1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
|
//===- X86InstrCompiler.td - Compiler Pseudos and Patterns -*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the various pseudo instructions used by the compiler,
// as well as Pat patterns used during instruction selection.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Pattern Matching Support
def GetLo32XForm : SDNodeXForm<imm, [{
// Transformation function: get the low 32 bits.
return getI32Imm((unsigned)N->getZExtValue());
}]>;
def GetLo8XForm : SDNodeXForm<imm, [{
// Transformation function: get the low 8 bits.
return getI8Imm((uint8_t)N->getZExtValue());
}]>;
//===----------------------------------------------------------------------===//
// Random Pseudo Instructions.
// PIC base construction. This expands to code that looks like this:
// call $next_inst
// popl %destreg"
let neverHasSideEffects = 1, isNotDuplicable = 1, Uses = [ESP] in
def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins i32imm:$label),
"", []>;
// ADJCALLSTACKDOWN/UP implicitly use/def ESP because they may be expanded into
// a stack adjustment and the codegen must know that they may modify the stack
// pointer before prolog-epilog rewriting occurs.
// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
// sub / add which can clobber EFLAGS.
let Defs = [ESP, EFLAGS], Uses = [ESP] in {
def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs), (ins i32imm:$amt),
"#ADJCALLSTACKDOWN",
[(X86callseq_start timm:$amt)]>,
Requires<[In32BitMode]>;
def ADJCALLSTACKUP32 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
"#ADJCALLSTACKUP",
[(X86callseq_end timm:$amt1, timm:$amt2)]>,
Requires<[In32BitMode]>;
}
// ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into
// a stack adjustment and the codegen must know that they may modify the stack
// pointer before prolog-epilog rewriting occurs.
// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
// sub / add which can clobber EFLAGS.
let Defs = [RSP, EFLAGS], Uses = [RSP] in {
def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs), (ins i32imm:$amt),
"#ADJCALLSTACKDOWN",
[(X86callseq_start timm:$amt)]>,
Requires<[In64BitMode]>;
def ADJCALLSTACKUP64 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
"#ADJCALLSTACKUP",
[(X86callseq_end timm:$amt1, timm:$amt2)]>,
Requires<[In64BitMode]>;
}
// x86-64 va_start lowering magic.
let usesCustomInserter = 1 in {
def VASTART_SAVE_XMM_REGS : I<0, Pseudo,
(outs),
(ins GR8:$al,
i64imm:$regsavefi, i64imm:$offset,
variable_ops),
"#VASTART_SAVE_XMM_REGS $al, $regsavefi, $offset",
[(X86vastart_save_xmm_regs GR8:$al,
imm:$regsavefi,
imm:$offset)]>;
// The VAARG_64 pseudo-instruction takes the address of the va_list,
// and places the address of the next argument into a register.
let Defs = [EFLAGS] in
def VAARG_64 : I<0, Pseudo,
(outs GR64:$dst),
(ins i8mem:$ap, i32imm:$size, i8imm:$mode, i32imm:$align),
"#VAARG_64 $dst, $ap, $size, $mode, $align",
[(set GR64:$dst,
(X86vaarg64 addr:$ap, imm:$size, imm:$mode, imm:$align)),
(implicit EFLAGS)]>;
// Dynamic stack allocation yields a _chkstk or _alloca call for all Windows
// targets. These calls are needed to probe the stack when allocating more than
// 4k bytes in one go. Touching the stack at 4K increments is necessary to
// ensure that the guard pages used by the OS virtual memory manager are
// allocated in correct sequence.
// The main point of having separate instruction are extra unmodelled effects
// (compared to ordinary calls) like stack pointer change.
let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
def WIN_ALLOCA : I<0, Pseudo, (outs), (ins),
"# dynamic stack allocation",
[(X86WinAlloca)]>;
// When using segmented stacks these are lowered into instructions which first
// check if the current stacklet has enough free memory. If it does, memory is
// allocated by bumping the stack pointer. Otherwise memory is allocated from
// the heap.
let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
def SEG_ALLOCA_32 : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$size),
"# variable sized alloca for segmented stacks",
[(set GR32:$dst,
(X86SegAlloca GR32:$size))]>,
Requires<[In32BitMode]>;
let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in
def SEG_ALLOCA_64 : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$size),
"# variable sized alloca for segmented stacks",
[(set GR64:$dst,
(X86SegAlloca GR64:$size))]>,
Requires<[In64BitMode]>;
}
// The MSVC runtime contains an _ftol2 routine for converting floating-point
// to integer values. It has a strange calling convention: the input is
// popped from the x87 stack, and the return value is given in EDX:EAX. ECX is
// used as a temporary register. No other registers (aside from flags) are
// touched.
// Microsoft toolchains do not support 80-bit precision, so a WIN_FTOL_80
// variant is unnecessary.
let Defs = [EAX, EDX, ECX, EFLAGS], FPForm = SpecialFP in {
def WIN_FTOL_32 : I<0, Pseudo, (outs), (ins RFP32:$src),
"# win32 fptoui",
[(X86WinFTOL RFP32:$src)]>,
Requires<[In32BitMode]>;
def WIN_FTOL_64 : I<0, Pseudo, (outs), (ins RFP64:$src),
"# win32 fptoui",
[(X86WinFTOL RFP64:$src)]>,
Requires<[In32BitMode]>;
}
//===----------------------------------------------------------------------===//
// EH Pseudo Instructions
//
let SchedRW = [WriteSystem] in {
let isTerminator = 1, isReturn = 1, isBarrier = 1,
hasCtrlDep = 1, isCodeGenOnly = 1 in {
def EH_RETURN : I<0xC3, RawFrm, (outs), (ins GR32:$addr),
"ret\t#eh_return, addr: $addr",
[(X86ehret GR32:$addr)], IIC_RET>, Sched<[WriteJumpLd]>;
}
let isTerminator = 1, isReturn = 1, isBarrier = 1,
hasCtrlDep = 1, isCodeGenOnly = 1 in {
def EH_RETURN64 : I<0xC3, RawFrm, (outs), (ins GR64:$addr),
"ret\t#eh_return, addr: $addr",
[(X86ehret GR64:$addr)], IIC_RET>, Sched<[WriteJumpLd]>;
}
let hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1,
usesCustomInserter = 1 in {
def EH_SjLj_SetJmp32 : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$buf),
"#EH_SJLJ_SETJMP32",
[(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
Requires<[In32BitMode]>;
def EH_SjLj_SetJmp64 : I<0, Pseudo, (outs GR32:$dst), (ins i64mem:$buf),
"#EH_SJLJ_SETJMP64",
[(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
Requires<[In64BitMode]>;
let isTerminator = 1 in {
def EH_SjLj_LongJmp32 : I<0, Pseudo, (outs), (ins i32mem:$buf),
"#EH_SJLJ_LONGJMP32",
[(X86eh_sjlj_longjmp addr:$buf)]>,
Requires<[In32BitMode]>;
def EH_SjLj_LongJmp64 : I<0, Pseudo, (outs), (ins i64mem:$buf),
"#EH_SJLJ_LONGJMP64",
[(X86eh_sjlj_longjmp addr:$buf)]>,
Requires<[In64BitMode]>;
}
}
} // SchedRW
let isBranch = 1, isTerminator = 1, isCodeGenOnly = 1 in {
def EH_SjLj_Setup : I<0, Pseudo, (outs), (ins brtarget:$dst),
"#EH_SjLj_Setup\t$dst", []>;
}
//===----------------------------------------------------------------------===//
// Pseudo instructions used by segmented stacks.
//
// This is lowered into a RET instruction by MCInstLower. We need
// this so that we don't have to have a MachineBasicBlock which ends
// with a RET and also has successors.
let isPseudo = 1 in {
def MORESTACK_RET: I<0, Pseudo, (outs), (ins),
"", []>;
// This instruction is lowered to a RET followed by a MOV. The two
// instructions are not generated on a higher level since then the
// verifier sees a MachineBasicBlock ending with a non-terminator.
def MORESTACK_RET_RESTORE_R10 : I<0, Pseudo, (outs), (ins),
"", []>;
}
//===----------------------------------------------------------------------===//
// Alias Instructions
//===----------------------------------------------------------------------===//
// Alias instruction mapping movr0 to xor.
// FIXME: remove when we can teach regalloc that xor reg, reg is ok.
// FIXME: Set encoding to pseudo.
let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1,
isCodeGenOnly = 1 in
def MOV32r0 : I<0x31, MRMInitReg, (outs GR32:$dst), (ins), "",
[(set GR32:$dst, 0)], IIC_ALU_NONMEM>, Sched<[WriteZero]>;
// Other widths can also make use of the 32-bit xor, which may have a smaller
// encoding and avoid partial register updates.
def : Pat<(i8 0), (EXTRACT_SUBREG (MOV32r0), sub_8bit)>;
def : Pat<(i16 0), (EXTRACT_SUBREG (MOV32r0), sub_16bit)>;
def : Pat<(i64 0), (SUBREG_TO_REG (i64 0), (MOV32r0), sub_32bit)> {
let AddedComplexity = 20;
}
// Materialize i64 constant where top 32-bits are zero. This could theoretically
// use MOV32ri with a SUBREG_TO_REG to represent the zero-extension, however
// that would make it more difficult to rematerialize.
let AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1,
isCodeGenOnly = 1, neverHasSideEffects = 1 in
def MOV32ri64 : Ii32<0xb8, AddRegFrm, (outs GR32:$dst), (ins i64i32imm:$src),
"", [], IIC_ALU_NONMEM>, Sched<[WriteALU]>;
// This 64-bit pseudo-move can be used for both a 64-bit constant that is
// actually the zero-extension of a 32-bit constant, and for labels in the
// x86-64 small code model.
def mov64imm32 : ComplexPattern<i64, 1, "SelectMOV64Imm32", [imm, X86Wrapper]>;
let AddedComplexity = 1 in
def : Pat<(i64 mov64imm32:$src),
(SUBREG_TO_REG (i64 0), (MOV32ri64 mov64imm32:$src), sub_32bit)>;
// Use sbb to materialize carry bit.
let Uses = [EFLAGS], Defs = [EFLAGS], isPseudo = 1, SchedRW = [WriteALU] in {
// FIXME: These are pseudo ops that should be replaced with Pat<> patterns.
