1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
|
//===- X86InstrInfo.td - Describe the X86 Instruction Set -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the X86 instruction set, defining the instructions, and
// properties of the instructions which are needed for code generation, machine
// code emission, and analysis.
//
//===----------------------------------------------------------------------===//
// Format specifies the encoding used by the instruction. This is part of the
// ad-hoc solution used to emit machine instruction encodings by our machine
// code emitter.
class Format<bits<5> val> {
bits<5> Value = val;
}
def Pseudo : Format<0>; def RawFrm : Format<1>;
def AddRegFrm : Format<2>; def MRMDestReg : Format<3>;
def MRMDestMem : Format<4>; def MRMSrcReg : Format<5>;
def MRMSrcMem : Format<6>;
def MRM0r : Format<16>; def MRM1r : Format<17>; def MRM2r : Format<18>;
def MRM3r : Format<19>; def MRM4r : Format<20>; def MRM5r : Format<21>;
def MRM6r : Format<22>; def MRM7r : Format<23>;
def MRM0m : Format<24>; def MRM1m : Format<25>; def MRM2m : Format<26>;
def MRM3m : Format<27>; def MRM4m : Format<28>; def MRM5m : Format<29>;
def MRM6m : Format<30>; def MRM7m : Format<31>;
// ImmType - This specifies the immediate type used by an instruction. This is
// part of the ad-hoc solution used to emit machine instruction encodings by our
// machine code emitter.
class ImmType<bits<2> val> {
bits<2> Value = val;
}
def NoImm : ImmType<0>;
def Imm8 : ImmType<1>;
def Imm16 : ImmType<2>;
def Imm32 : ImmType<3>;
// MemType - This specifies the immediate type used by an instruction. This is
// part of the ad-hoc solution used to emit machine instruction encodings by our
// machine code emitter.
class MemType<bits<3> val> {
bits<3> Value = val;
}
def NoMem : MemType<0>;
def Mem8 : MemType<1>;
def Mem16 : MemType<2>;
def Mem32 : MemType<3>;
def Mem64 : MemType<4>;
def Mem80 : MemType<5>;
def Mem128 : MemType<6>;
// FPFormat - This specifies what form this FP instruction has. This is used by
// the Floating-Point stackifier pass.
class FPFormat<bits<3> val> {
bits<3> Value = val;
}
def NotFP : FPFormat<0>;
def ZeroArgFP : FPFormat<1>;
def OneArgFP : FPFormat<2>;
def OneArgFPRW : FPFormat<3>;
def TwoArgFP : FPFormat<4>;
def CondMovFP : FPFormat<5>;
def SpecialFP : FPFormat<6>;
class X86Inst<string nam, bits<8> opcod, Format f, MemType m, ImmType i> : Instruction {
let Namespace = "X86";
let Name = nam;
bits<8> Opcode = opcod;
Format Form = f;
bits<5> FormBits = Form.Value;
MemType MemT = m;
bits<3> MemTypeBits = MemT.Value;
ImmType ImmT = i;
bits<2> ImmTypeBits = ImmT.Value;
// Attributes specific to X86 instructions...
bit hasOpSizePrefix = 0; // Does this inst have a 0x66 prefix?
bit printImplicitUsesBefore = 0; // Should we print implicit uses before this inst?
bit printImplicitUsesAfter = 0; // Should we print implicit uses after this inst?
bits<4> Prefix = 0; // Which prefix byte does this inst have?
FPFormat FPForm; // What flavor of FP instruction is this?
bits<3> FPFormBits = 0;
}
class Imp<list<Register> uses, list<Register> defs> {
list<Register> Uses = uses;
list<Register> Defs = defs;
}
class Pattern<dag P> {
dag Pattern = P;
}
// Prefix byte classes which are used to indicate to the ad-hoc machine code
// emitter that various prefix bytes are required.
class OpSize { bit hasOpSizePrefix = 1; }
class TB { bits<4> Prefix = 1; }
class REP { bits<4> Prefix = 2; }
class D8 { bits<4> Prefix = 3; }
class D9 { bits<4> Prefix = 4; }
class DA { bits<4> Prefix = 5; }
class DB { bits<4> Prefix = 6; }
class DC { bits<4> Prefix = 7; }
class DD { bits<4> Prefix = 8; }
class DE { bits<4> Prefix = 9; }
class DF { bits<4> Prefix = 10; }
//===----------------------------------------------------------------------===//
// Instruction templates...
class I<string n, bits<8> o, Format f> : X86Inst<n, o, f, NoMem, NoImm>;
class Im<string n, bits<8> o, Format f, MemType m> : X86Inst<n, o, f, m, NoImm>;
class Im8 <string n, bits<8> o, Format f> : Im<n, o, f, Mem8 >;
class Im16<string n, bits<8> o, Format f> : Im<n, o, f, Mem16>;
class Im32<string n, bits<8> o, Format f> : Im<n, o, f, Mem32>;
class Ii<string n, bits<8> o, Format f, ImmType i> : X86Inst<n, o, f, NoMem, i>;
class Ii8 <string n, bits<8> o, Format f> : Ii<n, o, f, Imm8 >;
class Ii16<string n, bits<8> o, Format f> : Ii<n, o, f, Imm16>;
class Ii32<string n, bits<8> o, Format f> : Ii<n, o, f, Imm32>;
class Im8i8 <string n, bits<8> o, Format f> : X86Inst<n, o, f, Mem8 , Imm8 >;
class Im16i16<string n, bits<8> o, Format f> : X86Inst<n, o, f, Mem16, Imm16>;
class Im32i32<string n, bits<8> o, Format f> : X86Inst<n, o, f, Mem32, Imm32>;
class Im16i8<string n, bits<8> o, Format f> : X86Inst<n, o, f, Mem16, Imm8>;
class Im32i8<string n, bits<8> o, Format f> : X86Inst<n, o, f, Mem32, Imm8>;
// Helper for shift instructions
class UsesCL { list<Register> Uses = [CL]; bit printImplicitUsesAfter = 1; }
//===----------------------------------------------------------------------===//
// Instruction list...
//
def PHI : I<"PHI", 0, Pseudo>; // PHI node...
def NOOP : I<"nop", 0x90, RawFrm>; // nop
def ADJCALLSTACKDOWN : I<"ADJCALLSTACKDOWN", 0, Pseudo>;
def ADJCALLSTACKUP : I<"ADJCALLSTACKUP", 0, Pseudo>;
def IMPLICIT_USE : I<"IMPLICIT_USE", 0, Pseudo>;
def IMPLICIT_DEF : I<"IMPLICIT_DEF", 0, Pseudo>;
let isTerminator = 1 in
let Defs = [FP0, FP1, FP2, FP3, FP4, FP5, FP6] in
def FP_REG_KILL : I<"FP_REG_KILL", 0, Pseudo>;
//===----------------------------------------------------------------------===//
// Control Flow Instructions...
//
// Return instruction...
let isTerminator = 1, isReturn = 1 in
def RET : I<"ret", 0xC3, RawFrm>, Pattern<(retvoid)>;
// All branches are RawFrm, Void, Branch, and Terminators
let isBranch = 1, isTerminator = 1 in
class IBr<string name, bits<8> opcode> : I<name, opcode, RawFrm>;
def JMP : IBr<"jmp", 0xE9>, Pattern<(br basicblock)>;
def JB : IBr<"jb" , 0x82>, TB;
def JAE : IBr<"jae", 0x83>, TB;
def JE : IBr<"je" , 0x84>, TB, Pattern<(isVoid (unspec1 basicblock))>;
def JNE : IBr<"jne", 0x85>, TB;
def JBE : IBr<"jbe", 0x86>, TB;
def JA : IBr<"ja" , 0x87>, TB;
def JS : IBr<"js" , 0x88>, TB;
def JNS : IBr<"jns", 0x89>, TB;
def JL : IBr<"jl" , 0x8C>, TB;
def JGE : IBr<"jge", 0x8D>, TB;
def JLE : IBr<"jle", 0x8E>, TB;
def JG : IBr<"jg" , 0x8F>, TB;
//===----------------------------------------------------------------------===//
// Call Instructions...
