aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/X86/X86InstrInfo.h
blob: 1e6aaf3c30fd4df3c3ffa2681e78ec4635fccf61 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
//===- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*- ===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the X86 implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//

#ifndef X86INSTRUCTIONINFO_H
#define X86INSTRUCTIONINFO_H

#include "llvm/Target/TargetInstrInfo.h"
#include "X86RegisterInfo.h"

namespace llvm {
  class X86RegisterInfo;
  class X86TargetMachine;

namespace X86 {
  // X86 specific condition code. These correspond to X86_*_COND in
  // X86InstrInfo.td. They must be kept in synch.
  enum CondCode {
    COND_A  = 0,
    COND_AE = 1,
    COND_B  = 2,
    COND_BE = 3,
    COND_E  = 4,
    COND_G  = 5,
    COND_GE = 6,
    COND_L  = 7,
    COND_LE = 8,
    COND_NE = 9,
    COND_NO = 10,
    COND_NP = 11,
    COND_NS = 12,
    COND_O  = 13,
    COND_P  = 14,
    COND_S  = 15,
    COND_INVALID
  };
  
  // Turn condition code into conditional branch opcode.
  unsigned GetCondBranchFromCond(CondCode CC);
  
  /// GetOppositeBranchCondition - Return the inverse of the specified cond,
  /// e.g. turning COND_E to COND_NE.
  CondCode GetOppositeBranchCondition(X86::CondCode CC);

}
  
/// X86II - This namespace holds all of the target specific flags that
/// instruction info tracks.
///
namespace X86II {
  enum {
    //===------------------------------------------------------------------===//
    // Instruction types.  These are the standard/most common forms for X86
    // instructions.
    //

    // PseudoFrm - This represents an instruction that is a pseudo instruction
    // or one that has not been implemented yet.  It is illegal to code generate
    // it, but tolerated for intermediate implementation stages.
    Pseudo         = 0,

    /// Raw - This form is for instructions that don't have any operands, so
    /// they are just a fixed opcode value, like 'leave'.
    RawFrm         = 1,

    /// AddRegFrm - This form is used for instructions like 'push r32' that have
    /// their one register operand added to their opcode.
    AddRegFrm      = 2,

    /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
    /// to specify a destination, which in this case is a register.
    ///
    MRMDestReg     = 3,

    /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
    /// to specify a destination, which in this case is memory.
    ///
    MRMDestMem     = 4,

    /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
    /// to specify a source, which in this case is a register.
    ///
    MRMSrcReg      = 5,

    /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
    /// to specify a source, which in this case is memory.
    ///
    MRMSrcMem      = 6,

    /// MRM[0-7][rm] - These forms are used to represent instructions that use
    /// a Mod/RM byte, and use the middle field to hold extended opcode
    /// information.  In the intel manual these are represented as /0, /1, ...
    ///

    // First, instructions that operate on a register r/m operand...
    MRM0r = 16,  MRM1r = 17,  MRM2r = 18,  MRM3r = 19, // Format /0 /1 /2 /3
    MRM4r = 20,  MRM5r = 21,  MRM6r = 22,  MRM7r = 23, // Format /4 /5 /6 /7

    // Next, instructions that operate on a memory r/m operand...
    MRM0m = 24,  MRM1m = 25,  MRM2m = 26,  MRM3m = 27, // Format /0 /1 /2 /3
    MRM4m = 28,  MRM5m = 29,  MRM6m = 30,  MRM7m = 31, // Format /4 /5 /6 /7

    // MRMInitReg - This form is used for instructions whose source and
    // destinations are the same register.
    MRMInitReg = 32,

    FormMask       = 63,

    //===------------------------------------------------------------------===//
    // Actual flags...

    // OpSize - Set if this instruction requires an operand size prefix (0x66),
    // which most often indicates that the instruction operates on 16 bit data
    // instead of 32 bit data.
    OpSize      = 1 << 6,

    // AsSize - Set if this instruction requires an operand size prefix (0x67),
    // which most often indicates that the instruction address 16 bit address
    // instead of 32 bit address (or 32 bit address in 64 bit mode).
    AdSize      = 1 << 7,

    //===------------------------------------------------------------------===//
    // Op0Mask - There are several prefix bytes that are used to form two byte
    // opcodes.  These are currently 0x0F, 0xF3, and 0xD8-0xDF.  This mask is
    // used to obtain the setting of this field.  If no bits in this field is
    // set, there is no prefix byte for obtaining a multibyte opcode.
    //
    Op0Shift    = 8,
    Op0Mask     = 0xF << Op0Shift,

    // TB - TwoByte - Set if this instruction has a two byte opcode, which
    // starts with a 0x0F byte before the real opcode.
    TB          = 1 << Op0Shift,

    // REP - The 0xF3 prefix byte indicating repetition of the following
    // instruction.
    REP         = 2 << Op0Shift,

    // D8-DF - These escape opcodes are used by the floating point unit.  These
    // values must remain sequential.
    D8 = 3 << Op0Shift,   D9 = 4 << Op0Shift,
    DA = 5 << Op0Shift,   DB = 6 << Op0Shift,
    DC = 7 << Op0Shift,   DD = 8 << Op0Shift,
    DE = 9 << Op0Shift,   DF = 10 << Op0Shift,