// However, Pat<> can't replicate the destination reg into the inputs of the
// result.
def SETB_C8r : I<0, Pseudo, (outs GR8:$dst), (ins), "",
[(set GR8:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
def SETB_C16r : I<0, Pseudo, (outs GR16:$dst), (ins), "",
[(set GR16:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
def SETB_C32r : I<0, Pseudo, (outs GR32:$dst), (ins), "",
[(set GR32:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
def SETB_C64r : I<0, Pseudo, (outs GR64:$dst), (ins), "",
[(set GR64:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
} // isCodeGenOnly
def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
(SETB_C16r)>;
def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
(SETB_C32r)>;
def : Pat<(i64 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
(SETB_C64r)>;
def : Pat<(i16 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
(SETB_C16r)>;
def : Pat<(i32 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
(SETB_C32r)>;
def : Pat<(i64 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
(SETB_C64r)>;
// We canonicalize 'setb' to "(and (sbb reg,reg), 1)" on the hope that the and
// will be eliminated and that the sbb can be extended up to a wider type. When
// this happens, it is great. However, if we are left with an 8-bit sbb and an
// and, we might as well just match it as a setb.
def : Pat<(and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1),
(SETBr)>;
// (add OP, SETB) -> (adc OP, 0)
def : Pat<(add (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR8:$op),
(ADC8ri GR8:$op, 0)>;
def : Pat<(add (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR32:$op),
(ADC32ri8 GR32:$op, 0)>;
def : Pat<(add (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR64:$op),
(ADC64ri8 GR64:$op, 0)>;
// (sub OP, SETB) -> (sbb OP, 0)
def : Pat<(sub GR8:$op, (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
(SBB8ri GR8:$op, 0)>;
def : Pat<(sub GR32:$op, (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
(SBB32ri8 GR32:$op, 0)>;
def : Pat<(sub GR64:$op, (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
(SBB64ri8 GR64:$op, 0)>;
// (sub OP, SETCC_CARRY) -> (adc OP, 0)
def : Pat<(sub GR8:$op, (i8 (X86setcc_c X86_COND_B, EFLAGS))),
(ADC8ri GR8:$op, 0)>;
def : Pat<(sub GR32:$op, (i32 (X86setcc_c X86_COND_B, EFLAGS))),
(ADC32ri8 GR32:$op, 0)>;
def : Pat<(sub GR64:$op, (i64 (X86setcc_c X86_COND_B, EFLAGS))),
(ADC64ri8 GR64:$op, 0)>;
//===----------------------------------------------------------------------===//
// String Pseudo Instructions
//
let SchedRW = [WriteMicrocoded] in {
let Defs = [ECX,EDI,ESI], Uses = [ECX,EDI,ESI], isCodeGenOnly = 1 in {
def REP_MOVSB_32 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
[(X86rep_movs i8)], IIC_REP_MOVS>, REP,
Requires<[In32BitMode]>;
def REP_MOVSW_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
[(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize,
Requires<[In32BitMode]>;
def REP_MOVSD_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
[(X86rep_movs i32)], IIC_REP_MOVS>, REP,
Requires<[In32BitMode]>;
}
let Defs = [RCX,RDI,RSI], Uses = [RCX,RDI,RSI], isCodeGenOnly = 1 in {
def REP_MOVSB_64 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
[(X86rep_movs i8)], IIC_REP_MOVS>, REP,
Requires<[In64BitMode]>;
def REP_MOVSW_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
[(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize,
Requires<[In64BitMode]>;
def REP_MOVSD_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
[(X86rep_movs i32)], IIC_REP_MOVS>, REP,
Requires<[In64BitMode]>;
def REP_MOVSQ_64 : RI<0xA5, RawFrm, (outs), (ins), "{rep;movsq|rep movsq}",
[(X86rep_movs i64)], IIC_REP_MOVS>, REP,
Requires<[In64BitMode]>;
}
// FIXME: Should use "(X86rep_stos AL)" as the pattern.
let Defs = [ECX,EDI], isCodeGenOnly = 1 in {
let Uses = [AL,ECX,EDI] in
def REP_STOSB_32 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
[(X86rep_stos i8)], IIC_REP_STOS>, REP,
Requires<[In32BitMode]>;
let Uses = [AX,ECX,EDI] in
def REP_STOSW_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
[(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize,
Requires<[In32BitMode]>;
let Uses = [EAX,ECX,EDI] in
def REP_STOSD_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
[(X86rep_stos i32)], IIC_REP_STOS>, REP,
Requires<[In32BitMode]>;
}
let Defs = [RCX,RDI], isCodeGenOnly = 1 in {
let Uses = [AL,RCX,RDI] in
def REP_STOSB_64 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
[(X86rep_stos i8)], IIC_REP_STOS>, REP,
Requires<[In64BitMode]>;
let Uses = [AX,RCX,RDI] in
def REP_STOSW_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
[(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize,
Requires<[In64BitMode]>;
let Uses = [RAX,RCX,RDI] in
def REP_STOSD_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
[(X86rep_stos i32)], IIC_REP_STOS>, REP,
Requires<[In64BitMode]>;
let Uses = [RAX,RCX,RDI] in
def REP_STOSQ_64 : RI<0xAB, RawFrm, (outs), (ins), "{rep;stosq|rep stosq}",
[(X86rep_stos i64)], IIC_REP_STOS>, REP,
Requires<[In64BitMode]>;
}
} // SchedRW
//===----------------------------------------------------------------------===//
// Thread Local Storage Instructions
//
// ELF TLS Support
// All calls clobber the non-callee saved registers. ESP is marked as
// a use to prevent stack-pointer assignments that appear immediately
// before calls from potentially appearing dead.
let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0,
MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
Uses = [ESP] in {
def TLS_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
"# TLS_addr32",
[(X86tlsaddr tls32addr:$sym)]>,
Requires<[In32BitMode]>;
def TLS_base_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
"# TLS_base_addr32",
[(X86tlsbaseaddr tls32baseaddr:$sym)]>,
Requires<[In32BitMode]>;
}
// All calls clobber the non-callee saved registers. RSP is marked as
// a use to prevent stack-pointer assignments that appear immediately
// before calls from potentially appearing dead.
let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0, ST1,
MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
Uses = [RSP] in {
def TLS_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
"# TLS_addr64",
[(X86tlsaddr tls64addr:$sym)]>,
Requires<[In64BitMode]>;
def TLS_base_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
"# TLS_base_addr64",
[(X86tlsbaseaddr tls64baseaddr:$sym)]>,
Requires<[In64BitMode]>;
}
// Darwin TLS Support
// For i386, the address of the thunk is passed on the stack, on return the
// address of the variable is in %eax. %ecx is trashed during the function
// call. All other registers are preserved.
let Defs = [EAX, ECX, EFLAGS],
Uses = [ESP],
usesCustomInserter = 1 in
def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
"# TLSCall_32",
[(X86TLSCall addr:$sym)]>,
Requires<[In32BitMode]>;
// For x86_64, the address of the thunk is passed in %rdi, on return
// the address of the variable is in %rax. All other registers are preserved.
let Defs = [RAX, EFLAGS],
Uses = [RSP, RDI],
usesCustomInserter = 1 in
def TLSCall_64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
"# TLSCall_64",
[(X86TLSCall addr:$sym)]>,
Requires<[In64BitMode]>;
//===----------------------------------------------------------------------===//
// Conditional Move Pseudo Instructions
// X86 doesn't have 8-bit conditional moves. Use a customInserter to
// emit control flow. An alternative to this is to mark i8 SELECT as Promote,
// however that requires promoting the operands, and can induce additional
// i8 register pressure.
let usesCustomInserter = 1, Uses = [EFLAGS] in {
def CMOV_GR8 : I<0, Pseudo,
(outs GR8:$dst), (ins GR8:$src1, GR8:$src2, i8imm:$cond),
"#CMOV_GR8 PSEUDO!",
[(set GR8:$dst, (X86cmov GR8:$src1, GR8:$src2,
imm:$cond, EFLAGS))]>;
let Predicates = [NoCMov] in {
def CMOV_GR32 : I<0, Pseudo,
(outs GR32:$dst), (ins GR32:$src1, GR32:$src2, i8imm:$cond),
"#CMOV_GR32* PSEUDO!",
[(set GR32:$dst,
(X86cmov GR32:$src1, GR32:$src2, imm:$cond, EFLAGS))]>;
def CMOV_GR16 : I<0, Pseudo,
(outs GR16:$dst), (ins GR16:$src1, GR16:$src2, i8imm:$cond),
"#CMOV_GR16* PSEUDO!",
[(set GR16:$dst,
(X86cmov GR16:$src1, GR16:$src2, imm:$cond, EFLAGS))]>;
} // Predicates = [NoCMov]
// fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no
// SSE1.
let Predicates = [FPStackf32] in
def CMOV_RFP32 : I<0, Pseudo,
(outs RFP32:$dst),
(ins RFP32:$src1, RFP32:$src2, i8imm:$cond),
"#CMOV_RFP32 PSEUDO!",
[(set RFP32:$dst,
(X86cmov RFP32:$src1, RFP32:$src2, imm:$cond,
EFLAGS))]>;
// fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no
// SSE2.