//
let isCall = 1 in
// All calls clobber the non-callee saved registers...
let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6] in {
def CALLpcrel32 : I <"call", 0xE8, RawFrm>;
def CALL32r : I <"call", 0xFF, MRM2r>;
def CALL32m : Im32<"call", 0xFF, MRM2m>;
}
//===----------------------------------------------------------------------===//
// Miscellaneous Instructions...
//
def LEAVE : I<"leave", 0xC9, RawFrm>, Imp<[EBP,ESP],[EBP,ESP]>;
def POP32r : I<"pop", 0x58, AddRegFrm>, Imp<[ESP],[ESP]>;
let isTwoAddress = 1 in // R32 = bswap R32
def BSWAP32r : I<"bswap", 0xC8, AddRegFrm>, TB;
def XCHG8rr : I <"xchg", 0x86, MRMDestReg>; // xchg R8, R8
def XCHG16rr : I <"xchg", 0x87, MRMDestReg>, OpSize; // xchg R16, R16
def XCHG32rr : I <"xchg", 0x87, MRMDestReg>; // xchg R32, R32
def XCHG8mr : Im8 <"xchg", 0x86, MRMDestMem>; // xchg [mem8], R8
def XCHG16mr : Im16<"xchg", 0x87, MRMDestMem>, OpSize; // xchg [mem16], R16
def XCHG32mr : Im32<"xchg", 0x87, MRMDestMem>; // xchg [mem32], R32
def XCHG8rm : Im8 <"xchg", 0x86, MRMSrcMem >; // xchg R8, [mem8]
def XCHG16rm : Im16<"xchg", 0x87, MRMSrcMem >, OpSize; // xchg R16, [mem16]
def XCHG32rm : Im32<"xchg", 0x87, MRMSrcMem >; // xchg R32, [mem32]
def LEA16r : Im32<"lea", 0x8D, MRMSrcMem>, OpSize; // R16 = lea [mem]
def LEA32r : Im32<"lea", 0x8D, MRMSrcMem>; // R32 = lea [mem]
def REP_MOVSB : I<"rep movsb", 0xA4, RawFrm>, REP,
Imp<[ECX,EDI,ESI], [ECX,EDI,ESI]>;
def REP_MOVSW : I<"rep movsw", 0xA5, RawFrm>, REP, OpSize,
Imp<[ECX,EDI,ESI], [ECX,EDI,ESI]>;
def REP_MOVSD : I<"rep movsd", 0xA5, RawFrm>, REP,
Imp<[ECX,EDI,ESI], [ECX,EDI,ESI]>;
def REP_STOSB : I<"rep stosb", 0xAA, RawFrm>, REP,
Imp<[AL,ECX,EDI], [ECX,EDI]>;
def REP_STOSW : I<"rep stosw", 0xAB, RawFrm>, REP, OpSize,
Imp<[AX,ECX,EDI], [ECX,EDI]>;
def REP_STOSD : I<"rep stosd", 0xAB, RawFrm>, REP,
Imp<[EAX,ECX,EDI], [ECX,EDI]>;
//===----------------------------------------------------------------------===//
// Move Instructions...
//
def MOV8rr : I <"mov", 0x88, MRMDestReg>, Pattern<(set R8 , R8 )>;
def MOV16rr : I <"mov", 0x89, MRMDestReg>, OpSize, Pattern<(set R16, R16)>;
def MOV32rr : I <"mov", 0x89, MRMDestReg>, Pattern<(set R32, R32)>;
def MOV8ri : Ii8 <"mov", 0xB0, AddRegFrm >, Pattern<(set R8 , imm )>;
def MOV16ri : Ii16 <"mov", 0xB8, AddRegFrm >, OpSize, Pattern<(set R16, imm)>;
def MOV32ri : Ii32 <"mov", 0xB8, AddRegFrm >, Pattern<(set R32, imm)>;
def MOV8mi : Im8i8 <"mov", 0xC6, MRM0m >; // [mem8] = imm8
def MOV16mi : Im16i16<"mov", 0xC7, MRM0m >, OpSize; // [mem16] = imm16
def MOV32mi : Im32i32<"mov", 0xC7, MRM0m >; // [mem32] = imm32
def MOV8rm : Im8 <"mov", 0x8A, MRMSrcMem>; // R8 = [mem8]
def MOV16rm : Im16 <"mov", 0x8B, MRMSrcMem>, OpSize, // R16 = [mem16]
Pattern<(set R16, (load (plus R32, (plus (times imm, R32), imm))))>;
def MOV32rm : Im32 <"mov", 0x8B, MRMSrcMem>, // R32 = [mem32]
Pattern<(set R32, (load (plus R32, (plus (times imm, R32), imm))))>;
def MOV8mr : Im8 <"mov", 0x88, MRMDestMem>; // [mem8] = R8
def MOV16mr : Im16 <"mov", 0x89, MRMDestMem>, OpSize; // [mem16] = R16
def MOV32mr : Im32 <"mov", 0x89, MRMDestMem>; // [mem32] = R32
//===----------------------------------------------------------------------===//
// Fixed-Register Multiplication and Division Instructions...
//
// Extra precision multiplication
def MUL8r : I <"mul", 0xF6, MRM4r>, Imp<[AL],[AX]>; // AL,AH = AL*R8
def MUL16r : I <"mul", 0xF7, MRM4r>, Imp<[AX],[AX,DX]>, OpSize; // AX,DX = AX*R16
def MUL32r : I <"mul", 0xF7, MRM4r>, Imp<[EAX],[EAX,EDX]>; // EAX,EDX = EAX*R32
def MUL8m : Im8 <"mul", 0xF6, MRM4m>, Imp<[AL],[AX]>; // AL,AH = AL*[mem8]
def MUL16m : Im16<"mul", 0xF7, MRM4m>, Imp<[AX],[AX,DX]>, OpSize; // AX,DX = AX*[mem16]
def MUL32m : Im32<"mul", 0xF7, MRM4m>, Imp<[EAX],[EAX,EDX]>; // EAX,EDX = EAX*[mem32]
// unsigned division/remainder
def DIV8r : I <"div", 0xF6, MRM6r>, Imp<[AX],[AX]>; // AX/r8 = AL,AH
def DIV16r : I <"div", 0xF7, MRM6r>, Imp<[AX,DX],[AX,DX]>, OpSize; // DX:AX/r16 = AX,DX
def DIV32r : I <"div", 0xF7, MRM6r>, Imp<[EAX,EDX],[EAX,EDX]>; // EDX:EAX/r32 = EAX,EDX
def DIV8m : Im8 <"div", 0xF6, MRM6m>, Imp<[AX],[AX]>; // AX/[mem8] = AL,AH
def DIV16m : Im16<"div", 0xF7, MRM6m>, Imp<[AX,DX],[AX,DX]>, OpSize; // DX:AX/[mem16] = AX,DX
def DIV32m : Im32<"div", 0xF7, MRM6m>, Imp<[EAX,EDX],[EAX,EDX]>; // EDX:EAX/[mem32] = EAX,EDX
// signed division/remainder
def IDIV8r : I <"idiv",0xF6, MRM7r>, Imp<[AX],[AX]>; // AX/r8 = AL,AH
def IDIV16r: I <"idiv",0xF7, MRM7r>, Imp<[AX,DX],[AX,DX]>, OpSize; // DX:AX/r16 = AX,DX
def IDIV32r: I <"idiv",0xF7, MRM7r>, Imp<[EAX,EDX],[EAX,EDX]>; // EDX:EAX/r32 = EAX,EDX
def IDIV8m : Im8 <"idiv",0xF6, MRM7m>, Imp<[AX],[AX]>; // AX/[mem8] = AL,AH
def IDIV16m: Im16<"idiv",0xF7, MRM7m>, Imp<[AX,DX],[AX,DX]>, OpSize; // DX:AX/[mem16] = AX,DX
def IDIV32m: Im32<"idiv",0xF7, MRM7m>, Imp<[EAX,EDX],[EAX,EDX]>; // EDX:EAX/[mem32] = EAX,EDX
// Sign-extenders for division
def CBW : I<"cbw", 0x98, RawFrm >, Imp<[AL],[AH]>; // AX = signext(AL)
def CWD : I<"cwd", 0x99, RawFrm >, Imp<[AX],[DX]>; // DX:AX = signext(AX)
def CDQ : I<"cdq", 0x99, RawFrm >, Imp<[EAX],[EDX]>; // EDX:EAX = signext(EAX)
//===----------------------------------------------------------------------===//
// Two address Instructions...
