2i64 VR128:$src),
                                           (iPTR 0)))]>;

def MOV64toSDrr : RPDI<0x6E, MRMSrcReg, (outs FR64:$dst), (ins GR64:$src),
                       "mov{d|q}\t{$src, $dst|$dst, $src}",
                       [(set FR64:$dst, (bitconvert GR64:$src))]>;
def MOV64toSDrm : RPDI<0x6E, MRMSrcMem, (outs FR64:$dst), (ins i64mem:$src),
                       "movq\t{$src, $dst|$dst, $src}",
                       [(set FR64:$dst, (bitconvert (loadi64 addr:$src)))]>;

def MOVSDto64rr  : RPDI<0x7E, MRMDestReg, (outs GR64:$dst), (ins FR64:$src),
                        "mov{d|q}\t{$src, $dst|$dst, $src}",
                        [(set GR64:$dst, (bitconvert FR64:$src))]>;
def MOVSDto64mr  : RPDI<0x7E, MRMDestMem, (outs), (ins i64mem:$dst, FR64:$src),
                        "movq\t{$src, $dst|$dst, $src}",
                        [(store (i64 (bitconvert FR64:$src)), addr:$dst)]>;

//===----------------------------------------------------------------------===//
// X86-64 SSE4.1 Instructions
//===----------------------------------------------------------------------===//

/// SS41I_extract32 - SSE 4.1 extract 32 bits to int reg or memory destination
multiclass SS41I_extract64<bits<8> opc, string OpcodeStr> {
  def rr : SS4AIi8<opc, MRMDestReg, (outs GR64:$dst),
                 (ins VR128:$src1, i32i8imm:$src2),
                 !strconcat(OpcodeStr, 
                  "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
                 [(set GR64:$dst,
                  (extractelt (v2i64 VR128:$src1), imm:$src2))]>, OpSize, REX_W;
  def mr : SS4AIi8<opc, MRMDestMem, (outs),
                 (ins i64mem:$dst, VR128:$src1, i32i8imm:$src2),
                 !strconcat(OpcodeStr, 
                  "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
                 [(store (extractelt (v2i64 VR128:$src1), imm:$src2),
                          addr:$dst)]>, OpSize, REX_W;
}

defm PEXTRQ      : SS41I_extract64<0x16, "pextrq">;

let isTwoAddress = 1 in {
  multiclass SS41I_insert64<bits<8> opc, string OpcodeStr> {
    def rr : SS4AIi8<opc, MRMSrcReg, (outs VR128:$dst),
                   (ins VR128:$src1, GR64:$src2, i32i8imm:$src3),
                   !strconcat(OpcodeStr, 
                    "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
                   [(set VR128:$dst, 
                     (v2i64 (insertelt VR128:$src1, GR64:$src2, imm:$src3)))]>,
                   OpSize, REX_W;
    def rm : SS4AIi8<opc, MRMSrcMem, (outs VR128:$dst),
                   (ins VR128:$src1, i64mem:$src2, i32i8imm:$src3),
                   !strconcat(OpcodeStr,
                    "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
                   [(set VR128:$dst, 
                     (v2i64 (insertelt VR128:$src1, (loadi64 addr:$src2),
                                       imm:$src3)))]>, OpSize, REX_W;
  }
}

defm PINSRQ      : SS41I_insert64<0x22, "pinsrq">;