let Predicates = [FPStackf64] in
def CMOV_RFP64 : I<0, Pseudo,
(outs RFP64:$dst),
(ins RFP64:$src1, RFP64:$src2, i8imm:$cond),
"#CMOV_RFP64 PSEUDO!",
[(set RFP64:$dst,
(X86cmov RFP64:$src1, RFP64:$src2, imm:$cond,
EFLAGS))]>;
def CMOV_RFP80 : I<0, Pseudo,
(outs RFP80:$dst),
(ins RFP80:$src1, RFP80:$src2, i8imm:$cond),
"#CMOV_RFP80 PSEUDO!",
[(set RFP80:$dst,
(X86cmov RFP80:$src1, RFP80:$src2, imm:$cond,
EFLAGS))]>;
} // UsesCustomInserter = 1, Uses = [EFLAGS]
//===----------------------------------------------------------------------===//
// Atomic Instruction Pseudo Instructions
//===----------------------------------------------------------------------===//
// Pseudo atomic instructions
multiclass PSEUDO_ATOMIC_LOAD_BINOP<string mnemonic> {
let usesCustomInserter = 1, mayLoad = 1, mayStore = 1 in {
let Defs = [EFLAGS, AL] in
def NAME#8 : I<0, Pseudo, (outs GR8:$dst),
(ins i8mem:$ptr, GR8:$val),
!strconcat(mnemonic, "8 PSEUDO!"), []>;
let Defs = [EFLAGS, AX] in
def NAME#16 : I<0, Pseudo,(outs GR16:$dst),
(ins i16mem:$ptr, GR16:$val),
!strconcat(mnemonic, "16 PSEUDO!"), []>;
let Defs = [EFLAGS, EAX] in
def NAME#32 : I<0, Pseudo, (outs GR32:$dst),
(ins i32mem:$ptr, GR32:$val),
!strconcat(mnemonic, "32 PSEUDO!"), []>;
let Defs = [EFLAGS, RAX] in
def NAME#64 : I<0, Pseudo, (outs GR64:$dst),
(ins i64mem:$ptr, GR64:$val),
!strconcat(mnemonic, "64 PSEUDO!"), []>;
}
}
multiclass PSEUDO_ATOMIC_LOAD_BINOP_PATS<string name, string frag> {
def : Pat<(!cast<PatFrag>(frag # "_8") addr:$ptr, GR8:$val),
(!cast<Instruction>(name # "8") addr:$ptr, GR8:$val)>;
def : Pat<(!cast<PatFrag>(frag # "_16") addr:$ptr, GR16:$val),
(!cast<Instruction>(name # "16") addr:$ptr, GR16:$val)>;
def : Pat<(!cast<PatFrag>(frag # "_32") addr:$ptr, GR32:$val),
(!cast<Instruction>(name # "32") addr:$ptr, GR32:$val)>;
def : Pat<(!cast<PatFrag>(frag # "_64") addr:$ptr, GR64:$val),
(!cast<Instruction>(name # "64") addr:$ptr, GR64:$val)>;
}
// Atomic exchange, and, or, xor
defm ATOMAND : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMAND">;
defm ATOMOR : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMOR">;
defm ATOMXOR : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMXOR">;
defm ATOMNAND : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMNAND">;
defm ATOMMAX : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMMAX">;
defm ATOMMIN : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMMIN">;
defm ATOMUMAX : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMUMAX">;
defm ATOMUMIN : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMUMIN">;
defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMAND", "atomic_load_and">;
defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMOR", "atomic_load_or">;
defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMXOR", "atomic_load_xor">;
defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMNAND", "atomic_load_nand">;
defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMMAX", "atomic_load_max">;
defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMMIN", "atomic_load_min">;
defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMUMAX", "atomic_load_umax">;
defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMUMIN", "atomic_load_umin">;
multiclass PSEUDO_ATOMIC_LOAD_BINOP6432<string mnemonic> {
let usesCustomInserter = 1, Defs = [EFLAGS, EAX, EDX],
mayLoad = 1, mayStore = 1, hasSideEffects = 0 in
def NAME#6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
(ins i64mem:$ptr, GR32:$val1, GR32:$val2),
!strconcat(mnemonic, "6432 PSEUDO!"), []>;
}
defm ATOMAND : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMAND">;
defm ATOMOR : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMOR">;
defm ATOMXOR : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMXOR">;
defm ATOMNAND : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMNAND">;
defm ATOMADD : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMADD">;
defm ATOMSUB : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMSUB">;
defm ATOMMAX : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMMAX">;
defm ATOMMIN : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMMIN">;
defm ATOMUMAX : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMUMAX">;
defm ATOMUMIN : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMUMIN">;
defm ATOMSWAP : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMSWAP">;
//===----------------------------------------------------------------------===//
// Normal-Instructions-With-Lock-Prefix Pseudo Instructions
//===----------------------------------------------------------------------===//
// FIXME: Use normal instructions and add lock prefix dynamically.
// Memory barriers
// TODO: Get this to fold the constant into the instruction.
let isCodeGenOnly = 1, Defs = [EFLAGS] in
def OR32mrLocked : I<0x09, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$zero),
"or{l}\t{$zero, $dst|$dst, $zero}",
[], IIC_ALU_MEM>, Requires<[In32BitMode]>, LOCK,
Sched<[WriteALULd, WriteRMW]>;
let hasSideEffects = 1 in
def Int_MemBarrier : I<0, Pseudo, (outs), (ins),
"#MEMBARRIER",
[(X86MemBarrier)]>, Sched<[WriteLoad]>;
// RegOpc corresponds to the mr version of the instruction
// ImmOpc corresponds to the mi version of the instruction
// ImmOpc8 corresponds to the mi8 version of the instruction
// ImmMod corresponds to the instruction format of the mi and mi8 versions
multiclass LOCK_ArithBinOp<bits<8> RegOpc, bits<8> ImmOpc, bits<8> ImmOpc8,
Format ImmMod, string mnemonic> {
let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
SchedRW = [WriteALULd, WriteRMW] in {
def NAME#8mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
RegOpc{3}, RegOpc{2}, RegOpc{1}, 0 },
MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2),
!strconcat(mnemonic, "{b}\t",
"{$src2, $dst|$dst, $src2}"),
[], IIC_ALU_NONMEM>, LOCK;
def NAME#16mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
!strconcat(mnemonic, "{w}\t",
"{$src2, $dst|$dst, $src2}"),
[], IIC_ALU_NONMEM>, OpSize, LOCK;
def NAME#32mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
!strconcat(mnemonic, "{l}\t",
"{$src2, $dst|$dst, $src2}"),
[], IIC_ALU_NONMEM>, LOCK;
def NAME#64mr : RI<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
!strconcat(mnemonic, "{q}\t",
"{$src2, $dst|$dst, $src2}"),
[], IIC_ALU_NONMEM>, LOCK;
def NAME#8mi : Ii8<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 0 },
ImmMod, (outs), (ins i8mem :$dst, i8imm :$src2),
!strconcat(mnemonic, "{b}\t",
"{$src2, $dst|$dst, $src2}"),
[], IIC_ALU_MEM>, LOCK;
def NAME#16mi : Ii16<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
ImmMod, (outs), (ins i16mem :$dst, i16imm :$src2),
!strconcat(mnemonic, "{w}\t",
"{$src2, $dst|$dst, $src2}"),
[], IIC_ALU_MEM>, OpSize, LOCK;
def NAME#32mi : Ii32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
ImmMod, (outs), (ins i32mem :$dst, i32imm :$src2),
!strconcat(mnemonic, "{l}\t",
"{$src2, $dst|$dst, $src2}"),
[], IIC_ALU_MEM>, LOCK;
def NAME#64mi32 : RIi32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
ImmMod, (outs), (ins i64mem :$dst, i64i32imm :$src2),
!strconcat(mnemonic, "{q}\t",
"{$src2, $dst|$dst, $src2}"),
[], IIC_ALU_MEM>, LOCK;
def NAME#16mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
ImmMod, (outs), (ins i16mem :$dst, i16i8imm :$src2),
!strconcat(mnemonic, "{w}\t",
"{$src2, $dst|$dst, $src2}"),
[], IIC_ALU_MEM>, OpSize, LOCK;
def NAME#32mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
ImmMod, (outs), (ins i32mem :$dst, i32i8imm :$src2),
!strconcat(mnemonic, "{l}\t",
"{$src2, $dst|$dst, $src2}"),
[], IIC_ALU_MEM>, LOCK;
def NAME#64mi8 : RIi8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
ImmMod, (outs), (ins i64mem :$dst, i64i8imm :$src2),
!strconcat(mnemonic, "{q}\t",
"{$src2, $dst|$dst, $src2}"),
[], IIC_ALU_MEM>, LOCK;
}
}
defm LOCK_ADD : LOCK_ArithBinOp<0x00, 0x80, 0x83, MRM0m, "add">;
defm LOCK_SUB : LOCK_ArithBinOp<0x28, 0x80, 0x83, MRM5m, "sub">;
defm LOCK_OR : LOCK_ArithBinOp<0x08, 0x80, 0x83, MRM1m, "or">;
defm LOCK_AND : LOCK_ArithBinOp<0x20, 0x80, 0x83, MRM4m, "and">;
defm LOCK_XOR : LOCK_ArithBinOp<0x30, 0x80, 0x83, MRM6m, "xor">;
// Optimized codegen when the non-memory output is not used.
multiclass LOCK_ArithUnOp<bits<8> Opc8, bits<8> Opc, Format Form,
string mnemonic> {
let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
SchedRW = [WriteALULd, WriteRMW] in {
def NAME#8m : I<Opc8, Form, (outs), (ins i8mem :$dst),
!strconcat(mnemonic, "{b}\t$dst"),
[], IIC_UNARY_MEM>, LOCK;
def NAME#16m : I<Opc, Form, (outs), (ins i16mem:$dst),
!strconcat(mnemonic, "{w}\t$dst"),
[], IIC_UNARY_MEM>, OpSize, LOCK;
def NAME#32m : I<Opc, Form, (outs), (ins i32mem:$dst),
!strconcat(mnemonic, "{l}\t$dst"),
[], IIC_UNARY_MEM>, LOCK;
def NAME#64m : RI<Opc, Form, (outs), (ins i64mem:$dst),
!strconcat(mnemonic, "{q}\t$dst"),
[], IIC_UNARY_MEM>, LOCK;
}
}
defm LOCK_INC : LOCK_ArithUnOp<0xFE, 0xFF, MRM0m, "inc">;
defm LOCK_DEC : LOCK_ArithUnOp<0xFE, 0xFF, MRM1m, "dec">;
// Atomic compare and swap.