//
let isTwoAddress = 1 in {
// Conditional moves
def CMOVB16rr : I <"cmovb", 0x42, MRMSrcReg>, TB, OpSize; // if <u, R16 = R16
def CMOVB16rm : Im16<"cmovb", 0x42, MRMSrcMem>, TB, OpSize; // if <u, R16 = [mem16]
def CMOVB32rr : I <"cmovb", 0x42, MRMSrcReg>, TB; // if <u, R32 = R32
def CMOVB32rm : Im32<"cmovb", 0x42, MRMSrcMem>, TB; // if <u, R32 = [mem32]
def CMOVAE16rr: I <"cmovae", 0x43, MRMSrcReg>, TB, OpSize; // if >=u, R16 = R16
def CMOVAE16rm: Im16<"cmovae", 0x43, MRMSrcMem>, TB, OpSize; // if >=u, R16 = [mem16]
def CMOVAE32rr: I <"cmovae", 0x43, MRMSrcReg>, TB; // if >=u, R32 = R32
def CMOVAE32rm: Im32<"cmovae", 0x43, MRMSrcMem>, TB; // if >=u, R32 = [mem32]
def CMOVE16rr : I <"cmove", 0x44, MRMSrcReg>, TB, OpSize; // if ==, R16 = R16
def CMOVE16rm : Im16<"cmove", 0x44, MRMSrcMem>, TB, OpSize; // if ==, R16 = [mem16]
def CMOVE32rr : I <"cmove", 0x44, MRMSrcReg>, TB; // if ==, R32 = R32
def CMOVE32rm : Im32<"cmove", 0x44, MRMSrcMem>, TB; // if ==, R32 = [mem32]
def CMOVNE16rr: I <"cmovne",0x45, MRMSrcReg>, TB, OpSize; // if !=, R16 = R16
def CMOVNE16rm: Im16<"cmovne",0x45, MRMSrcMem>, TB, OpSize; // if !=, R16 = [mem16]
def CMOVNE32rr: I <"cmovne",0x45, MRMSrcReg>, TB; // if !=, R32 = R32
def CMOVNE32rm: Im32<"cmovne",0x45, MRMSrcMem>, TB; // if !=, R32 = [mem32]
def CMOVBE16rr: I <"cmovbe",0x46, MRMSrcReg>, TB, OpSize; // if <=u, R16 = R16
def CMOVBE16rm: Im16<"cmovbe",0x46, MRMSrcMem>, TB, OpSize; // if <=u, R16 = [mem16]
def CMOVBE32rr: I <"cmovbe",0x46, MRMSrcReg>, TB; // if <=u, R32 = R32
def CMOVBE32rm: Im32<"cmovbe",0x46, MRMSrcMem>, TB; // if <=u, R32 = [mem32]
def CMOVA16rr : I <"cmova", 0x47, MRMSrcReg>, TB, OpSize; // if >u, R16 = R16
def CMOVA16rm : Im16<"cmova", 0x47, MRMSrcMem>, TB, OpSize; // if >u, R16 = [mem16]
def CMOVA32rr : I <"cmova", 0x47, MRMSrcReg>, TB; // if >u, R32 = R32
def CMOVA32rm : Im32<"cmova", 0x47, MRMSrcMem>, TB; // if >u, R32 = [mem32]
def CMOVS16rr : I <"cmovs", 0x48, MRMSrcReg>, TB, OpSize; // if signed, R16 = R16
def CMOVS16rm : Im16<"cmovs", 0x48, MRMSrcMem>, TB, OpSize; // if signed, R16 = [mem16]
def CMOVS32rr : I <"cmovs", 0x48, MRMSrcReg>, TB; // if signed, R32 = R32
def CMOVS32rm : Im32<"cmovs", 0x48, MRMSrcMem>, TB; // if signed, R32 = [mem32]
def CMOVNS16rr: I <"cmovns",0x49, MRMSrcReg>, TB, OpSize; // if !signed, R16 = R16
def CMOVNS16rm: Im16<"cmovns",0x49, MRMSrcMem>, TB, OpSize; // if !signed, R16 = [mem16]
def CMOVNS32rr: I <"cmovns",0x49, MRMSrcReg>, TB; // if !signed, R32 = R32
def CMOVNS32rm: Im32<"cmovns",0x49, MRMSrcMem>, TB; // if !signed, R32 = [mem32]
def CMOVL16rr : I <"cmovl", 0x4C, MRMSrcReg>, TB, OpSize; // if <s, R16 = R16
def CMOVL16rm : Im16<"cmovl", 0x4C, MRMSrcMem>, TB, OpSize; // if <s, R16 = [mem16]
def CMOVL32rr : I <"cmovl", 0x4C, MRMSrcReg>, TB; // if <s, R32 = R32
def CMOVL32rm : Im32<"cmovl", 0x4C, MRMSrcMem>, TB; // if <s, R32 = [mem32]
def CMOVGE16rr: I <"cmovge",0x4D, MRMSrcReg>, TB, OpSize; // if >=s, R16 = R16
def CMOVGE16rm: Im16<"cmovge",0x4D, MRMSrcMem>, TB, OpSize; // if >=s, R16 = [mem16]
def CMOVGE32rr: I <"cmovge",0x4D, MRMSrcReg>, TB; // if >=s, R32 = R32
def CMOVGE32rm: Im32<"cmovge",0x4D, MRMSrcMem>, TB; // if >=s, R32 = [mem32]
def CMOVLE16rr: I <"cmovle",0x4E, MRMSrcReg>, TB, OpSize; // if <=s, R16 = R16
def CMOVLE16rm: Im16<"cmovle",0x4E, MRMSrcMem>, TB, OpSize; // if <=s, R16 = [mem16]
def CMOVLE32rr: I <"cmovle",0x4E, MRMSrcReg>, TB; // if <=s, R32 = R32
def CMOVLE32rm: Im32<"cmovle",0x4E, MRMSrcMem>, TB; // if <=s, R32 = [mem32]
def CMOVG16rr : I <"cmovg", 0x4F, MRMSrcReg>, TB, OpSize; // if >s, R16 = R16
def CMOVG16rm : Im16<"cmovg", 0x4F, MRMSrcMem>, TB, OpSize; // if >s, R16 = [mem16]
def CMOVG32rr : I <"cmovg", 0x4F, MRMSrcReg>, TB; // if >s, R32 = R32
def CMOVG32rm : Im32<"cmovg", 0x4F, MRMSrcMem>, TB; // if >s, R32 = [mem32]
// unary instructions
def NEG8r : I <"neg", 0xF6, MRM3r>; // R8 = -R8 = 0-R8
def NEG16r : I <"neg", 0xF7, MRM3r>, OpSize; // R16 = -R16 = 0-R16
def NEG32r : I <"neg", 0xF7, MRM3r>; // R32 = -R32 = 0-R32
def NEG8m : Im8 <"neg", 0xF6, MRM3m>; // [mem8] = -[mem8] = 0-[mem8]
def NEG16m : Im16<"neg", 0xF7, MRM3m>, OpSize; // [mem16] = -[mem16] = 0-[mem16]
def NEG32m : Im32<"neg", 0xF7, MRM3m>; // [mem32] = -[mem32] = 0-[mem32]
def NOT8r : I <"not", 0xF6, MRM2r>; // R8 = ~R8 = R8^-1
def NOT16r : I <"not", 0xF7, MRM2r>, OpSize; // R16 = ~R16 = R16^-1
def NOT32r : I <"not", 0xF7, MRM2r>; // R32 = ~R32 = R32^-1
def NOT8m : Im8 <"not", 0xF6, MRM2m>; // [mem8] = ~[mem8] = [mem8^-1]
def NOT16m : Im16<"not", 0xF7, MRM2m>, OpSize; // [mem16] = ~[mem16] = [mem16^-1]
def NOT32m : Im32<"not", 0xF7, MRM2m>; // [mem32] = ~[mem32] = [mem32^-1]
def INC8r : I <"inc", 0xFE, MRM0r>; // ++R8
def INC16r : I <"inc", 0xFF, MRM0r>, OpSize; // ++R16
def INC32r : I <"inc", 0xFF, MRM0r>; // ++R32
def INC8m : Im8 <"inc", 0xFE, MRM0m>; // ++R8
def INC16m : Im16<"inc", 0xFF, MRM0m>, OpSize; // ++R16
def INC32m : Im32<"inc", 0xFF, MRM0m>; // ++R32
def DEC8r : I <"dec", 0xFE, MRM1r>; // --R8
def DEC16r : I <"dec", 0xFF, MRM1r>, OpSize; // --R16
def DEC32r : I <"dec", 0xFF, MRM1r>; // --R32
def DEC8m : Im8 <"dec", 0xFE, MRM1m>; // --[mem8]
def DEC16m : Im16<"dec", 0xFF, MRM1m>, OpSize; // --[mem16]
def DEC32m : Im32<"dec", 0xFF, MRM1m>; // --[mem32]
// Logical operators...
