aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/X86/X86InstrInfo.td
blob: 635d1a6bcc757033ff9610ea480825700a08612c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
//===- X86InstrInfo.td - Describe the X86 Instruction Set -------*- C++ -*-===//
//
// This file describes the X86 instruction set, defining the instructions, and
// properties of the instructions which are needed for code generation, machine
// code emission, and analysis.
//
//===----------------------------------------------------------------------===//

// Format specifies the encoding used by the instruction.  This is part of the
// ad-hoc solution used to emit machine instruction encodings by our machine
// code emitter.
class Format<bits<5> val> {
  bits<5> Value = val;
}

def Pseudo     : Format<0>; def RawFrm     : Format<1>;
def AddRegFrm  : Format<2>; def MRMDestReg : Format<3>;
def MRMDestMem : Format<4>; def MRMSrcReg  : Format<5>;
def MRMSrcMem  : Format<6>;
def MRMS0r : Format<16>; def MRMS1r : Format<17>; def MRMS2r : Format<18>;
def MRMS3r : Format<19>; def MRMS4r : Format<20>; def MRMS5r : Format<21>;
def MRMS6r : Format<22>; def MRMS7r : Format<23>;
def MRMS0m : Format<24>; def MRMS1m : Format<25>; def MRMS2m : Format<26>;
def MRMS3m : Format<27>; def MRMS4m : Format<28>; def MRMS5m : Format<29>;
def MRMS6m : Format<30>; def MRMS7m : Format<31>;

// ArgType - This specifies the argument type used by an instruction. This is
// part of the ad-hoc solution used to emit machine instruction encodings by our
// machine code emitter.
class ArgType<bits<3> val> {
  bits<3> Value = val;
}
def NoArg  : ArgType<0>;
def Arg8   : ArgType<1>;
def Arg16  : ArgType<2>;
def Arg32  : ArgType<3>;
def Arg64  : ArgType<4>;   // 64 bit int argument for FILD64
def ArgF32 : ArgType<5>;
def ArgF64 : ArgType<6>;
def ArgF80 : ArgType<6>;

// FPFormat - This specifies what form this FP instruction has.  This is used by
// the Floating-Point stackifier pass.
class FPFormat<bits<3> val> {
  bits<3> Value = val;
}
def NotFP      : FPFormat<0>;
def ZeroArgFP  : FPFormat<1>;
def OneArgFP   : FPFormat<2>;
def OneArgFPRW : FPFormat<3>;
def TwoArgFP   : FPFormat<4>;
def SpecialFP  : FPFormat<5>;


class X86Inst<string nam, bits<8> opcod, Format f, ArgType a> : Instruction {
  let Namespace = "X86";

  let Name = nam;
  bits<8> Opcode = opcod;
  Format Form = f;
  bits<5> FormBits = Form.Value;
  ArgType Type = a;
  bits<3> TypeBits = Type.Value;

  // Attributes specific to X86 instructions...
  bit hasOpSizePrefix = 0; // Does this inst have a 0x66 prefix?
  bit printImplicitUses = 0; // Should we print implicit uses of this inst?

  bits<4> Prefix = 0;       // Which prefix byte does this inst have?
  FPFormat FPForm;          // What flavor of FP instruction is this?
  bits<3> FPFormBits = 0;
}

class Imp<list<Register> uses, list<Register> defs> {
  list<Register> Uses = uses;
  list<Register> Defs = defs;
}

class Pattern<dag P> {
  dag Pattern = P;
}


// Prefix byte classes which are used to indicate to the ad-hoc machine code
// emitter that various prefix bytes are required.
class OpSize { bit hasOpSizePrefix = 1; }
class TB     { bits<4> Prefix = 1; }
class D8     { bits<4> Prefix = 2; }
class D9     { bits<4> Prefix = 3; }
class DA     { bits<4> Prefix = 4; }
class DB     { bits<4> Prefix = 5; }
class DC     { bits<4> Prefix = 6; }
class DD     { bits<4> Prefix = 7; }
class DE     { bits<4> Prefix = 8; }
class DF     { bits<4> Prefix = 9; }