multiclass LCMPXCHG_UnOp<bits<8> Opc, Format Form, string mnemonic,
SDPatternOperator frag, X86MemOperand x86memop,
InstrItinClass itin> {
let isCodeGenOnly = 1 in {
def NAME : I<Opc, Form, (outs), (ins x86memop:$ptr),
!strconcat(mnemonic, "\t$ptr"),
[(frag addr:$ptr)], itin>, TB, LOCK;
}
}
multiclass LCMPXCHG_BinOp<bits<8> Opc8, bits<8> Opc, Format Form,
string mnemonic, SDPatternOperator frag,
InstrItinClass itin8, InstrItinClass itin> {
let isCodeGenOnly = 1, SchedRW = [WriteALULd, WriteRMW] in {
let Defs = [AL, EFLAGS], Uses = [AL] in
def NAME#8 : I<Opc8, Form, (outs), (ins i8mem:$ptr, GR8:$swap),
!strconcat(mnemonic, "{b}\t{$swap, $ptr|$ptr, $swap}"),
[(frag addr:$ptr, GR8:$swap, 1)], itin8>, TB, LOCK;
let Defs = [AX, EFLAGS], Uses = [AX] in
def NAME#16 : I<Opc, Form, (outs), (ins i16mem:$ptr, GR16:$swap),
!strconcat(mnemonic, "{w}\t{$swap, $ptr|$ptr, $swap}"),
[(frag addr:$ptr, GR16:$swap, 2)], itin>, TB, OpSize, LOCK;
let Defs = [EAX, EFLAGS], Uses = [EAX] in
def NAME#32 : I<Opc, Form, (outs), (ins i32mem:$ptr, GR32:$swap),
!strconcat(mnemonic, "{l}\t{$swap, $ptr|$ptr, $swap}"),
[(frag addr:$ptr, GR32:$swap, 4)], itin>, TB, LOCK;
let Defs = [RAX, EFLAGS], Uses = [RAX] in
def NAME#64 : RI<Opc, Form, (outs), (ins i64mem:$ptr, GR64:$swap),
!strconcat(mnemonic, "{q}\t{$swap, $ptr|$ptr, $swap}"),
[(frag addr:$ptr, GR64:$swap, 8)], itin>, TB, LOCK;
}
}
let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX],
SchedRW = [WriteALULd, WriteRMW] in {
defm LCMPXCHG8B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg8b",
X86cas8, i64mem,
IIC_CMPX_LOCK_8B>;
}
let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RBX, RCX, RDX],
Predicates = [HasCmpxchg16b], SchedRW = [WriteALULd, WriteRMW] in {
defm LCMPXCHG16B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg16b",
X86cas16, i128mem,
IIC_CMPX_LOCK_16B>, REX_W;
}
defm LCMPXCHG : LCMPXCHG_BinOp<0xB0, 0xB1, MRMDestMem, "cmpxchg",
X86cas, IIC_CMPX_LOCK_8, IIC_CMPX_LOCK>;
// Atomic exchange and add
multiclass ATOMIC_LOAD_BINOP<bits<8> opc8, bits<8> opc, string mnemonic,
string frag,
InstrItinClass itin8, InstrItinClass itin> {
let Constraints = "$val = $dst", Defs = [EFLAGS], isCodeGenOnly = 1,
SchedRW = [WriteALULd, WriteRMW] in {
def NAME#8 : I<opc8, MRMSrcMem, (outs GR8:$dst),
(ins GR8:$val, i8mem:$ptr),
!strconcat(mnemonic, "{b}\t{$val, $ptr|$ptr, $val}"),
[(set GR8:$dst,
(!cast<PatFrag>(frag # "_8") addr:$ptr, GR8:$val))],
itin8>;
def NAME#16 : I<opc, MRMSrcMem, (outs GR16:$dst),
(ins GR16:$val, i16mem:$ptr),
!strconcat(mnemonic, "{w}\t{$val, $ptr|$ptr, $val}"),
[(set
GR16:$dst,
(!cast<PatFrag>(frag # "_16") addr:$ptr, GR16:$val))],
itin>, OpSize;
def NAME#32 : I<opc, MRMSrcMem, (outs GR32:$dst),
(ins GR32:$val, i32mem:$ptr),
!strconcat(mnemonic, "{l}\t{$val, $ptr|$ptr, $val}"),
[(set
GR32:$dst,
(!cast<PatFrag>(frag # "_32") addr:$ptr, GR32:$val))],
itin>;
def NAME#64 : RI<opc, MRMSrcMem, (outs GR64:$dst),
(ins GR64:$val, i64mem:$ptr),
!strconcat(mnemonic, "{q}\t{$val, $ptr|$ptr, $val}"),
[(set
GR64:$dst,
(!cast<PatFrag>(frag # "_64") addr:$ptr, GR64:$val))],
itin>;
}
}
defm LXADD : ATOMIC_LOAD_BINOP<0xc0, 0xc1, "xadd", "atomic_load_add",
IIC_XADD_LOCK_MEM8, IIC_XADD_LOCK_MEM>,
TB, LOCK;
def ACQUIRE_MOV8rm : I<0, Pseudo, (outs GR8 :$dst), (ins i8mem :$src),
"#ACQUIRE_MOV PSEUDO!",
[(set GR8:$dst, (atomic_load_8 addr:$src))]>;
def ACQUIRE_MOV16rm : I<0, Pseudo, (outs GR16:$dst), (ins i16mem:$src),
"#ACQUIRE_MOV PSEUDO!",
[(set GR16:$dst, (atomic_load_16 addr:$src))]>;
def ACQUIRE_MOV32rm : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$src),
"#ACQUIRE_MOV PSEUDO!",
[(set GR32:$dst, (atomic_load_32 addr:$src))]>;
def ACQUIRE_MOV64rm : I<0, Pseudo, (outs GR64:$dst), (ins i64mem:$src),
"#ACQUIRE_MOV PSEUDO!",
[(set GR64:$dst, (atomic_load_64 addr:$src))]>;
def RELEASE_MOV8mr : I<0, Pseudo, (outs), (ins i8mem :$dst, GR8 :$src),
"#RELEASE_MOV PSEUDO!",
[(atomic_store_8 addr:$dst, GR8 :$src)]>;
def RELEASE_MOV16mr : I<0, Pseudo, (outs), (ins i16mem:$dst, GR16:$src),
"#RELEASE_MOV PSEUDO!",
[(atomic_store_16 addr:$dst, GR16:$src)]>;
def RELEASE_MOV32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, GR32:$src),
"#RELEASE_MOV PSEUDO!",
[(atomic_store_32 addr:$dst, GR32:$src)]>;
def RELEASE_MOV64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, GR64:$src),
"#RELEASE_MOV PSEUDO!",
[(atomic_store_64 addr:$dst, GR64:$src)]>;
//===----------------------------------------------------------------------===//
// Conditional Move Pseudo Instructions.
//===----------------------------------------------------------------------===//
// CMOV* - Used to implement the SSE SELECT DAG operation. Expanded after
// instruction selection into a branch sequence.
let Uses = [EFLAGS], usesCustomInserter = 1 in {
def CMOV_FR32 : I<0, Pseudo,
(outs FR32:$dst), (ins FR32:$t, FR32:$f, i8imm:$cond),
"#CMOV_FR32 PSEUDO!",
[(set FR32:$dst, (X86cmov FR32:$t, FR32:$f, imm:$cond,
EFLAGS))]>;
def CMOV_FR64 : I<0, Pseudo,
(outs FR64:$dst), (ins FR64:$t, FR64:$f, i8imm:$cond),
"#CMOV_FR64 PSEUDO!",
[(set FR64:$dst, (X86cmov FR64:$t, FR64:$f, imm:$cond,
EFLAGS))]>;
def CMOV_V4F32 : I<0, Pseudo,
(outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
"#CMOV_V4F32 PSEUDO!",
[(set VR128:$dst,
(v4f32 (X86cmov VR128:$t, VR128:$f, imm:$cond,
EFLAGS)))]>;
def CMOV_V2F64 : I<0, Pseudo,
(outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
"#CMOV_V2F64 PSEUDO!",
[(set VR128:$dst,
(v2f64 (X86cmov VR128:$t, VR128:$f, imm:$cond,
EFLAGS)))]>;
def CMOV_V2I64 : I<0, Pseudo,
(outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
"#CMOV_V2I64 PSEUDO!",
[(set VR128:$dst,
(v2i64 (X86cmov VR128:$t, VR128:$f, imm:$cond,
EFLAGS)))]>;
def CMOV_V8F32 : I<0, Pseudo,
(outs VR256:$dst), (ins VR256:$t, VR256:$f, i8imm:$cond),
"#CMOV_V8F32 PSEUDO!",
[(set VR256:$dst,
(v8f32 (X86cmov VR256:$t, VR256:$f, imm:$cond,
EFLAGS)))]>;
def CMOV_V4F64 : I<0, Pseudo,
(outs VR256:$dst), (ins VR256:$t, VR256:$f, i8imm:$cond),
"#CMOV_V4F64 PSEUDO!",
[(set VR256:$dst,
(v4f64 (X86cmov VR256:$t, VR256:$f, imm:$cond,
EFLAGS)))]>;
def CMOV_V4I64 : I<0, Pseudo,
(outs VR256:$dst), (ins VR256:$t, VR256:$f, i8imm:$cond),
"#CMOV_V4I64 PSEUDO!",
[(set VR256:$dst,
(v4i64 (X86cmov VR256:$t, VR256:$f, imm:$cond,
EFLAGS)))]>;
}
//===----------------------------------------------------------------------===//
// DAG Pattern Matching Rules
//===----------------------------------------------------------------------===//
// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable
def : Pat<(i32 (X86Wrapper tconstpool :$dst)), (MOV32ri tconstpool :$dst)>;
def : Pat<(i32 (X86Wrapper tjumptable :$dst)), (MOV32ri tjumptable :$dst)>;
def : Pat<(i32 (X86Wrapper tglobaltlsaddr:$dst)),(MOV32ri tglobaltlsaddr:$dst)>;
def : Pat<(i32 (X86Wrapper tglobaladdr :$dst)), (MOV32ri tglobaladdr :$dst)>;
def : Pat<(i32 (X86Wrapper texternalsym:$dst)), (MOV32ri texternalsym:$dst)>;
def : Pat<(i32 (X86Wrapper tblockaddress:$dst)), (MOV32ri tblockaddress:$dst)>;
def : Pat<(add GR32:$src1, (X86Wrapper tconstpool:$src2)),
(ADD32ri GR32:$src1, tconstpool:$src2)>;
def : Pat<(add GR32:$src1, (X86Wrapper tjumptable:$src2)),
(ADD32ri GR32:$src1, tjumptable:$src2)>;
def : Pat<(add GR32:$src1, (X86Wrapper tglobaladdr :$src2)),
(ADD32ri GR32:$src1, tglobaladdr:$src2)>;
def : Pat<(add GR32:$src1, (X86Wrapper texternalsym:$src2)),
(ADD32ri GR32:$src1, texternalsym:$src2)>;
def : Pat<(add GR32:$src1, (X86Wrapper tblockaddress:$src2)),
(ADD32ri GR32:$src1, tblockaddress:$src2)>;
def : Pat<(store (i32 (X86Wrapper tglobaladdr:$src)), addr:$dst),
(MOV32mi addr:$dst, tglobaladdr:$src)>;
def : Pat<(store (i32 (X86Wrapper texternalsym:$src)), addr:$dst),
(MOV32mi addr:$dst, texternalsym:$src)>;
def : Pat<(store (i32 (X86Wrapper tblockaddress:$src)), addr:$dst),
(MOV32mi addr:$dst, tblockaddress:$src)>;
// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable when not in small
// code model mode, should use 'movabs'. FIXME: This is really a hack, the
// 'movabs' predicate should handle this sort of thing.
def : Pat<(i64 (X86Wrapper tconstpool :$dst)),
(MOV64ri tconstpool :$dst)>, Requires<[FarData]>;
def : Pat<(i64 (X86Wrapper tjumptable :$dst)),
(MOV64ri tjumptable :$dst)>, Requires<[FarData]>;
def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
(MOV64ri tglobaladdr :$dst)>, Requires<[FarData]>;
def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
(MOV64ri texternalsym:$dst)>, Requires<[FarData]>;
def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
(MOV64ri tblockaddress:$dst)>, Requires<[FarData]>;
// In kernel code model, we can get the address of a label
// into a register with 'movq'. FIXME: This is a hack, the 'imm' predicate of
// the MOV64ri32 should accept these.
def : Pat<(i64 (X86Wrapper tconstpool :$dst)),
(MOV64ri32 tconstpool :$dst)>, Requires<[KernelCode]>;
def : Pat<(i64 (X86Wrapper tjumptable :$dst)),
(MOV64ri32 tjumptable :$dst)>, Requires<[KernelCode]>;
def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
(MOV64ri32 tglobaladdr :$dst)>, Requires<[KernelCode]>;
def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
(MOV64ri32 texternalsym:$dst)>, Requires<[KernelCode]>;
def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
(MOV64ri32 tblockaddress:$dst)>, Requires<[KernelCode]>;
// If we have small model and -static mode, it is safe to store global addresses
// directly as immediates. FIXME: This is really a hack, the 'imm' predicate
// for MOV64mi32 should handle this sort of thing.
def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst),
(MOV64mi32 addr:$dst, tconstpool:$src)>,
Requires<[NearData, IsStatic]>;
def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst),
(MOV64mi32 addr:$dst, tjumptable:$src)>,
Requires<[NearData, IsStatic]>;
def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst),
(MOV64mi32 addr:$dst, tglobaladdr:$src)>,
Requires<[NearData, IsStatic]>;
def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst),
(MOV64mi32 addr:$dst, texternalsym:$src)>,
Requires<[NearData, IsStatic]>;
def : Pat<(store (i64 (X86Wrapper tblockaddress:$src)), addr:$dst),
(MOV64mi32 addr:$dst, tblockaddress:$src)>,
Requires<[NearData, IsStatic]>;
// Calls
// tls has some funny stuff here...