def AND8rr : I <"and", 0x20, MRMDestReg>, Pattern<(set R8 , (and R8 , R8 ))>;
def AND16rr : I <"and", 0x21, MRMDestReg>, OpSize, Pattern<(set R16, (and R16, R16))>;
def AND32rr : I <"and", 0x21, MRMDestReg>, Pattern<(set R32, (and R32, R32))>;
def AND8mr : Im8 <"and", 0x20, MRMDestMem>; // [mem8] &= R8
def AND16mr : Im16 <"and", 0x21, MRMDestMem>, OpSize; // [mem16] &= R16
def AND32mr : Im32 <"and", 0x21, MRMDestMem>; // [mem32] &= R32
def AND8rm : Im8 <"and", 0x22, MRMSrcMem >; // R8 &= [mem8]
def AND16rm : Im16 <"and", 0x23, MRMSrcMem >, OpSize; // R16 &= [mem16]
def AND32rm : Im32 <"and", 0x23, MRMSrcMem >; // R32 &= [mem32]
def AND8ri : Ii8 <"and", 0x80, MRM4r >, Pattern<(set R8 , (and R8 , imm))>;
def AND16ri : Ii16 <"and", 0x81, MRM4r >, OpSize, Pattern<(set R16, (and R16, imm))>;
def AND32ri : Ii32 <"and", 0x81, MRM4r >, Pattern<(set R32, (and R32, imm))>;
def AND8mi : Im8i8 <"and", 0x80, MRM4m >; // [mem8] &= imm8
def AND16mi : Im16i16<"and", 0x81, MRM4m >, OpSize; // [mem16] &= imm16
def AND32mi : Im32i32<"and", 0x81, MRM4m >; // [mem32] &= imm32
def AND16ri8 : Ii8 <"and", 0x83, MRM4r >, OpSize; // R16 &= imm8
def AND32ri8 : Ii8 <"and", 0x83, MRM4r >; // R32 &= imm8
def AND16mi8 : Im16i8<"and", 0x83, MRM4m >, OpSize; // [mem16] &= imm8
def AND32mi8 : Im32i8<"and", 0x83, MRM4m >; // [mem32] &= imm8
def OR8rr : I <"or" , 0x08, MRMDestReg>, Pattern<(set R8 , (or R8 , R8 ))>;
def OR16rr : I <"or" , 0x09, MRMDestReg>, OpSize, Pattern<(set R16, (or R16, R16))>;
def OR32rr : I <"or" , 0x09, MRMDestReg>, Pattern<(set R32, (or R32, R32))>;
def OR8mr : Im8 <"or" , 0x08, MRMDestMem>; // [mem8] |= R8
def OR16mr : Im16 <"or" , 0x09, MRMDestMem>, OpSize; // [mem16] |= R16
def OR32mr : Im32 <"or" , 0x09, MRMDestMem>; // [mem32] |= R32
def OR8rm : Im8 <"or" , 0x0A, MRMSrcMem >; // R8 |= [mem8]
def OR16rm : Im16 <"or" , 0x0B, MRMSrcMem >, OpSize; // R16 |= [mem16]
def OR32rm : Im32 <"or" , 0x0B, MRMSrcMem >; // R32 |= [mem32]
def OR8ri : Ii8 <"or" , 0x80, MRM1r >, Pattern<(set R8 , (or R8 , imm))>;
def OR16ri : Ii16 <"or" , 0x81, MRM1r >, OpSize, Pattern<(set R16, (or R16, imm))>;
def OR32ri : Ii32 <"or" , 0x81, MRM1r >, Pattern<(set R32, (or R32, imm))>;
def OR8mi : Im8i8 <"or" , 0x80, MRM1m >; // [mem8] |= imm8
def OR16mi : Im16i16<"or" , 0x81, MRM1m >, OpSize; // [mem16] |= imm16
def OR32mi : Im32i32<"or" , 0x81, MRM1m >; // [mem32] |= imm32
def OR16ri8 : Ii8 <"or" , 0x83, MRM1r >, OpSize; // R16 |= imm8
def OR32ri8 : Ii8 <"or" , 0x83, MRM1r >; // R32 |= imm8
def OR16mi8 : Im16i8<"or" , 0x83, MRM1m >, OpSize; // [mem16] |= imm8
def OR32mi8 : Im32i8<"or" , 0x83, MRM1m >; // [mem32] |= imm8
def XOR8rr : I <"xor", 0x30, MRMDestReg>, Pattern<(set R8 , (xor R8 , R8 ))>;
def XOR16rr : I <"xor", 0x31, MRMDestReg>, OpSize, Pattern<(set R16, (xor R16, R16))>;
def XOR32rr : I <"xor", 0x31, MRMDestReg>, Pattern<(set R32, (xor R32, R32))>;
def XOR8mr : Im8 <"xor", 0x30, MRMDestMem>; // [mem8] ^= R8
def XOR16mr : Im16 <"xor", 0x31, MRMDestMem>, OpSize; // [mem16] ^= R16
def XOR32mr : Im32 <"xor", 0x31, MRMDestMem>; // [mem32] ^= R32
def XOR8rm : Im8 <"xor", 0x32, MRMSrcMem >; // R8 ^= [mem8]
def XOR16rm : Im16 <"xor", 0x33, MRMSrcMem >, OpSize; // R16 ^= [mem16]
def XOR32rm : Im32 <"xor", 0x33, MRMSrcMem >; // R32 ^= [mem32]
def XOR8ri : Ii8 <"xor", 0x80, MRM6r >, Pattern<(set R8 , (xor R8 , imm))>;
def XOR16ri : Ii16 <"xor", 0x81, MRM6r >, OpSize, Pattern<(set R16, (xor R16, imm))>;
def XOR32ri : Ii32 <"xor", 0x81, MRM6r >, Pattern<(set R32, (xor R32, imm))>;