    // XS, XD - These prefix codes are for single and double precision scalar
    // floating point operations performed in the SSE registers.
    XD = 11 << Op0Shift,  XS = 12 << Op0Shift,

    // T8, TA - Prefix after the 0x0F prefix.
    T8 = 13 << Op0Shift,  TA = 14 << Op0Shift,

    //===------------------------------------------------------------------===//
    // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
    // They are used to specify GPRs and SSE registers, 64-bit operand size,
    // etc. We only cares about REX.W and REX.R bits and only the former is
    // statically determined.
    //
    REXShift    = 12,
    REX_W       = 1 << REXShift,

    //===------------------------------------------------------------------===//
    // This three-bit field describes the size of an immediate operand.  Zero is
    // unused so that we can tell if we forgot to set a value.
    ImmShift = 13,
    ImmMask  = 7 << ImmShift,
    Imm8     = 1 << ImmShift,
    Imm16    = 2 << ImmShift,
    Imm32    = 3 << ImmShift,
    Imm64    = 4 << ImmShift,

    //===------------------------------------------------------------------===//
    // FP Instruction Classification...  Zero is non-fp instruction.

    // FPTypeMask - Mask for all of the FP types...
    FPTypeShift = 16,
    FPTypeMask  = 7 << FPTypeShift,

    // NotFP - The default, set for instructions that do not use FP registers.
    NotFP      = 0 << FPTypeShift,

    // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
    ZeroArgFP  = 1 << FPTypeShift,

    // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
    OneArgFP   = 2 << FPTypeShift,

    // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
    // result back to ST(0).  For example, fcos, fsqrt, etc.
    //
    OneArgFPRW = 3 << FPTypeShift,

    // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
    // explicit argument, storing the result to either ST(0) or the implicit
    // argument.  For example: fadd, fsub, fmul, etc...
    TwoArgFP   = 4 << FPTypeShift,

    // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
    // explicit argument, but have no destination.  Example: fucom, fucomi, ...
    CompareFP  = 5 << FPTypeShift,

    // CondMovFP - "2 operand" floating point conditional move instructions.
    CondMovFP  = 6 << FPTypeShift,

    // SpecialFP - Special instruction forms.  Dispatch by opcode explicitly.
    SpecialFP  = 7 << FPTypeShift,

    // Bits 19 -> 23 are unused
    OpcodeShift   = 24,
    OpcodeMask    = 0xFF << OpcodeShift
  };
}

class X86InstrInfo : public TargetInstrInfo {
  X86TargetMachine &TM;
  const X86RegisterInfo RI;
public:
  X86InstrInfo(X86TargetMachine &tm);

  /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info.  As
  /// such, whenever a client has an instance of instruction info, it should
  /// always be able to get register info as well (through this method).
  ///
  virtual const MRegisterInfo &getRegisterInfo() const { return RI; }

  // Return true if the instruction is a register to register move and
  // leave the source and dest operands in the passed parameters.
  //
  bool isMoveInstr(const MachineInstr& MI, unsigned& sourceReg,
                   unsigned& destReg) const;
  unsigned isLoadFromStackSlot(MachineInstr *MI, int &FrameIndex) const;
  unsigned isStoreToStackSlot(MachineInstr *MI, int &FrameIndex) const;
  bool isTriviallyReMaterializable(MachineInstr *MI) const;
  
  /// convertToThreeAddress - This method must be implemented by targets that
  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
  /// may be able to convert a two-address instruction into a true
  /// three-address instruction on demand.  This allows the X86 target (for
  /// example) to convert ADD and SHL instructions into LEA instructions if they
  /// would require register copies due to two-addressness.
  ///
  /// This method returns a null pointer if the transformation cannot be
  /// performed, otherwise it returns the new instruction.
  ///
  virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
                                              MachineBasicBlock::iterator &MBBI,
                                              LiveVariables &LV) const;

  /// commuteInstruction - We have a few instructions that must be hacked on to
  /// commute them.
  ///
  virtual MachineInstr *commuteInstruction(MachineInstr *MI) const;

  // Branch analysis.
  virtual bool isUnpredicatedTerminator(const MachineInstr* MI) const;
  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
                             MachineBasicBlock *&FBB,
                             std::vector<MachineOperand> &Cond) const;
  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const;
  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
                                MachineBasicBlock *FBB,
                                const std::vector<MachineOperand> &Cond) const;
  virtual bool BlockHasNoFallThrough(MachineBasicBlock &MBB) const;
  virtual bool ReverseBranchCondition(std::vector<MachineOperand> &Cond) const;

  const TargetRegisterClass *getPointerRegClass() const;

  // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
  // specified machine instruction.
  //
  unsigned char getBaseOpcodeFor(const TargetInstrDescriptor *TID) const {
    return TID->TSFlags >> X86II::OpcodeShift;
  }
  unsigned char getBaseOpcodeFor(MachineOpCode Opcode) const {
    return getBaseOpcodeFor(&get(Opcode));
  }
};

} // End llvm namespace

#endif