// This corresponds to movabs $foo@tpoff, %rax
def : Pat<(i64 (X86Wrapper tglobaltlsaddr :$dst)),
(MOV64ri32 tglobaltlsaddr :$dst)>;
// This corresponds to add $foo@tpoff, %rax
def : Pat<(add GR64:$src1, (X86Wrapper tglobaltlsaddr :$dst)),
(ADD64ri32 GR64:$src1, tglobaltlsaddr :$dst)>;
// Direct PC relative function call for small code model. 32-bit displacement
// sign extended to 64-bit.
def : Pat<(X86call (i64 tglobaladdr:$dst)),
(CALL64pcrel32 tglobaladdr:$dst)>;
def : Pat<(X86call (i64 texternalsym:$dst)),
(CALL64pcrel32 texternalsym:$dst)>;
// Tailcall stuff. The TCRETURN instructions execute after the epilog, so they
// can never use callee-saved registers. That is the purpose of the GR64_TC
// register classes.
//
// The only volatile register that is never used by the calling convention is
// %r11. This happens when calling a vararg function with 6 arguments.
//
// Match an X86tcret that uses less than 7 volatile registers.
def X86tcret_6regs : PatFrag<(ops node:$ptr, node:$off),
(X86tcret node:$ptr, node:$off), [{
// X86tcret args: (*chain, ptr, imm, regs..., glue)
unsigned NumRegs = 0;
for (unsigned i = 3, e = N->getNumOperands(); i != e; ++i)
if (isa<RegisterSDNode>(N->getOperand(i)) && ++NumRegs > 6)
return false;
return true;
}]>;
def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
(TCRETURNri ptr_rc_tailcall:$dst, imm:$off)>,
Requires<[In32BitMode]>;
// FIXME: This is disabled for 32-bit PIC mode because the global base
// register which is part of the address mode may be assigned a
// callee-saved register.
def : Pat<(X86tcret (load addr:$dst), imm:$off),
(TCRETURNmi addr:$dst, imm:$off)>,
Requires<[In32BitMode, IsNotPIC]>;
def : Pat<(X86tcret (i32 tglobaladdr:$dst), imm:$off),
(TCRETURNdi texternalsym:$dst, imm:$off)>,
Requires<[In32BitMode]>;
def : Pat<(X86tcret (i32 texternalsym:$dst), imm:$off),
(TCRETURNdi texternalsym:$dst, imm:$off)>,
Requires<[In32BitMode]>;
def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
(TCRETURNri64 ptr_rc_tailcall:$dst, imm:$off)>,
Requires<[In64BitMode]>;
// Don't fold loads into X86tcret requiring more than 6 regs.
// There wouldn't be enough scratch registers for base+index.
def : Pat<(X86tcret_6regs (load addr:$dst), imm:$off),
(TCRETURNmi64 addr:$dst, imm:$off)>,
Requires<[In64BitMode]>;
def : Pat<(X86tcret (i64 tglobaladdr:$dst), imm:$off),
(TCRETURNdi64 tglobaladdr:$dst, imm:$off)>,
Requires<[In64BitMode]>;
def : Pat<(X86tcret (i64 texternalsym:$dst), imm:$off),
(TCRETURNdi64 texternalsym:$dst, imm:$off)>,
Requires<[In64BitMode]>;
// Normal calls, with various flavors of addresses.
def : Pat<(X86call (i32 tglobaladdr:$dst)),
(CALLpcrel32 tglobaladdr:$dst)>;
def : Pat<(X86call (i32 texternalsym:$dst)),
(CALLpcrel32 texternalsym:$dst)>;
def : Pat<(X86call (i32 imm:$dst)),
(CALLpcrel32 imm:$dst)>, Requires<[CallImmAddr]>;
// Comparisons.
// TEST R,R is smaller than CMP R,0
def : Pat<(X86cmp GR8:$src1, 0),
(TEST8rr GR8:$src1, GR8:$src1)>;
def : Pat<(X86cmp GR16:$src1, 0),
(TEST16rr GR16:$src1, GR16:$src1)>;
def : Pat<(X86cmp GR32:$src1, 0),
(TEST32rr GR32:$src1, GR32:$src1)>;
def : Pat<(X86cmp GR64:$src1, 0),
(TEST64rr GR64:$src1, GR64:$src1)>;
// Conditional moves with folded loads with operands swapped and conditions
// inverted.
multiclass CMOVmr<PatLeaf InvertedCond, Instruction Inst16, Instruction Inst32,
Instruction Inst64> {
let Predicates = [HasCMov] in {
def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, InvertedCond, EFLAGS),
(Inst16 GR16:$src2, addr:$src1)>;
def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, InvertedCond, EFLAGS),
(Inst32 GR32:$src2, addr:$src1)>;
def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, InvertedCond, EFLAGS),
(Inst64 GR64:$src2, addr:$src1)>;
}
}
defm : CMOVmr<X86_COND_B , CMOVAE16rm, CMOVAE32rm, CMOVAE64rm>;
defm : CMOVmr<X86_COND_AE, CMOVB16rm , CMOVB32rm , CMOVB64rm>;
defm : CMOVmr<X86_COND_E , CMOVNE16rm, CMOVNE32rm, CMOVNE64rm>;
defm : CMOVmr<X86_COND_NE, CMOVE16rm , CMOVE32rm , CMOVE64rm>;
defm : CMOVmr<X86_COND_BE, CMOVA16rm , CMOVA32rm , CMOVA64rm>;
defm : CMOVmr<X86_COND_A , CMOVBE16rm, CMOVBE32rm, CMOVBE64rm>;
defm : CMOVmr<X86_COND_L , CMOVGE16rm, CMOVGE32rm, CMOVGE64rm>;
defm : CMOVmr<X86_COND_GE, CMOVL16rm , CMOVL32rm , CMOVL64rm>;
defm : CMOVmr<X86_COND_LE, CMOVG16rm , CMOVG32rm , CMOVG64rm>;
defm : CMOVmr<X86_COND_G , CMOVLE16rm, CMOVLE32rm, CMOVLE64rm>;
defm : CMOVmr<X86_COND_P , CMOVNP16rm, CMOVNP32rm, CMOVNP64rm>;
defm : CMOVmr<X86_COND_NP, CMOVP16rm , CMOVP32rm , CMOVP64rm>;
defm : CMOVmr<X86_COND_S , CMOVNS16rm, CMOVNS32rm, CMOVNS64rm>;
defm : CMOVmr<X86_COND_NS, CMOVS16rm , CMOVS32rm , CMOVS64rm>;
defm : CMOVmr<X86_COND_O , CMOVNO16rm, CMOVNO32rm, CMOVNO64rm>;
defm : CMOVmr<X86_COND_NO, CMOVO16rm , CMOVO32rm , CMOVO64rm>;
// zextload bool -> zextload byte
def : Pat<(zextloadi8i1 addr:$src), (MOV8rm addr:$src)>;
def : Pat<(zextloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
def : Pat<(zextloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
def : Pat<(zextloadi64i1 addr:$src),
(SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
// extload bool -> extload byte
// When extloading from 16-bit and smaller memory locations into 64-bit
// registers, use zero-extending loads so that the entire 64-bit register is
// defined, avoiding partial-register updates.
def : Pat<(extloadi8i1 addr:$src), (MOV8rm addr:$src)>;
def : Pat<(extloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
def : Pat<(extloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
def : Pat<(extloadi16i8 addr:$src), (MOVZX16rm8 addr:$src)>;
def : Pat<(extloadi32i8 addr:$src), (MOVZX32rm8 addr:$src)>;
def : Pat<(extloadi32i16 addr:$src), (MOVZX32rm16 addr:$src)>;
// For other extloads, use subregs, since the high contents of the register are
// defined after an extload.
def : Pat<(extloadi64i1 addr:$src),
(SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
def : Pat<(extloadi64i8 addr:$src),
(SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
def : Pat<(extloadi64i16 addr:$src),
(SUBREG_TO_REG (i64 0), (MOVZX32rm16 addr:$src), sub_32bit)>;
def : Pat<(extloadi64i32 addr:$src),
(SUBREG_TO_REG (i64 0), (MOV32rm addr:$src), sub_32bit)>;
// anyext. Define these to do an explicit zero-extend to
// avoid partial-register updates.
def : Pat<(i16 (anyext GR8 :$src)), (EXTRACT_SUBREG
(MOVZX32rr8 GR8 :$src), sub_16bit)>;
def : Pat<(i32 (anyext GR8 :$src)), (MOVZX32rr8 GR8 :$src)>;
// Except for i16 -> i32 since isel expect i16 ops to be promoted to i32.
def : Pat<(i32 (anyext GR16:$src)),
(INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, sub_16bit)>;
def : Pat<(i64 (anyext GR8 :$src)),
(SUBREG_TO_REG (i64 0), (MOVZX32rr8 GR8 :$src), sub_32bit)>;
def : Pat<(i64 (anyext GR16:$src)),
(SUBREG_TO_REG (i64 0), (MOVZX32rr16 GR16 :$src), sub_32bit)>;
def : Pat<(i64 (anyext GR32:$src)),
(SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
// Any instruction that defines a 32-bit result leaves the high half of the
// register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may
// be copying from a truncate. And x86's cmov doesn't do anything if the
// condition is false. But any other 32-bit operation will zero-extend
// up to 64 bits.
def def32 : PatLeaf<(i32 GR32:$src), [{
return N->getOpcode() != ISD::TRUNCATE &&
N->getOpcode() != TargetOpcode::EXTRACT_SUBREG &&
N->getOpcode() != ISD::CopyFromReg &&
N->getOpcode() != X86ISD::CMOV;
}]>;
// In the case of a 32-bit def that is known to implicitly zero-extend,
// we can use a SUBREG_TO_REG.
def : Pat<(i64 (zext def32:$src)),
(SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
//===----------------------------------------------------------------------===//
// Pattern match OR as ADD
//===----------------------------------------------------------------------===//
// If safe, we prefer to pattern match OR as ADD at isel time. ADD can be
// 3-addressified into an LEA instruction to avoid copies. However, we also
// want to finally emit these instructions as an or at the end of the code
// generator to make the generated code easier to read. To do this, we select
// into "disjoint bits" pseudo ops.