def XOR8mi : Im8i8 <"xor", 0x80, MRM6m >; // [mem8] ^= R8
def XOR16mi : Im16i16<"xor", 0x81, MRM6m >, OpSize; // [mem16] ^= R16
def XOR32mi : Im32i32<"xor", 0x81, MRM6m >; // [mem32] ^= R32
def XOR16ri8 : Ii8 <"xor", 0x83, MRM6r >, OpSize; // R16 ^= imm8
def XOR32ri8 : Ii8 <"xor", 0x83, MRM6r >; // R32 ^= imm8
def XOR16mi8 : Im16i8<"xor", 0x83, MRM6m >, OpSize; // [mem16] ^= imm8
def XOR32mi8 : Im32i8<"xor", 0x83, MRM6m >; // [mem32] ^= imm8
// Shift instructions
// FIXME: provide shorter instructions when imm8 == 1
def SHL8rCL : I <"shl", 0xD2, MRM4r > , UsesCL; // R8 <<= cl
def SHL16rCL : I <"shl", 0xD3, MRM4r >, OpSize, UsesCL; // R16 <<= cl
def SHL32rCL : I <"shl", 0xD3, MRM4r > , UsesCL; // R32 <<= cl
def SHL8mCL : Im8 <"shl", 0xD2, MRM4m > , UsesCL; // [mem8] <<= cl
def SHL16mCL : Im16 <"shl", 0xD3, MRM4m >, OpSize, UsesCL; // [mem16] <<= cl
def SHL32mCL : Im32 <"shl", 0xD3, MRM4m > , UsesCL; // [mem32] <<= cl
def SHL8ri : Ii8 <"shl", 0xC0, MRM4r >; // R8 <<= imm8
def SHL16ri : Ii8 <"shl", 0xC1, MRM4r >, OpSize; // R16 <<= imm8
def SHL32ri : Ii8 <"shl", 0xC1, MRM4r >; // R32 <<= imm8
def SHL8mi : Im8i8 <"shl", 0xC0, MRM4m >; // [mem8] <<= imm8
def SHL16mi : Im16i8<"shl", 0xC1, MRM4m >, OpSize; // [mem16] <<= imm8
def SHL32mi : Im32i8<"shl", 0xC1, MRM4m >; // [mem32] <<= imm8
def SHR8rCL : I <"shr", 0xD2, MRM5r > , UsesCL; // R8 >>= cl
def SHR16rCL : I <"shr", 0xD3, MRM5r >, OpSize, UsesCL; // R16 >>= cl
def SHR32rCL : I <"shr", 0xD3, MRM5r > , UsesCL; // R32 >>= cl
def SHR8mCL : Im8 <"shr", 0xD2, MRM5m > , UsesCL; // [mem8] >>= cl
def SHR16mCL : Im16 <"shr", 0xD3, MRM5m >, OpSize, UsesCL; // [mem16] >>= cl
def SHR32mCL : Im32 <"shr", 0xD3, MRM5m > , UsesCL; // [mem32] >>= cl
def SHR8ri : Ii8 <"shr", 0xC0, MRM5r >; // R8 >>= imm8
def SHR16ri : Ii8 <"shr", 0xC1, MRM5r >, OpSize; // R16 >>= imm8
def SHR32ri : Ii8 <"shr", 0xC1, MRM5r >; // R32 >>= imm8
def SHR8mi : Im8i8 <"shr", 0xC0, MRM5m >; // [mem8] >>= imm8
def SHR16mi : Im16i8<"shr", 0xC1, MRM5m >, OpSize; // [mem16] >>= imm8
def SHR32mi : Im32i8<"shr", 0xC1, MRM5m >; // [mem32] >>= imm8
def SAR8rCL : I <"sar", 0xD2, MRM7r > , UsesCL; // R8 >>>= cl
def SAR16rCL : I <"sar", 0xD3, MRM7r >, OpSize, UsesCL; // R16 >>>= cl
def SAR32rCL : I <"sar", 0xD3, MRM7r > , UsesCL; // R32 >>>= cl
def SAR8mCL : Im8 <"sar", 0xD2, MRM7m > , UsesCL; // [mem8] >>>= cl
def SAR16mCL : Im16 <"sar", 0xD3, MRM7m >, OpSize, UsesCL; // [mem16] >>>= cl
def SAR32mCL : Im32 <"sar", 0xD3, MRM7m > , UsesCL; // [mem32] >>>= cl
def SAR8ri : Ii8 <"sar", 0xC0, MRM7r >; // R8 >>>= imm8
def SAR16ri : Ii8 <"sar", 0xC1, MRM7r >, OpSize; // R16 >>>= imm8
def SAR32ri : Ii8 <"sar", 0xC1, MRM7r >; // R32 >>>= imm8
def SAR8mi : Im8i8 <"sar", 0xC0, MRM7m >; // [mem8] >>>= imm8
def SAR16mi : Im16i8<"sar", 0xC1, MRM7m >, OpSize; // [mem16] >>>= imm8
def SAR32mi : Im32i8<"sar", 0xC1, MRM7m >; // [mem32] >>>= imm8
def SHLD32rrCL : I <"shld", 0xA5, MRMDestReg>, TB, UsesCL; // R32 <<= R32,R32 cl
def SHLD32mrCL : Im32 <"shld", 0xA5, MRMDestMem>, TB, UsesCL; // [mem32] <<= [mem32],R32 cl
def SHLD32rri8 : Ii8 <"shld", 0xA4, MRMDestReg>, TB; // R32 <<= R32,R32 imm8
def SHLD32mri8 : Im32i8<"shld", 0xA4, MRMDestMem>, TB; // [mem32] <<= [mem32],R32 imm8
def SHRD32rrCL : I <"shrd", 0xAD, MRMDestReg>, TB, UsesCL; // R32 >>= R32,R32 cl
def SHRD32mrCL : Im32 <"shrd", 0xAD, MRMDestMem>, TB, UsesCL; // [mem32] >>= [mem32],R32 cl
def SHRD32rri8 : Ii8 <"shrd", 0xAC, MRMDestReg>, TB; // R32 >>= R32,R32 imm8
def SHRD32mri8 : Im32i8<"shrd", 0xAC, MRMDestMem>, TB; // [mem32] >>= [mem32],R32 imm8
// Arithmetic...