//===----------------------------------------------------------------------===//
// Instruction list...
//

def PHI : X86Inst<"PHI", 0, Pseudo, NoArg>;          // PHI node...

def NOOP : X86Inst<"nop", 0x90, RawFrm, NoArg>;    // nop

def ADJCALLSTACKDOWN : X86Inst<"ADJCALLSTACKDOWN", 0, Pseudo, NoArg>;
def ADJCALLSTACKUP   : X86Inst<"ADJCALLSTACKUP",   0, Pseudo, NoArg>;
def IMPLICIT_USE     : X86Inst<"IMPLICIT_USE",     0, Pseudo, NoArg>;
def IMPLICIT_DEF     : X86Inst<"IMPLICIT_DEF",     0, Pseudo, NoArg>;

//===----------------------------------------------------------------------===//
//  Control Flow Instructions...
//

// Return instruction...
let isTerminator = 1, isReturn = 1 in
  def RET : X86Inst<"ret", 0xC3, RawFrm, NoArg>, Pattern<(retvoid)>;

// All branches are RawFrm, Void, Branch, and Terminators
let isBranch = 1, isTerminator = 1 in
  class IBr<string name, bits<8> opcode> : X86Inst<name, opcode, RawFrm, NoArg>;

def JMP : IBr<"jmp", 0xE9>, Pattern<(br basicblock)>;
def JB  : IBr<"jb" , 0x82>, TB;
def JAE : IBr<"jae", 0x83>, TB;
def JE  : IBr<"je" , 0x84>, TB, Pattern<(isVoid (unspec1 basicblock))>;
def JNE : IBr<"jne", 0x85>, TB;
def JBE : IBr<"jbe", 0x86>, TB;
def JA  : IBr<"ja" , 0x87>, TB;
def JL  : IBr<"jl" , 0x8C>, TB;
def JGE : IBr<"jge", 0x8D>, TB;
def JLE : IBr<"jle", 0x8E>, TB;
def JG  : IBr<"jg" , 0x8F>, TB;


//===----------------------------------------------------------------------===//
//  Call Instructions...
//
let isCall = 1 in
  // All calls clobber the non-callee saved registers...
  let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6] in {
    def CALLpcrel32 : X86Inst<"call", 0xE8, RawFrm, NoArg>;
    def CALLr32     : X86Inst<"call", 0xFF, MRMS2r, Arg32>;
    def CALLm32     : X86Inst<"call", 0xFF, MRMS2m, Arg32>;
  }

       
//===----------------------------------------------------------------------===//
//  Miscellaneous Instructions...
//
def LEAVE    : X86Inst<"leave", 0xC9, RawFrm, NoArg>, Imp<[EBP], [EBP]>;

let isTwoAddress = 1 in                                      // R32 = bswap R32
  def BSWAPr32 : X86Inst<"bswap", 0xC8, AddRegFrm, Arg32>, TB;

def XCHGrr8  : X86Inst<"xchg", 0x86, MRMDestReg, Arg8>;         // xchg R8, R8
def XCHGrr16 : X86Inst<"xchg", 0x87, MRMDestReg, Arg16>, OpSize;// xchg R16, R16
def XCHGrr32 : X86Inst<"xchg", 0x87, MRMDestReg, Arg32>;        // xchg R32, R32

def LEAr16 : X86Inst<"lea", 0x8D, MRMSrcMem, Arg16>, OpSize; // R16 = lea [mem]
def LEAr32 : X86Inst<"lea", 0x8D, MRMSrcMem, Arg32>;         // R32 = lea [mem]