// Treat an 'or' node is as an 'add' if the or'ed bits are known to be zero.
def or_is_add : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),[{
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)))
return CurDAG->MaskedValueIsZero(N->getOperand(0), CN->getAPIntValue());
APInt KnownZero0, KnownOne0;
CurDAG->ComputeMaskedBits(N->getOperand(0), KnownZero0, KnownOne0, 0);
APInt KnownZero1, KnownOne1;
CurDAG->ComputeMaskedBits(N->getOperand(1), KnownZero1, KnownOne1, 0);
return (~KnownZero0 & ~KnownZero1) == 0;
}]>;
// (or x1, x2) -> (add x1, x2) if two operands are known not to share bits.
// Try this before the selecting to OR.
let AddedComplexity = 5, SchedRW = [WriteALU] in {
let isConvertibleToThreeAddress = 1,
Constraints = "$src1 = $dst", Defs = [EFLAGS] in {
let isCommutable = 1 in {
def ADD16rr_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
"", // orw/addw REG, REG
[(set GR16:$dst, (or_is_add GR16:$src1, GR16:$src2))]>;
def ADD32rr_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
"", // orl/addl REG, REG
[(set GR32:$dst, (or_is_add GR32:$src1, GR32:$src2))]>;
def ADD64rr_DB : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
"", // orq/addq REG, REG
[(set GR64:$dst, (or_is_add GR64:$src1, GR64:$src2))]>;
} // isCommutable
// NOTE: These are order specific, we want the ri8 forms to be listed
// first so that they are slightly preferred to the ri forms.
def ADD16ri8_DB : I<0, Pseudo,
(outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2),
"", // orw/addw REG, imm8
[(set GR16:$dst,(or_is_add GR16:$src1,i16immSExt8:$src2))]>;
def ADD16ri_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2),
"", // orw/addw REG, imm
[(set GR16:$dst, (or_is_add GR16:$src1, imm:$src2))]>;
def ADD32ri8_DB : I<0, Pseudo,
(outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2),
"", // orl/addl REG, imm8
[(set GR32:$dst,(or_is_add GR32:$src1,i32immSExt8:$src2))]>;
def ADD32ri_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
"", // orl/addl REG, imm
[(set GR32:$dst, (or_is_add GR32:$src1, imm:$src2))]>;
def ADD64ri8_DB : I<0, Pseudo,
(outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
"", // orq/addq REG, imm8
[(set GR64:$dst, (or_is_add GR64:$src1,
i64immSExt8:$src2))]>;
def ADD64ri32_DB : I<0, Pseudo,
(outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
"", // orq/addq REG, imm
[(set GR64:$dst, (or_is_add GR64:$src1,
i64immSExt32:$src2))]>;
}
} // AddedComplexity, SchedRW
//===----------------------------------------------------------------------===//
// Some peepholes
//===----------------------------------------------------------------------===//
// Odd encoding trick: -128 fits into an 8-bit immediate field while
// +128 doesn't, so in this special case use a sub instead of an add.
def : Pat<(add GR16:$src1, 128),
(SUB16ri8 GR16:$src1, -128)>;
def : Pat<(store (add (loadi16 addr:$dst), 128), addr:$dst),
(SUB16mi8 addr:$dst, -128)>;
def : Pat<(add GR32:$src1, 128),
(SUB32ri8 GR32:$src1, -128)>;
def : Pat<(store (add (loadi32 addr:$dst), 128), addr:$dst),
(SUB32mi8 addr:$dst, -128)>;
def : Pat<(add GR64:$src1, 128),
(SUB64ri8 GR64:$src1, -128)>;
def : Pat<(store (add (loadi64 addr:$dst), 128), addr:$dst),
(SUB64mi8 addr:$dst, -128)>;
// The same trick applies for 32-bit immediate fields in 64-bit
// instructions.
def : Pat<(add GR64:$src1, 0x0000000080000000),
(SUB64ri32 GR64:$src1, 0xffffffff80000000)>;
def : Pat<(store (add (loadi64 addr:$dst), 0x00000000800000000), addr:$dst),
(SUB64mi32 addr:$dst, 0xffffffff80000000)>;
// To avoid needing to materialize an immediate in a register, use a 32-bit and
// with implicit zero-extension instead of a 64-bit and if the immediate has at
// least 32 bits of leading zeros. If in addition the last 32 bits can be
// represented with a sign extension of a 8 bit constant, use that.
def : Pat<(and GR64:$src, i64immZExt32SExt8:$imm),
(SUBREG_TO_REG
(i64 0),
(AND32ri8
(EXTRACT_SUBREG GR64:$src, sub_32bit),
(i32 (GetLo8XForm imm:$imm))),
sub_32bit)>;
def : Pat<(and GR64:$src, i64immZExt32:$imm),
(SUBREG_TO_REG
(i64 0),
(AND32ri
(EXTRACT_SUBREG GR64:$src, sub_32bit),
(i32 (GetLo32XForm imm:$imm))),
sub_32bit)>;
// r & (2^16-1) ==> movz
def : Pat<(and GR32:$src1, 0xffff),
(MOVZX32rr16 (EXTRACT_SUBREG GR32:$src1, sub_16bit))>;
// r & (2^8-1) ==> movz
def : Pat<(and GR32:$src1, 0xff),
(MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src1,
GR32_ABCD)),
sub_8bit))>,
Requires<[In32BitMode]>;
// r & (2^8-1) ==> movz
def : Pat<(and GR16:$src1, 0xff),
(EXTRACT_SUBREG (MOVZX32rr8 (EXTRACT_SUBREG
(i16 (COPY_TO_REGCLASS GR16:$src1, GR16_ABCD)), sub_8bit)),
sub_16bit)>,
Requires<[In32BitMode]>;
// r & (2^32-1) ==> movz
def : Pat<(and GR64:$src, 0x00000000FFFFFFFF),
(SUBREG_TO_REG (i64 0),
(MOV32rr (EXTRACT_SUBREG GR64:$src, sub_32bit)),
sub_32bit)>;
// r & (2^16-1) ==> movz
def : Pat<(and GR64:$src, 0xffff),
(SUBREG_TO_REG (i64 0),
(MOVZX32rr16 (i16 (EXTRACT_SUBREG GR64:$src, sub_16bit))),
sub_32bit)>;
// r & (2^8-1) ==> movz
def : Pat<(and GR64:$src, 0xff),
(SUBREG_TO_REG (i64 0),
(MOVZX32rr8 (i8 (EXTRACT_SUBREG GR64:$src, sub_8bit))),
sub_32bit)>;
// r & (2^8-1) ==> movz
def : Pat<(and GR32:$src1, 0xff),
(MOVZX32rr8 (EXTRACT_SUBREG GR32:$src1, sub_8bit))>,
Requires<[In64BitMode]>;
// r & (2^8-1) ==> movz
def : Pat<(and GR16:$src1, 0xff),
(EXTRACT_SUBREG (MOVZX32rr8 (i8
(EXTRACT_SUBREG GR16:$src1, sub_8bit))), sub_16bit)>,
Requires<[In64BitMode]>;
// sext_inreg patterns
def : Pat<(sext_inreg GR32:$src, i16),
(MOVSX32rr16 (EXTRACT_SUBREG GR32:$src, sub_16bit))>;
def : Pat<(sext_inreg GR32:$src, i8),
(MOVSX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
GR32_ABCD)),
sub_8bit))>,
Requires<[In32BitMode]>;
def : Pat<(sext_inreg GR16:$src, i8),
(EXTRACT_SUBREG (i32 (MOVSX32rr8 (EXTRACT_SUBREG
(i32 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit))),
sub_16bit)>,
Requires<[In32BitMode]>;
def : Pat<(sext_inreg GR64:$src, i32),
(MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
def : Pat<(sext_inreg GR64:$src, i16),
(MOVSX64rr16 (EXTRACT_SUBREG GR64:$src, sub_16bit))>;
def : Pat<(sext_inreg GR64:$src, i8),
(MOVSX64rr8 (EXTRACT_SUBREG GR64:$src, sub_8bit))>;
def : Pat<(sext_inreg GR32:$src, i8),
(MOVSX32rr8 (EXTRACT_SUBREG GR32:$src, sub_8bit))>,
Requires<[In64BitMode]>;
def : Pat<(sext_inreg GR16:$src, i8),
(EXTRACT_SUBREG (MOVSX32rr8
(EXTRACT_SUBREG GR16:$src, sub_8bit)), sub_16bit)>,
Requires<[In64BitMode]>;
// sext, sext_load, zext, zext_load
def: Pat<(i16 (sext GR8:$src)),
(EXTRACT_SUBREG (MOVSX32rr8 GR8:$src), sub_16bit)>;
def: Pat<(sextloadi16i8 addr:$src),
(EXTRACT_SUBREG (MOVSX32rm8 addr:$src), sub_16bit)>;
def: Pat<(i16 (zext GR8:$src)),
(EXTRACT_SUBREG (MOVZX32rr8 GR8:$src), sub_16bit)>;
def: Pat<(zextloadi16i8 addr:$src),
(EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>;
// trunc patterns
def : Pat<(i16 (trunc GR32:$src)),
(EXTRACT_SUBREG GR32:$src, sub_16bit)>;
def : Pat<(i8 (trunc GR32:$src)),
(EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
sub_8bit)>,
Requires<[In32BitMode]>;
def : Pat<(i8 (trunc GR16:$src)),
(EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
sub_8bit)>,
Requires<[In32BitMode]>;
def : Pat<(i32 (trunc GR64:$src)),
(EXTRACT_SUBREG GR64:$src, sub_32bit)>;
def : Pat<(i16 (trunc GR64:$src)),
(EXTRACT_SUBREG GR64:$src, sub_16bit)>;
def : Pat<(i8 (trunc GR64:$src)),
(EXTRACT_SUBREG GR64:$src, sub_8bit)>;
def : Pat<(i8 (trunc GR32:$src)),
(EXTRACT_SUBREG GR32:$src, sub_8bit)>,
Requires<[In64BitMode]>;
def : Pat<(i8 (trunc GR16:$src)),
(EXTRACT_SUBREG GR16:$src, sub_8bit)>,
Requires<[In64BitMode]>;
// h-register tricks
def : Pat<(i8 (trunc (srl_su GR16:$src, (i8 8)))),
(EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
sub_8bit_hi)>,
Requires<[In32BitMode]>;
def : Pat<(i8 (trunc (srl_su GR32:$src, (i8 8)))),
(EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
sub_8bit_hi)>,
Requires<[In32BitMode]>;
def : Pat<(srl GR16:$src, (i8 8)),
(EXTRACT_SUBREG
(MOVZX32rr8
(EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
sub_8bit_hi)),
sub_16bit)>,
Requires<[In32BitMode]>;
def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
(MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
GR16_ABCD)),
sub_8bit_hi))>,
Requires<[In32BitMode]>;
def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
(MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
GR16_ABCD)),
sub_8bit_hi))>,
Requires<[In32BitMode]>;
def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
(MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
GR32_ABCD)),
sub_8bit_hi))>,
Requires<[In32BitMode]>;
def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
(MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
GR32_ABCD)),
sub_8bit_hi))>,
Requires<[In32BitMode]>;
// h-register tricks.