def ADD8rr : I <"add", 0x00, MRMDestReg>, Pattern<(set R8 , (plus R8 , R8 ))>;
def ADD16rr : I <"add", 0x01, MRMDestReg>, OpSize, Pattern<(set R16, (plus R16, R16))>;
def ADD32rr : I <"add", 0x01, MRMDestReg>, Pattern<(set R32, (plus R32, R32))>;
def ADD8mr : Im8 <"add", 0x00, MRMDestMem>; // [mem8] += R8
def ADD16mr : Im16 <"add", 0x01, MRMDestMem>, OpSize; // [mem16] += R16
def ADD32mr : Im32 <"add", 0x01, MRMDestMem>; // [mem32] += R32
def ADD8rm : Im8 <"add", 0x02, MRMSrcMem >; // R8 += [mem8]
def ADD16rm : Im16 <"add", 0x03, MRMSrcMem >, OpSize; // R16 += [mem16]
def ADD32rm : Im32 <"add", 0x03, MRMSrcMem >; // R32 += [mem32]
def ADD8ri : Ii8 <"add", 0x80, MRM0r >, Pattern<(set R8 , (plus R8 , imm))>;
def ADD16ri : Ii16 <"add", 0x81, MRM0r >, OpSize, Pattern<(set R16, (plus R16, imm))>;
def ADD32ri : Ii32 <"add", 0x81, MRM0r >, Pattern<(set R32, (plus R32, imm))>;
def ADD8mi : Im8i8 <"add", 0x80, MRM0m >; // [mem8] += I8
def ADD16mi : Im16i16<"add", 0x81, MRM0m >, OpSize; // [mem16] += I16
def ADD32mi : Im32i32<"add", 0x81, MRM0m >; // [mem32] += I32
def ADD16ri8 : Ii8 <"add", 0x83, MRM0r >, OpSize; // ADDri with sign extended 8 bit imm
def ADD32ri8 : Ii8 <"add", 0x83, MRM0r >;
def ADD16mi8 : Im16i8<"add", 0x83, MRM0m >, OpSize; // [mem16] += I8
def ADD32mi8 : Im32i8<"add", 0x83, MRM0m >; // [mem32] += I8
def ADC32rr : I <"adc", 0x11, MRMDestReg>; // R32 += R32+Carry
def ADC32rm : Im32 <"adc", 0x11, MRMSrcMem >; // R32 += [mem32]+Carry
def ADC32mr : Im32 <"adc", 0x13, MRMDestMem>; // [mem32] += R32+Carry
def ADC32ri : Ii32 <"adc", 0x81, MRM2r >; // R32 += I32+Carry
def ADC32ri8 : Ii8 <"adc", 0x83, MRM2r >; // R32 += I8+Carry
def ADC32mi : Im32i32<"adc", 0x81, MRM2m >; // [mem32] += I32+Carry
def ADC32mi8 : Im32i8 <"adc", 0x83, MRM2m >; // [mem32] += I8+Carry
def SUB8rr : I <"sub", 0x28, MRMDestReg>, Pattern<(set R8 , (minus R8 , R8 ))>;
def SUB16rr : I <"sub", 0x29, MRMDestReg>, OpSize, Pattern<(set R16, (minus R16, R16))>;
def SUB32rr : I <"sub", 0x29, MRMDestReg>, Pattern<(set R32, (minus R32, R32))>;
def SUB8mr : Im8 <"sub", 0x28, MRMDestMem>; // [mem8] -= R8
def SUB16mr : Im16 <"sub", 0x29, MRMDestMem>, OpSize; // [mem16] -= R16
def SUB32mr : Im32 <"sub", 0x29, MRMDestMem>; // [mem32] -= R32
def SUB8rm : Im8 <"sub", 0x2A, MRMSrcMem >; // R8 -= [mem8]
def SUB16rm : Im16 <"sub", 0x2B, MRMSrcMem >, OpSize; // R16 -= [mem16]
def SUB32rm : Im32 <"sub", 0x2B, MRMSrcMem >; // R32 -= [mem32]
def SUB8ri : Ii8 <"sub", 0x80, MRM5r >, Pattern<(set R8 , (minus R8 , imm))>;
def SUB16ri : Ii16 <"sub", 0x81, MRM5r >, OpSize, Pattern<(set R16, (minus R16, imm))>;
def SUB32ri : Ii32 <"sub", 0x81, MRM5r >, Pattern<(set R32, (minus R32, imm))>;
def SUB8mi : Im8i8 <"sub", 0x80, MRM5m >; // [mem8] -= I8
def SUB16mi : Im16i16<"sub", 0x81, MRM5m >, OpSize; // [mem16] -= I16
def SUB32mi : Im32i32<"sub", 0x81, MRM5m >; // [mem32] -= I32
def SUB16ri8 : Ii8 <"sub", 0x83, MRM5r >, OpSize;
def SUB32ri8 : Ii8 <"sub", 0x83, MRM5r >;
def SUB16mi8 : Im16i8<"sub", 0x83, MRM5m >, OpSize; // [mem16] -= I8
def SUB32mi8 : Im32i8<"sub", 0x83, MRM5m >; // [mem32] -= I8
def SBB32rr : I <"sbb", 0x19, MRMDestReg>; // R32 -= R32+Borrow
def SBB32rm : Im32 <"sbb", 0x19, MRMSrcMem >; // R32 -= [mem32]+Borrow
def SBB32mr : Im32 <"sbb", 0x1B, MRMDestMem>; // [mem32] -= R32+Borrow
def SBB32ri : Ii32 <"sbb", 0x81, MRM3r >; // R32 -= I32+Borrow
def SBB32ri8 : Ii8 <"sbb", 0x83, MRM3r >; // R32 -= I8+Borrow
def SBB32mi : Im32i32<"sbb", 0x81, MRM3m >; // [mem32] -= I32+Borrow
def SBB32mi8 : Im32i8 <"sbb", 0x83, MRM3m >; // [mem32] -= I8+Borrow
def IMUL16rr : I <"imul", 0xAF, MRMSrcReg>, TB, OpSize, Pattern<(set R16, (times R16, R16))>;
def IMUL32rr : I <"imul", 0xAF, MRMSrcReg>, TB , Pattern<(set R32, (times R32, R32))>;
def IMUL16rm : Im16 <"imul", 0xAF, MRMSrcMem>, TB, OpSize;
def IMUL32rm : Im32 <"imul", 0xAF, MRMSrcMem>, TB ;
} // end Two Address instructions
// These are suprisingly enough not two address instructions!
def IMUL16rri : Ii16 <"imul", 0x69, MRMSrcReg>, OpSize; // R16 = R16*I16
def IMUL32rri : Ii32 <"imul", 0x69, MRMSrcReg>; // R32 = R32*I32
def IMUL16rri8 : Ii8 <"imul", 0x6B, MRMSrcReg>, OpSize; // R16 = R16*I8
def IMUL32rri8 : Ii8 <"imul", 0x6B, MRMSrcReg>; // R32 = R32*I8
def IMUL16rmi : Im16i16<"imul",0x69, MRMSrcMem>, OpSize; // R16 = [mem16]*I16
def IMUL32rmi : Im32i32<"imul",0x69, MRMSrcMem>; // R32 = [mem32]*I32
def IMUL16rmi8 : Im16i8<"imul", 0x6B, MRMSrcMem>, OpSize; // R16 = [mem16]*I8
def IMUL32rmi8 : Im32i8<"imul", 0x6B, MRMSrcMem>; // R32 = [mem32]*I8
//===----------------------------------------------------------------------===//
// Test instructions are just like AND, except they don't generate a result.
def TEST8rr : I <"test", 0x84, MRMDestReg>; // flags = R8 & R8
def TEST16rr : I <"test", 0x85, MRMDestReg>, OpSize; // flags = R16 & R16
def TEST32rr : I <"test", 0x85, MRMDestReg>; // flags = R32 & R32
def TEST8mr : Im8 <"test", 0x84, MRMDestMem>; // flags = [mem8] & R8
def TEST16mr : Im16 <"test", 0x85, MRMDestMem>, OpSize; // flags = [mem16] & R16
def TEST32mr : Im32 <"test", 0x85, MRMDestMem>; // flags = [mem32] & R32
def TEST8rm : Im8 <"test", 0x84, MRMSrcMem >; // flags = R8 & [mem8]
def TEST16rm : Im16 <"test", 0x85, MRMSrcMem >, OpSize; // flags = R16 & [mem16]
def TEST32rm : Im32 <"test", 0x85, MRMSrcMem >; // flags = R32 & [mem32]
def TEST8ri : Ii8 <"test", 0xF6, MRM0r >; // flags = R8 & imm8
def TEST16ri : Ii16 <"test", 0xF7, MRM0r >, OpSize; // flags = R16 & imm16
def TEST32ri : Ii32 <"test", 0xF7, MRM0r >; // flags = R32 & imm32
def TEST8mi : Im8i8 <"test", 0xF6, MRM0m >; // flags = [mem8] & imm8
def TEST16mi : Im16i16<"test", 0xF7, MRM0m >, OpSize; // flags = [mem16] & imm16
def TEST32mi : Im32i32<"test", 0xF7, MRM0m >; // flags = [mem32] & imm32
// Condition code ops, incl. set if equal/not equal/...