//===----------------------------------------------------------------------===//
//  Move Instructions...
//
def MOVrr8  : X86Inst<"mov", 0x88, MRMDestReg, Arg8>,          Pattern<(set R8 , R8 )>;
def MOVrr16 : X86Inst<"mov", 0x89, MRMDestReg, Arg16>, OpSize, Pattern<(set R16, R16)>;
def MOVrr32 : X86Inst<"mov", 0x89, MRMDestReg, Arg32>,         Pattern<(set R32, R32)>;
def MOVir8  : X86Inst<"mov", 0xB0, AddRegFrm , Arg8>,          Pattern<(set R8 , imm )>;
def MOVir16 : X86Inst<"mov", 0xB8, AddRegFrm , Arg16>, OpSize, Pattern<(set R16, imm)>;
def MOVir32 : X86Inst<"mov", 0xB8, AddRegFrm , Arg32>,         Pattern<(set R32, imm)>;
def MOVim8  : X86Inst<"mov", 0xC6, MRMS0m    , Arg8>;             // [mem] = imm8
def MOVim16 : X86Inst<"mov", 0xC7, MRMS0m    , Arg16>, OpSize;    // [mem] = imm16
def MOVim32 : X86Inst<"mov", 0xC7, MRMS0m    , Arg32>;            // [mem] = imm32

def MOVmr8  : X86Inst<"mov", 0x8A, MRMSrcMem , Arg8>;             // R8  = [mem]
def MOVmr16 : X86Inst<"mov", 0x8B, MRMSrcMem , Arg16>, OpSize,    // R16 = [mem]
              Pattern<(set R16, (load (plus R32, (plus (times imm, R32), imm))))>;
def MOVmr32 : X86Inst<"mov", 0x8B, MRMSrcMem , Arg32>,            // R32 = [mem]
              Pattern<(set R32, (load (plus R32, (plus (times imm, R32), imm))))>;

def MOVrm8  : X86Inst<"mov", 0x88, MRMDestMem, Arg8>;             // [mem] = R8
def MOVrm16 : X86Inst<"mov", 0x89, MRMDestMem, Arg16>, OpSize;    // [mem] = R16
def MOVrm32 : X86Inst<"mov", 0x89, MRMDestMem, Arg32>;            // [mem] = R32

//===----------------------------------------------------------------------===//
//  Fixed-Register Multiplication and Division Instructions...
//

// Extra precision multiplication
def MULr8  : X86Inst<"mul", 0xF6, MRMS4r, Arg8 >, Imp<[AL],[AX]>;               // AL,AH = AL*R8
def MULr16 : X86Inst<"mul", 0xF7, MRMS4r, Arg16>, Imp<[AX],[AX,DX]>, OpSize;    // AX,DX = AX*R16
def MULr32 : X86Inst<"mul", 0xF7, MRMS4r, Arg32>, Imp<[EAX],[EAX,EDX]>;         // EAX,EDX = EAX*R32

// unsigned division/remainder
def DIVr8  : X86Inst<"div", 0xF6, MRMS6r, Arg8 >, Imp<[AX],[AX]>;               // AX/r8 = AL,AH
def DIVr16 : X86Inst<"div", 0xF7, MRMS6r, Arg16>, Imp<[AX,DX],[AX,DX]>, OpSize; // DX:AX/r16 = AX,DX
def DIVr32 : X86Inst<"div", 0xF7, MRMS6r, Arg32>, Imp<[EAX,EDX],[EAX,EDX]>;     // EDX:EAX/r32 = EAX,EDX

// signed division/remainder
def IDIVr8 : X86Inst<"idiv",0xF6, MRMS7r, Arg8 >, Imp<[AX],[AX]>;               // AX/r8 = AL,AH
def IDIVr16: X86Inst<"idiv",0xF7, MRMS7r, Arg16>, Imp<[AX,DX],[AX,DX]>, OpSize; // DX:AX/r16 = AX,DX
def IDIVr32: X86Inst<"idiv",0xF7, MRMS7r, Arg32>, Imp<[EAX,EDX],[EAX,EDX]>;     // EDX:EAX/r32 = EAX,EDX

// Sign-extenders for division
def CBW    : X86Inst<"cbw", 0x98, RawFrm, Arg8 >, Imp<[AL],[AH]>;               // AX = signext(AL)
def CWD    : X86Inst<"cwd", 0x99, RawFrm, Arg8 >, Imp<[AX],[DX]>;               // DX:AX = signext(AX)
def CDQ    : X86Inst<"cdq", 0x99, RawFrm, Arg8 >, Imp<[EAX],[EDX]>;             // EDX:EAX = signext(EAX)