// For now, be conservative on x86-64 and use an h-register extract only if the
// value is immediately zero-extended or stored, which are somewhat common
// cases. This uses a bunch of code to prevent a register requiring a REX prefix
// from being allocated in the same instruction as the h register, as there's
// currently no way to describe this requirement to the register allocator.
// h-register extract and zero-extend.
def : Pat<(and (srl_su GR64:$src, (i8 8)), (i64 255)),
(SUBREG_TO_REG
(i64 0),
(MOVZX32_NOREXrr8
(EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
sub_8bit_hi)),
sub_32bit)>;
def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
(MOVZX32_NOREXrr8
(EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
sub_8bit_hi))>,
Requires<[In64BitMode]>;
def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
(MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
GR32_ABCD)),
sub_8bit_hi))>,
Requires<[In64BitMode]>;
def : Pat<(srl GR16:$src, (i8 8)),
(EXTRACT_SUBREG
(MOVZX32_NOREXrr8
(EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
sub_8bit_hi)),
sub_16bit)>,
Requires<[In64BitMode]>;
def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
(MOVZX32_NOREXrr8
(EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
sub_8bit_hi))>,
Requires<[In64BitMode]>;
def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
(MOVZX32_NOREXrr8
(EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
sub_8bit_hi))>,
Requires<[In64BitMode]>;
def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))),
(SUBREG_TO_REG
(i64 0),
(MOVZX32_NOREXrr8
(EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
sub_8bit_hi)),
sub_32bit)>;
def : Pat<(i64 (anyext (srl_su GR16:$src, (i8 8)))),
(SUBREG_TO_REG
(i64 0),
(MOVZX32_NOREXrr8
(EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
sub_8bit_hi)),
sub_32bit)>;
// h-register extract and store.
def : Pat<(store (i8 (trunc_su (srl_su GR64:$src, (i8 8)))), addr:$dst),
(MOV8mr_NOREX
addr:$dst,
(EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
sub_8bit_hi))>;
def : Pat<(store (i8 (trunc_su (srl_su GR32:$src, (i8 8)))), addr:$dst),
(MOV8mr_NOREX
addr:$dst,
(EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
sub_8bit_hi))>,
Requires<[In64BitMode]>;
def : Pat<(store (i8 (trunc_su (srl_su GR16:$src, (i8 8)))), addr:$dst),
(MOV8mr_NOREX
addr:$dst,
(EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
sub_8bit_hi))>,
Requires<[In64BitMode]>;
// (shl x, 1) ==> (add x, x)
// Note that if x is undef (immediate or otherwise), we could theoretically
// end up with the two uses of x getting different values, producing a result
// where the least significant bit is not 0. However, the probability of this
// happening is considered low enough that this is officially not a
// "real problem".
def : Pat<(shl GR8 :$src1, (i8 1)), (ADD8rr GR8 :$src1, GR8 :$src1)>;
def : Pat<(shl GR16:$src1, (i8 1)), (ADD16rr GR16:$src1, GR16:$src1)>;
def : Pat<(shl GR32:$src1, (i8 1)), (ADD32rr GR32:$src1, GR32:$src1)>;
def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>;
// Helper imms that check if a mask doesn't change significant shift bits.
def immShift32 : ImmLeaf<i8, [{ return CountTrailingOnes_32(Imm) >= 5; }]>;
def immShift64 : ImmLeaf<i8, [{ return CountTrailingOnes_32(Imm) >= 6; }]>;
// (shl x (and y, 31)) ==> (shl x, y)
def : Pat<(shl GR8:$src1, (and CL, immShift32)),
(SHL8rCL GR8:$src1)>;
def : Pat<(shl GR16:$src1, (and CL, immShift32)),
(SHL16rCL GR16:$src1)>;
def : Pat<(shl GR32:$src1, (and CL, immShift32)),
(SHL32rCL GR32:$src1)>;
def : Pat<(store (shl (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst),
(SHL8mCL addr:$dst)>;
def : Pat<(store (shl (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst),
(SHL16mCL addr:$dst)>;
def : Pat<(store (shl (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst),
(SHL32mCL addr:$dst)>;
def : Pat<(srl GR8:$src1, (and CL, immShift32)),
(SHR8rCL GR8:$src1)>;
def : Pat<(srl GR16:$src1, (and CL, immShift32)),
(SHR16rCL GR16:$src1)>;
def : Pat<(srl GR32:$src1, (and CL, immShift32)),
(SHR32rCL GR32:$src1)>;
def : Pat<(store (srl (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst),
(SHR8mCL addr:$dst)>;
def : Pat<(store (srl (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst),
(SHR16mCL addr:$dst)>;
def : Pat<(store (srl (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst),
(SHR32mCL addr:$dst)>;
def : Pat<(sra GR8:$src1, (and CL, immShift32)),
(SAR8rCL GR8:$src1)>;
def : Pat<(sra GR16:$src1, (and CL, immShift32)),
(SAR16rCL GR16:$src1)>;
def : Pat<(sra GR32:$src1, (and CL, immShift32)),
(SAR32rCL GR32:$src1)>;
def : Pat<(store (sra (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst),
(SAR8mCL addr:$dst)>;
def : Pat<(store (sra (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst),
(SAR16mCL addr:$dst)>;
def : Pat<(store (sra (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst),
(SAR32mCL addr:$dst)>;
// (shl x (and y, 63)) ==> (shl x, y)
def : Pat<(shl GR64:$src1, (and CL, immShift64)),
(SHL64rCL GR64:$src1)>;
def : Pat<(store (shl (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
(SHL64mCL addr:$dst)>;
def : Pat<(srl GR64:$src1, (and CL, immShift64)),
(SHR64rCL GR64:$src1)>;
def : Pat<(store (srl (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
(SHR64mCL addr:$dst)>;
def : Pat<(sra GR64:$src1, (and CL, immShift64)),
(SAR64rCL GR64:$src1)>;
def : Pat<(store (sra (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
(SAR64mCL addr:$dst)>;
// (anyext (setcc_carry)) -> (setcc_carry)
def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
(SETB_C16r)>;
def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
(SETB_C32r)>;
def : Pat<(i32 (anyext (i16 (X86setcc_c X86_COND_B, EFLAGS)))),
(SETB_C32r)>;
//===----------------------------------------------------------------------===//
// EFLAGS-defining Patterns
//===----------------------------------------------------------------------===//
// add reg, reg
def : Pat<(add GR8 :$src1, GR8 :$src2), (ADD8rr GR8 :$src1, GR8 :$src2)>;
def : Pat<(add GR16:$src1, GR16:$src2), (ADD16rr GR16:$src1, GR16:$src2)>;
def : Pat<(add GR32:$src1, GR32:$src2), (ADD32rr GR32:$src1, GR32:$src2)>;
// add reg, mem
def : Pat<(add GR8:$src1, (loadi8 addr:$src2)),
(ADD8rm GR8:$src1, addr:$src2)>;
def : Pat<(add GR16:$src1, (loadi16 addr:$src2)),
(ADD16rm GR16:$src1, addr:$src2)>;
def : Pat<(add GR32:$src1, (loadi32 addr:$src2)),
(ADD32rm GR32:$src1, addr:$src2)>;
// add reg, imm
def : Pat<(add GR8 :$src1, imm:$src2), (ADD8ri GR8:$src1 , imm:$src2)>;
def : Pat<(add GR16:$src1, imm:$src2), (ADD16ri GR16:$src1, imm:$src2)>;
def : Pat<(add GR32:$src1, imm:$src2), (ADD32ri GR32:$src1, imm:$src2)>;
def : Pat<(add GR16:$src1, i16immSExt8:$src2),
(ADD16ri8 GR16:$src1, i16immSExt8:$src2)>;
def : Pat<(add GR32:$src1, i32immSExt8:$src2),
(ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
// sub reg, reg
def : Pat<(sub GR8 :$src1, GR8 :$src2), (SUB8rr GR8 :$src1, GR8 :$src2)>;
def : Pat<(sub GR16:$src1, GR16:$src2), (SUB16rr GR16:$src1, GR16:$src2)>;
def : Pat<(sub GR32:$src1, GR32:$src2), (SUB32rr GR32:$src1, GR32:$src2)>;
// sub reg, mem
def : Pat<(sub GR8:$src1, (loadi8 addr:$src2)),
(SUB8rm GR8:$src1, addr:$src2)>;
def : Pat<(sub GR16:$src1, (loadi16 addr:$src2)),
(SUB16rm GR16:$src1, addr:$src2)>;
def : Pat<(sub GR32:$src1, (loadi32 addr:$src2)),
(SUB32rm GR32:$src1, addr:$src2)>;
// sub reg, imm
def : Pat<(sub GR8:$src1, imm:$src2),
(SUB8ri GR8:$src1, imm:$src2)>;
def : Pat<(sub GR16:$src1, imm:$src2),
(SUB16ri GR16:$src1, imm:$src2)>;
def : Pat<(sub GR32:$src1, imm:$src2),
(SUB32ri GR32:$src1, imm:$src2)>;
def : Pat<(sub GR16:$src1, i16immSExt8:$src2),
(SUB16ri8 GR16:$src1, i16immSExt8:$src2)>;
def : Pat<(sub GR32:$src1, i32immSExt8:$src2),
(SUB32ri8 GR32:$src1, i32immSExt8:$src2)>;
// sub 0, reg
def : Pat<(X86sub_flag 0, GR8 :$src), (NEG8r GR8 :$src)>;
def : Pat<(X86sub_flag 0, GR16:$src), (NEG16r GR16:$src)>;
def : Pat<(X86sub_flag 0, GR32:$src), (NEG32r GR32:$src)>;
def : Pat<(X86sub_flag 0, GR64:$src), (NEG64r GR64:$src)>;
// mul reg, reg
def : Pat<(mul GR16:$src1, GR16:$src2),
(IMUL16rr GR16:$src1, GR16:$src2)>;
def : Pat<(mul GR32:$src1, GR32:$src2),
(IMUL32rr GR32:$src1, GR32:$src2)>;
// mul reg, mem
def : Pat<(mul GR16:$src1, (loadi16 addr:$src2)),
(IMUL16rm GR16:$src1, addr:$src2)>;
def : Pat<(mul GR32:$src1, (loadi32 addr:$src2)),
(IMUL32rm GR32:$src1, addr:$src2)>;
// mul reg, imm
def : Pat<(mul GR16:$src1, imm:$src2),
(IMUL16rri GR16:$src1, imm:$src2)>;
def : Pat<(mul GR32:$src1, imm:$src2),
(IMUL32rri GR32:$src1, imm:$src2)>;
def : Pat<(mul GR16:$src1, i16immSExt8:$src2),
(IMUL16rri8 GR16:$src1, i16immSExt8:$src2)>;
def : Pat<(mul GR32:$src1, i32immSExt8:$src2),
(IMUL32rri8 GR32:$src1, i32immSExt8:$src2)>;
// reg = mul mem, imm
def : Pat<(mul (loadi16 addr:$src1), imm:$src2),
(IMUL16rmi addr:$src1, imm:$src2)>;
def : Pat<(mul (loadi32 addr:$src1), imm:$src2),
(IMUL32rmi addr:$src1, imm:$src2)>;
def : Pat<(mul (loadi16 addr:$src1), i16immSExt8:$src2),
(IMUL16rmi8 addr:$src1, i16immSExt8:$src2)>;
def : Pat<(mul (loadi32 addr:$src1), i32immSExt8:$src2),
(IMUL32rmi8 addr:$src1, i32immSExt8:$src2)>;
// Patterns for nodes that do not produce flags, for instructions that do.