def SAHF : I <"sahf" , 0x9E, RawFrm>, Imp<[AH],[]>; // flags = AH
def LAHF : I <"lahf" , 0x9F, RawFrm>, Imp<[],[AH]>; // AH = flags
def SETBr : I <"setb" , 0x92, MRM0r>, TB; // R8 = < unsign
def SETBm : Im8<"setb" , 0x92, MRM0m>, TB; // [mem8] = < unsign
def SETAEr : I <"setae", 0x93, MRM0r>, TB; // R8 = >= unsign
def SETAEm : Im8<"setae", 0x93, MRM0m>, TB; // [mem8] = >= unsign
def SETEr : I <"sete" , 0x94, MRM0r>, TB; // R8 = ==
def SETEm : Im8<"sete" , 0x94, MRM0m>, TB; // [mem8] = ==
def SETNEr : I <"setne", 0x95, MRM0r>, TB; // R8 = !=
def SETNEm : Im8<"setne", 0x95, MRM0m>, TB; // [mem8] = !=
def SETBEr : I <"setbe", 0x96, MRM0r>, TB; // R8 = <= unsign
def SETBEm : Im8<"setbe", 0x96, MRM0m>, TB; // [mem8] = <= unsign
def SETAr : I <"seta" , 0x97, MRM0r>, TB; // R8 = > signed
def SETAm : Im8<"seta" , 0x97, MRM0m>, TB; // [mem8] = > signed
def SETSr : I <"sets" , 0x98, MRM0r>, TB; // R8 = <sign bit>
def SETSm : Im8<"sets" , 0x98, MRM0m>, TB; // [mem8] = <sign bit>
def SETNSr : I <"setns", 0x99, MRM0r>, TB; // R8 = !<sign bit>
def SETNSm : Im8<"setns", 0x99, MRM0m>, TB; // [mem8] = !<sign bit>
def SETLr : I <"setl" , 0x9C, MRM0r>, TB; // R8 = < signed
def SETLm : Im8<"setl" , 0x9C, MRM0m>, TB; // [mem8] = < signed
def SETGEr : I <"setge", 0x9D, MRM0r>, TB; // R8 = >= signed
def SETGEm : Im8<"setge", 0x9D, MRM0m>, TB; // [mem8] = >= signed
def SETLEr : I <"setle", 0x9E, MRM0r>, TB; // R8 = <= signed
def SETLEm : Im8<"setle", 0x9E, MRM0m>, TB; // [mem8] = <= signed
def SETGr : I <"setg" , 0x9F, MRM0r>, TB; // R8 = < signed
def SETGm : Im8<"setg" , 0x9F, MRM0m>, TB; // [mem8] = < signed
// Integer comparisons
def CMP8rr : I <"cmp", 0x38, MRMDestReg>; // compare R8, R8
def CMP16rr : I <"cmp", 0x39, MRMDestReg>, OpSize; // compare R16, R16
def CMP32rr : I <"cmp", 0x39, MRMDestReg>, // compare R32, R32
Pattern<(isVoid (unspec2 R32, R32))>;
def CMP8mr : Im8 <"cmp", 0x38, MRMDestMem>; // compare [mem8], R8
def CMP16mr : Im16 <"cmp", 0x39, MRMDestMem>, OpSize; // compare [mem16], R16
def CMP32mr : Im32 <"cmp", 0x39, MRMDestMem>; // compare [mem32], R32
def CMP8rm : Im8 <"cmp", 0x3A, MRMSrcMem >; // compare R8, [mem8]
def CMP16rm : Im16 <"cmp", 0x3B, MRMSrcMem >, OpSize; // compare R16, [mem16]
def CMP32rm : Im32 <"cmp", 0x3B, MRMSrcMem >; // compare R32, [mem32]
def CMP8ri : Ii8 <"cmp", 0x80, MRM7r >; // compare R8, imm8
def CMP16ri : Ii16 <"cmp", 0x81, MRM7r >, OpSize; // compare R16, imm16
def CMP32ri : Ii32 <"cmp", 0x81, MRM7r >; // compare R32, imm32
def CMP8mi : Im8i8 <"cmp", 0x80, MRM7m >; // compare [mem8], imm8
def CMP16mi : Im16i16<"cmp", 0x81, MRM7m >, OpSize; // compare [mem16], imm16
def CMP32mi : Im32i32<"cmp", 0x81, MRM7m >; // compare [mem32], imm32
// Sign/Zero extenders
def MOVSX16rr8 : I <"movsx", 0xBE, MRMSrcReg>, TB, OpSize; // R16 = signext(R8)
def MOVSX32rr8 : I <"movsx", 0xBE, MRMSrcReg>, TB; // R32 = signext(R8)
def MOVSX32rr16: I <"movsx", 0xBF, MRMSrcReg>, TB; // R32 = signext(R16)
def MOVSX16rm8 : Im8 <"movsx", 0xBE, MRMSrcMem>, TB, OpSize; // R16 = signext([mem8])
def MOVSX32rm8 : Im8 <"movsx", 0xBE, MRMSrcMem>, TB; // R32 = signext([mem8])
def MOVSX32rm16: Im16<"movsx", 0xBF, MRMSrcMem>, TB; // R32 = signext([mem16])
def MOVZX16rr8 : I <"movzx", 0xB6, MRMSrcReg>, TB, OpSize; // R16 = zeroext(R8)
def MOVZX32rr8 : I <"movzx", 0xB6, MRMSrcReg>, TB; // R32 = zeroext(R8)
def MOVZX32rr16: I <"movzx", 0xB7, MRMSrcReg>, TB; // R32 = zeroext(R16)
def MOVZX16rm8 : Im8 <"movzx", 0xB6, MRMSrcMem>, TB, OpSize; // R16 = zeroext([mem8])
def MOVZX32rm8 : Im8 <"movzx", 0xB6, MRMSrcMem>, TB; // R32 = zeroext([mem8])
def MOVZX32rm16: Im16<"movzx", 0xB7, MRMSrcMem>, TB; // R32 = zeroext([mem16])
//===----------------------------------------------------------------------===//
// Floating point support
//===----------------------------------------------------------------------===//
// FIXME: These need to indicate mod/ref sets for FP regs... & FP 'TOP'
// Floating point instruction templates
class FPInst<string n, bits<8> o, Format F, FPFormat fp, MemType m, ImmType i>
: X86Inst<n, o, F, m, i> { let FPForm = fp; let FPFormBits = FPForm.Value; }
class FPI<string n, bits<8> o, Format F, FPFormat fp> : FPInst<n, o, F, fp, NoMem, NoImm>;
class FPIM<string n, bits<8> o, Format F, FPFormat fp, MemType m> : FPInst<n, o, F, fp, m, NoImm>;
class FPI16m<string n, bits<8> o, Format F, FPFormat fp> : FPIM<n, o, F, fp, Mem16>;
class FPI32m<string n, bits<8> o, Format F, FPFormat fp> : FPIM<n, o, F, fp, Mem32>;
class FPI64m<string n, bits<8> o, Format F, FPFormat fp> : FPIM<n, o, F, fp, Mem64>;
class FPI80m<string n, bits<8> o, Format F, FPFormat fp> : FPIM<n, o, F, fp, Mem80>;
// Pseudo instructions for floating point. We use these pseudo instructions
// because they can be expanded by the fp spackifier into one of many different
// forms of instructions for doing these operations. Until the stackifier runs,
// we prefer to be abstract.
def FpMOV : FPI<"FMOV", 0, Pseudo, SpecialFP>; // f1 = fmov f2
def FpADD : FPI<"FADD", 0, Pseudo, TwoArgFP>; // f1 = fadd f2, f3
def FpSUB : FPI<"FSUB", 0, Pseudo, TwoArgFP>; // f1 = fsub f2, f3
def FpMUL : FPI<"FMUL", 0, Pseudo, TwoArgFP>; // f1 = fmul f2, f3
def FpDIV : FPI<"FDIV", 0, Pseudo, TwoArgFP>; // f1 = fdiv f2, f3
def FpUCOM : FPI<"FUCOM", 0, Pseudo, TwoArgFP>; // FPSW = fucom f1, f2
def FpGETRESULT : FPI<"FGETRESULT",0, Pseudo, SpecialFP>; // FPR = ST(0)
def FpSETRESULT : FPI<"FSETRESULT",0, Pseudo, SpecialFP>; // ST(0) = FPR
// Floating point cmovs...