//===----------------------------------------------------------------------===//
//  Two address Instructions...
//
let isTwoAddress = 1 in {  // Define some helper classes to make defs shorter.
  class I2A8 <string n, bits<8> o, Format F> : X86Inst<n, o, F, Arg8>;
  class I2A16<string n, bits<8> o, Format F> : X86Inst<n, o, F, Arg16>;
  class I2A32<string n, bits<8> o, Format F> : X86Inst<n, o, F, Arg32>;
}

// Arithmetic...
def ADDrr8   : I2A8 <"add", 0x00, MRMDestReg>,         Pattern<(set R8 , (plus R8 , R8 ))>;
def ADDrr16  : I2A16<"add", 0x01, MRMDestReg>, OpSize, Pattern<(set R16, (plus R16, R16))>;
def ADDrr32  : I2A32<"add", 0x01, MRMDestReg>,         Pattern<(set R32, (plus R32, R32))>;
def ADDri8   : I2A8 <"add", 0x80, MRMS0r    >,         Pattern<(set R8 , (plus R8 , imm))>;
def ADDri16  : I2A16<"add", 0x81, MRMS0r    >, OpSize, Pattern<(set R16, (plus R16, imm))>;
def ADDri32  : I2A32<"add", 0x81, MRMS0r    >,         Pattern<(set R32, (plus R32, imm))>;

def ADCrr32  : I2A32<"adc", 0x11, MRMDestReg>;                // R32 += imm32+Carry

def SUBrr8   : I2A8 <"sub", 0x28, MRMDestReg>,         Pattern<(set R8 , (minus R8 , R8 ))>;
def SUBrr16  : I2A16<"sub", 0x29, MRMDestReg>, OpSize, Pattern<(set R16, (minus R16, R16))>;
def SUBrr32  : I2A32<"sub", 0x29, MRMDestReg>,         Pattern<(set R32, (minus R32, R32))>;
def SUBri8   : I2A8 <"sub", 0x80, MRMS5r    >,         Pattern<(set R8 , (minus R8 , imm))>;
def SUBri16  : I2A16<"sub", 0x81, MRMS5r    >, OpSize, Pattern<(set R16, (minus R16, imm))>;
def SUBri32  : I2A32<"sub", 0x81, MRMS5r    >,         Pattern<(set R32, (minus R32, imm))>;

def SBBrr32  : I2A32<"sbb", 0x19, MRMDestReg>;                // R32 -= R32+Carry

def IMULr16  : I2A16<"imul", 0xAF, MRMSrcReg>, TB, OpSize, Pattern<(set R16, (times R16, R16))>;
def IMULr32  : I2A32<"imul", 0xAF, MRMSrcReg>, TB        , Pattern<(set R32, (times R32, R32))>;

// Logical operators...
def ANDrr8   : I2A8 <"and", 0x20, MRMDestReg>,         Pattern<(set R8 , (and R8 , R8 ))>;
def ANDrr16  : I2A16<"and", 0x21, MRMDestReg>, OpSize, Pattern<(set R16, (and R16, R16))>;
def ANDrr32  : I2A32<"and", 0x21, MRMDestReg>,         Pattern<(set R32, (and R32, R32))>;
def ANDri8   : I2A8 <"and", 0x80, MRMS4r    >,         Pattern<(set R8 , (and R8 , imm))>;
def ANDri16  : I2A16<"and", 0x81, MRMS4r    >, OpSize, Pattern<(set R16, (and R16, imm))>;
def ANDri32  : I2A32<"and", 0x81, MRMS4r    >,         Pattern<(set R32, (and R32, imm))>;

def ORrr8    : I2A8 <"or" , 0x08, MRMDestReg>,         Pattern<(set R8 , (or  R8 , R8 ))>;
def ORrr16   : I2A16<"or" , 0x09, MRMDestReg>, OpSize, Pattern<(set R16, (or  R16, R16))>;
def ORrr32   : I2A32<"or" , 0x09, MRMDestReg>,         Pattern<(set R32, (or  R32, R32))>;
def ORri8    : I2A8 <"or" , 0x80, MRMS1r    >,         Pattern<(set R8 , (or  R8 , imm))>;
def ORri16   : I2A16<"or" , 0x81, MRMS1r    >, OpSize, Pattern<(set R16, (or  R16, imm))>;
def ORri32   : I2A32<"or" , 0x81, MRMS1r    >,         Pattern<(set R32, (or  R32, imm))>;