// addition
def : Pat<(add GR64:$src1, GR64:$src2),
(ADD64rr GR64:$src1, GR64:$src2)>;
def : Pat<(add GR64:$src1, i64immSExt8:$src2),
(ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
def : Pat<(add GR64:$src1, i64immSExt32:$src2),
(ADD64ri32 GR64:$src1, i64immSExt32:$src2)>;
def : Pat<(add GR64:$src1, (loadi64 addr:$src2)),
(ADD64rm GR64:$src1, addr:$src2)>;
// subtraction
def : Pat<(sub GR64:$src1, GR64:$src2),
(SUB64rr GR64:$src1, GR64:$src2)>;
def : Pat<(sub GR64:$src1, (loadi64 addr:$src2)),
(SUB64rm GR64:$src1, addr:$src2)>;
def : Pat<(sub GR64:$src1, i64immSExt8:$src2),
(SUB64ri8 GR64:$src1, i64immSExt8:$src2)>;
def : Pat<(sub GR64:$src1, i64immSExt32:$src2),
(SUB64ri32 GR64:$src1, i64immSExt32:$src2)>;
// Multiply
def : Pat<(mul GR64:$src1, GR64:$src2),
(IMUL64rr GR64:$src1, GR64:$src2)>;
def : Pat<(mul GR64:$src1, (loadi64 addr:$src2)),
(IMUL64rm GR64:$src1, addr:$src2)>;
def : Pat<(mul GR64:$src1, i64immSExt8:$src2),
(IMUL64rri8 GR64:$src1, i64immSExt8:$src2)>;
def : Pat<(mul GR64:$src1, i64immSExt32:$src2),
(IMUL64rri32 GR64:$src1, i64immSExt32:$src2)>;
def : Pat<(mul (loadi64 addr:$src1), i64immSExt8:$src2),
(IMUL64rmi8 addr:$src1, i64immSExt8:$src2)>;
def : Pat<(mul (loadi64 addr:$src1), i64immSExt32:$src2),
(IMUL64rmi32 addr:$src1, i64immSExt32:$src2)>;
// Increment reg.
def : Pat<(add GR8 :$src, 1), (INC8r GR8 :$src)>;
def : Pat<(add GR16:$src, 1), (INC16r GR16:$src)>, Requires<[In32BitMode]>;
def : Pat<(add GR16:$src, 1), (INC64_16r GR16:$src)>, Requires<[In64BitMode]>;
def : Pat<(add GR32:$src, 1), (INC32r GR32:$src)>, Requires<[In32BitMode]>;
def : Pat<(add GR32:$src, 1), (INC64_32r GR32:$src)>, Requires<[In64BitMode]>;
def : Pat<(add GR64:$src, 1), (INC64r GR64:$src)>;
// Decrement reg.
def : Pat<(add GR8 :$src, -1), (DEC8r GR8 :$src)>;
def : Pat<(add GR16:$src, -1), (DEC16r GR16:$src)>, Requires<[In32BitMode]>;
def : Pat<(add GR16:$src, -1), (DEC64_16r GR16:$src)>, Requires<[In64BitMode]>;
def : Pat<(add GR32:$src, -1), (DEC32r GR32:$src)>, Requires<[In32BitMode]>;
def : Pat<(add GR32:$src, -1), (DEC64_32r GR32:$src)>, Requires<[In64BitMode]>;
def : Pat<(add GR64:$src, -1), (DEC64r GR64:$src)>;
// or reg/reg.
def : Pat<(or GR8 :$src1, GR8 :$src2), (OR8rr GR8 :$src1, GR8 :$src2)>;
def : Pat<(or GR16:$src1, GR16:$src2), (OR16rr GR16:$src1, GR16:$src2)>;
def : Pat<(or GR32:$src1, GR32:$src2), (OR32rr GR32:$src1, GR32:$src2)>;
def : Pat<(or GR64:$src1, GR64:$src2), (OR64rr GR64:$src1, GR64:$src2)>;
// or reg/mem
def : Pat<(or GR8:$src1, (loadi8 addr:$src2)),
(OR8rm GR8:$src1, addr:$src2)>;
def : Pat<(or GR16:$src1, (loadi16 addr:$src2)),
(OR16rm GR16:$src1, addr:$src2)>;
def : Pat<(or GR32:$src1, (loadi32 addr:$src2)),
(OR32rm GR32:$src1, addr:$src2)>;
def : Pat<(or GR64:$src1, (loadi64 addr:$src2)),
(OR64rm GR64:$src1, addr:$src2)>;
// or reg/imm
def : Pat<(or GR8:$src1 , imm:$src2), (OR8ri GR8 :$src1, imm:$src2)>;
def : Pat<(or GR16:$src1, imm:$src2), (OR16ri GR16:$src1, imm:$src2)>;
def : Pat<(or GR32:$src1, imm:$src2), (OR32ri GR32:$src1, imm:$src2)>;
def : Pat<(or GR16:$src1, i16immSExt8:$src2),
(OR16ri8 GR16:$src1, i16immSExt8:$src2)>;
def : Pat<(or GR32:$src1, i32immSExt8:$src2),
(OR32ri8 GR32:$src1, i32immSExt8:$src2)>;
def : Pat<(or GR64:$src1, i64immSExt8:$src2),
(OR64ri8 GR64:$src1, i64immSExt8:$src2)>;
def : Pat<(or GR64:$src1, i64immSExt32:$src2),
(OR64ri32 GR64:$src1, i64immSExt32:$src2)>;
// xor reg/reg
def : Pat<(xor GR8 :$src1, GR8 :$src2), (XOR8rr GR8 :$src1, GR8 :$src2)>;
def : Pat<(xor GR16:$src1, GR16:$src2), (XOR16rr GR16:$src1, GR16:$src2)>;
def : Pat<(xor GR32:$src1, GR32:$src2), (XOR32rr GR32:$src1, GR32:$src2)>;
def : Pat<(xor GR64:$src1, GR64:$src2), (XOR64rr GR64:$src1, GR64:$src2)>;
// xor reg/mem
def : Pat<(xor GR8:$src1, (loadi8 addr:$src2)),
(XOR8rm GR8:$src1, addr:$src2)>;
def : Pat<(xor GR16:$src1, (loadi16 addr:$src2)),
(XOR16rm GR16:$src1, addr:$src2)>;
def : Pat<(xor GR32:$src1, (loadi32 addr:$src2)),
(XOR32rm GR32:$src1, addr:$src2)>;
def : Pat<(xor GR64:$src1, (loadi64 addr:$src2)),
(XOR64rm GR64:$src1, addr:$src2)>;
// xor reg/imm
def : Pat<(xor GR8:$src1, imm:$src2),
(XOR8ri GR8:$src1, imm:$src2)>;
def : Pat<(xor GR16:$src1, imm:$src2),
(XOR16ri GR16:$src1, imm:$src2)>;
def : Pat<(xor GR32:$src1, imm:$src2),
(XOR32ri GR32:$src1, imm:$src2)>;
def : Pat<(xor GR16:$src1, i16immSExt8:$src2),
(XOR16ri8 GR16:$src1, i16immSExt8:$src2)>;
def : Pat<(xor GR32:$src1, i32immSExt8:$src2),
(XOR32ri8 GR32:$src1, i32immSExt8:$src2)>;
def : Pat<(xor GR64:$src1, i64immSExt8:$src2),
(XOR64ri8 GR64:$src1, i64immSExt8:$src2)>;
def : Pat<(xor GR64:$src1, i64immSExt32:$src2),
(XOR64ri32 GR64:$src1, i64immSExt32:$src2)>;
// and reg/reg
def : Pat<(and GR8 :$src1, GR8 :$src2), (AND8rr GR8 :$src1, GR8 :$src2)>;
def : Pat<(and GR16:$src1, GR16:$src2), (AND16rr GR16:$src1, GR16:$src2)>;
def : Pat<(and GR32:$src1, GR32:$src2), (AND32rr GR32:$src1, GR32:$src2)>;
def : Pat<(and GR64:$src1, GR64:$src2), (AND64rr GR64:$src1, GR64:$src2)>;
// and reg/mem
def : Pat<(and GR8:$src1, (loadi8 addr:$src2)),
(AND8rm GR8:$src1, addr:$src2)>;
def : Pat<(and GR16:$src1, (loadi16 addr:$src2)),
(AND16rm GR16:$src1, addr:$src2)>;
def : Pat<(and GR32:$src1, (loadi32 addr:$src2)),
(AND32rm GR32:$src1, addr:$src2)>;
def : Pat<(and GR64:$src1, (loadi64 addr:$src2)),
(AND64rm GR64:$src1, addr:$src2)>;
// and reg/imm
def : Pat<(and GR8:$src1, imm:$src2),
(AND8ri GR8:$src1, imm:$src2)>;
def : Pat<(and GR16:$src1, imm:$src2),
(AND16ri GR16:$src1, imm:$src2)>;
def : Pat<(and GR32:$src1, imm:$src2),
(AND32ri GR32:$src1, imm:$src2)>;
def : Pat<(and GR16:$src1, i16immSExt8:$src2),
(AND16ri8 GR16:$src1, i16immSExt8:$src2)>;
def : Pat<(and GR32:$src1, i32immSExt8:$src2),
(AND32ri8 GR32:$src1, i32immSExt8:$src2)>;
def : Pat<(and GR64:$src1, i64immSExt8:$src2),
(AND64ri8 GR64:$src1, i64immSExt8:$src2)>;
def : Pat<(and GR64:$src1, i64immSExt32:$src2),
(AND64ri32 GR64:$src1, i64immSExt32:$src2)>;
// Bit scan instruction patterns to match explicit zero-undef behavior.
def : Pat<(cttz_zero_undef GR16:$src), (BSF16rr GR16:$src)>;
def : Pat<(cttz_zero_undef GR32:$src), (BSF32rr GR32:$src)>;
def : Pat<(cttz_zero_undef GR64:$src), (BSF64rr GR64:$src)>;
def : Pat<(cttz_zero_undef (loadi16 addr:$src)), (BSF16rm addr:$src)>;
def : Pat<(cttz_zero_undef (loadi32 addr:$src)), (BSF32rm addr:$src)>;
def : Pat<(cttz_zero_undef (loadi64 addr:$src)), (BSF64rm addr:$src)>;
|