let isTwoAddress = 1, Uses = [ST0], Defs = [ST0], printImplicitUsesBefore = 1 in {
def FCMOVB : FPI <"fcmovb" , 0xC0, AddRegFrm, CondMovFP>, DA; // fcmovb ST(i) -> ST(0)
def FCMOVBE : FPI <"fcmovbe", 0xD0, AddRegFrm, CondMovFP>, DA; // fcmovbe ST(i) -> ST(0)
def FCMOVE : FPI <"fcmove" , 0xC8, AddRegFrm, CondMovFP>, DA; // fcmove ST(i) -> ST(0)
def FCMOVAE : FPI <"fcmovae", 0xC0, AddRegFrm, CondMovFP>, DB; // fcmovae ST(i) -> ST(0)
def FCMOVA : FPI <"fcmova" , 0xD0, AddRegFrm, CondMovFP>, DB; // fcmova ST(i) -> ST(0)
def FCMOVNE : FPI <"fcmovne", 0xC8, AddRegFrm, CondMovFP>, DB; // fcmovne ST(i) -> ST(0)
}
// Floating point loads & stores...
def FLDrr : FPI <"fld" , 0xC0, AddRegFrm, NotFP>, D9; // push(ST(i))
def FLD32m : FPI32m <"fld" , 0xD9, MRM0m , ZeroArgFP>; // load float
def FLD64m : FPI64m <"fld" , 0xDD, MRM0m , ZeroArgFP>; // load double
def FLD80m : FPI80m <"fld" , 0xDB, MRM5m , ZeroArgFP>; // load extended
def FILD16m : FPI16m <"fild" , 0xDF, MRM0m , ZeroArgFP>; // load signed short
def FILD32m : FPI32m <"fild" , 0xDB, MRM0m , ZeroArgFP>; // load signed int
def FILD64m : FPI64m <"fild" , 0xDF, MRM5m , ZeroArgFP>; // load signed long
def FSTrr : FPI <"fst" , 0xD0, AddRegFrm, NotFP >, DD; // ST(i) = ST(0)
def FSTPrr : FPI <"fstp", 0xD8, AddRegFrm, NotFP >, DD; // ST(i) = ST(0), pop
def FST32m : FPI32m <"fst" , 0xD9, MRM2m , OneArgFP>; // store float
def FST64m : FPI64m <"fst" , 0xDD, MRM2m , OneArgFP>; // store double
def FSTP32m : FPI32m <"fstp", 0xD9, MRM3m , OneArgFP>; // store float, pop
def FSTP64m : FPI64m <"fstp", 0xDD, MRM3m , OneArgFP>; // store double, pop
def FSTP80m : FPI80m <"fstp", 0xDB, MRM7m , OneArgFP>; // store extended, pop
def FIST16m : FPI16m <"fist", 0xDF, MRM2m , OneArgFP>; // store signed short
def FIST32m : FPI32m <"fist", 0xDB, MRM2m , OneArgFP>; // store signed int
def FISTP16m : FPI16m <"fistp", 0xDF, MRM3m , NotFP >; // store signed short, pop
def FISTP32m : FPI32m <"fistp", 0xDB, MRM3m , NotFP >; // store signed int, pop
def FISTP64m : FPI64m <"fistpll", 0xDF, MRM7m , OneArgFP>; // store signed long, pop
def FXCH : FPI <"fxch", 0xC8, AddRegFrm, NotFP>, D9; // fxch ST(i), ST(0)
// Floating point constant loads...
def FLD0 : FPI<"fldz", 0xEE, RawFrm, ZeroArgFP>, D9;
def FLD1 : FPI<"fld1", 0xE8, RawFrm, ZeroArgFP>, D9;
// Unary operations...
def FCHS : FPI<"fchs", 0xE0, RawFrm, OneArgFPRW>, D9; // f1 = fchs f2
def FTST : FPI<"ftst", 0xE4, RawFrm, OneArgFP>, D9; // ftst ST(0)
// Binary arithmetic operations...
class FPST0rInst<string n, bits<8> o> : I<n, o, AddRegFrm>, D8 {
list<Register> Uses = [ST0];
list<Register> Defs = [ST0];
}
class FPrST0Inst<string n, bits<8> o> : I<n, o, AddRegFrm>, DC {
bit printImplicitUsesAfter = 1;
list<Register> Uses = [ST0];
}
class FPrST0PInst<string n, bits<8> o> : I<n, o, AddRegFrm>, DE {
list<Register> Uses = [ST0];
}
def FADDST0r : FPST0rInst <"fadd", 0xC0>;
def FADDrST0 : FPrST0Inst <"fadd", 0xC0>;
def FADDPrST0 : FPrST0PInst<"faddp", 0xC0>;
def FSUBRST0r : FPST0rInst <"fsubr", 0xE8>;
def FSUBrST0 : FPrST0Inst <"fsub", 0xE8>;
def FSUBPrST0 : FPrST0PInst<"fsubp", 0xE8>;
def FSUBST0r : FPST0rInst <"fsub", 0xE0>;
def FSUBRrST0 : FPrST0Inst <"fsubr", 0xE0>;
def FSUBRPrST0 : FPrST0PInst<"fsubrp", 0xE0>;
def FMULST0r : FPST0rInst <"fmul", 0xC8>;
def FMULrST0 : FPrST0Inst <"fmul", 0xC8>;
def FMULPrST0 : FPrST0PInst<"fmulp", 0xC8>;
def FDIVRST0r : FPST0rInst <"fdivr", 0xF8>;
def FDIVrST0 : FPrST0Inst <"fdiv", 0xF8>;
def FDIVPrST0 : FPrST0PInst<"fdivp", 0xF8>;
def FDIVST0r : FPST0rInst <"fdiv", 0xF0>; // ST(0) = ST(0) / ST(i)
def FDIVRrST0 : FPrST0Inst <"fdivr", 0xF0>; // ST(i) = ST(0) / ST(i)
def FDIVRPrST0 : FPrST0PInst<"fdivrp", 0xF0>; // ST(i) = ST(0) / ST(i), pop
// Floating point compares
def FUCOMr : I<"fucom" , 0xE0, AddRegFrm>, DD, Imp<[ST0],[]>; // FPSW = compare ST(0) with ST(i)
def FUCOMPr : I<"fucomp" , 0xE8, AddRegFrm>, DD, Imp<[ST0],[]>; // FPSW = compare ST(0) with ST(i), pop
def FUCOMPPr : I<"fucompp", 0xE9, RawFrm >, DA, Imp<[ST0],[]>; // compare ST(0) with ST(1), pop, pop
// Floating point flag ops
def FNSTSW8r : I <"fnstsw" , 0xE0, RawFrm>, DF, Imp<[],[AX]>; // AX = fp flags
def FNSTCW16m : Im16<"fnstcw" , 0xD9, MRM7m >; // [mem16] = X87 control world
def FLDCW16m : Im16<"fldcw" , 0xD9, MRM5m >; // X87 control world = [mem16]
//===----------------------------------------------------------------------===//
// Instruction Expanders
//
def RET_R32 : Expander<(ret R32:$reg),
[(MOV32rr EAX, R32:$reg),
(RET)]>;
// FIXME: This should eventually just be implemented by defining a frameidx as a
// value address for a load.
def LOAD_FI16 : Expander<(set R16:$dest, (load frameidx:$fi)),
[(MOV16rm R16:$dest, frameidx:$fi, 1, 0/*NoReg*/, 0)]>;
def LOAD_FI32 : Expander<(set R32:$dest, (load frameidx:$fi)),
[(MOV32rm R32:$dest, frameidx:$fi, 1, 0/*NoReg*/, 0)]>;
def LOAD_R16 : Expander<(set R16:$dest, (load R32:$src)),
[(MOV16rm R16:$dest, R32:$src, 1, 0/*NoReg*/, 0)]>;
def LOAD_R32 : Expander<(set R32:$dest, (load R32:$src)),
[(MOV32rm R32:$dest, R32:$src, 1, 0/*NoReg*/, 0)]>;
def BR_EQ : Expander<(brcond (seteq R32:$a1, R32:$a2),
basicblock:$d1, basicblock:$d2),
[(CMP32rr R32:$a1, R32:$a2),
(JE basicblock:$d1),
(JMP basicblock:$d2)]>;
|