def XORrr8   : I2A8 <"xor", 0x30, MRMDestReg>,         Pattern<(set R8 , (xor R8 , R8 ))>;
def XORrr16  : I2A16<"xor", 0x31, MRMDestReg>, OpSize, Pattern<(set R16, (xor R16, R16))>;
def XORrr32  : I2A32<"xor", 0x31, MRMDestReg>,         Pattern<(set R32, (xor R32, R32))>;
def XORri8   : I2A8 <"xor", 0x80, MRMS6r    >,         Pattern<(set R8 , (xor R8 , imm))>;
def XORri16  : I2A16<"xor", 0x81, MRMS6r    >, OpSize, Pattern<(set R16, (xor R16, imm))>;
def XORri32  : I2A32<"xor", 0x81, MRMS6r    >,         Pattern<(set R32, (xor R32, imm))>;

// Test instructions are just like AND, except they don't generate a result.
def TESTrr8  : X86Inst<"test", 0x84, MRMDestReg, Arg8 >;          // flags = R8  & R8
def TESTrr16 : X86Inst<"test", 0x85, MRMDestReg, Arg16>, OpSize;  // flags = R16 & R16
def TESTrr32 : X86Inst<"test", 0x85, MRMDestReg, Arg32>;          // flags = R32 & R32
def TESTri8  : X86Inst<"test", 0xF6, MRMS0r    , Arg8 >;          // flags = R8  & imm8
def TESTri16 : X86Inst<"test", 0xF7, MRMS0r    , Arg16>, OpSize;  // flags = R16 & imm16
def TESTri32 : X86Inst<"test", 0xF7, MRMS0r    , Arg32>;          // flags = R32 & imm32

// Shift instructions
class UsesCL { list<Register> Uses = [CL]; bit printImplicitUses = 1; }

def SHLrr8   : I2A8 <"shl", 0xD2, MRMS4r    >        , UsesCL; // R8  <<= cl
def SHLrr16  : I2A8 <"shl", 0xD3, MRMS4r    >, OpSize, UsesCL; // R16 <<= cl
def SHLrr32  : I2A8 <"shl", 0xD3, MRMS4r    >        , UsesCL; // R32 <<= cl
def SHLir8   : I2A8 <"shl", 0xC0, MRMS4r    >;                 // R8  <<= imm8
def SHLir16  : I2A8 <"shl", 0xC1, MRMS4r    >, OpSize;         // R16 <<= imm16
def SHLir32  : I2A8 <"shl", 0xC1, MRMS4r    >;                 // R32 <<= imm32
def SHRrr8   : I2A8 <"shr", 0xD2, MRMS5r    >        , UsesCL; // R8  >>= cl
def SHRrr16  : I2A8 <"shr", 0xD3, MRMS5r    >, OpSize, UsesCL; // R16 >>= cl
def SHRrr32  : I2A8 <"shr", 0xD3, MRMS5r    >        , UsesCL; // R32 >>= cl
def SHRir8   : I2A8 <"shr", 0xC0, MRMS5r    >;                 // R8  >>= imm8
def SHRir16  : I2A8 <"shr", 0xC1, MRMS5r    >, OpSize;         // R16 >>= imm16
def SHRir32  : I2A8 <"shr", 0xC1, MRMS5r    >;                 // R32 >>= imm32
def SARrr8   : I2A8 <"sar", 0xD2, MRMS7r    >        , UsesCL; // R8  >>>= cl
def SARrr16  : I2A8 <"sar", 0xD3, MRMS7r    >, OpSize, UsesCL; // R16 >>>= cl
def SARrr32  : I2A8 <"sar", 0xD3, MRMS7r    >        , UsesCL; // R32 >>>= cl
def SARir8   : I2A8 <"sar", 0xC0, MRMS7r    >;                 // R8  >>>= imm8
def SARir16  : I2A8 <"sar", 0xC1, MRMS7r    >, OpSize;         // R16 >>>= imm16
def SARir32  : I2A8 <"sar", 0xC1, MRMS7r    >;                 // R32 >>>= imm32

def SHLDrr32 : I2A8 <"shld", 0xA5, MRMDestReg>, TB, UsesCL;   // R32 <<= R32,R32 cl
def SHLDir32 : I2A8 <"shld", 0xA4, MRMDestReg>, TB;           // R32 <<= R32,R32 imm8
def SHRDrr32 : I2A8 <"shrd", 0xAD, MRMDestReg>, TB, UsesCL;   // R32 >>= R32,R32 cl
def SHRDir32 : I2A8 <"shrd", 0xAC, MRMDestReg>, TB;           // R32 >>= R32,R32 imm8

// Condition code ops, incl. set if equal/not equal/...
def SAHF     : X86Inst<"sahf" , 0x9E, RawFrm, Arg8>, Imp<[AH],[]>;  // flags = AH
def SETBr    : X86Inst<"setb" , 0x92, MRMS0r, Arg8>, TB;            // R8 = <  unsign
def SETAEr   : X86Inst<"setae", 0x93, MRMS0r, Arg8>, TB;            // R8 = >= unsign
def SETEr    : X86Inst<"sete" , 0x94, MRMS0r, Arg8>, TB;            // R8 = ==
def SETNEr   : X86Inst<"setne", 0x95, MRMS0r, Arg8>, TB;            // R8 = !=
def SETBEr   : X86Inst<"setbe", 0x96, MRMS0r, Arg8>, TB;            // R8 = <= unsign
def SETAr    : X86Inst<"seta" , 0x97, MRMS0r, Arg8>, TB;            // R8 = >  signed
def SETLr    : X86Inst<"setl" , 0x9C, MRMS0r, Arg8>, TB;            // R8 = <  signed
def SETGEr   : X86Inst<"setge", 0x9D, MRMS0r, Arg8>, TB;            // R8 = >= signed
def SETLEr   : X86Inst<"setle", 0x9E, MRMS0r, Arg8>, TB;            // R8 = <= signed
def SETGr    : X86Inst<"setg" , 0x9F, MRMS0r, Arg8>, TB;            // R8 = <  signed

// Conditional moves.  These are modelled as X = cmovXX Y, Z.  Eventually
// register allocated to cmovXX XY, Z
def CMOVErr16 : I2A16<"cmove", 0x44, MRMSrcReg>, TB, OpSize;        // if ==, R16 = R16
def CMOVNErr32: I2A32<"cmovne",0x45, MRMSrcReg>, TB;                // if !=, R32 = R32

// Integer comparisons
def CMPrr8  : X86Inst<"cmp", 0x38, MRMDestReg, Arg8 >;              // compare R8, R8
def CMPrr16 : X86Inst<"cmp", 0x39, MRMDestReg, Arg16>, OpSize;      // compare R16, R16
def CMPrr32 : X86Inst<"cmp", 0x39, MRMDestReg, Arg32>,              // compare R32, R32
              Pattern<(isVoid (unspec2 R32, R32))>;
def CMPri8  : X86Inst<"cmp", 0x80, MRMS7r    , Arg8 >;              // compare R8, imm8
def CMPri16 : X86Inst<"cmp", 0x81, MRMS7r    , Arg16>, OpSize;      // compare R16, imm16
def CMPri32 : X86Inst<"cmp", 0x81, MRMS7r    , Arg32>;              // compare R32, imm32

// Sign/Zero extenders
def MOVSXr16r8 : X86Inst<"movsx", 0xBE, MRMSrcReg, Arg8>, TB, OpSize; // R16 = signext(R8)
def MOVSXr32r8 : X86Inst<"movsx", 0xBE, MRMSrcReg, Arg8>, TB;         // R32 = signext(R8)
def MOVSXr32r16: X86Inst<"movsx", 0xBF, MRMSrcReg, Arg8>, TB;         // R32 = signext(R16)
def MOVZXr16r8 : X86Inst<"movzx", 0xB6, MRMSrcReg, Arg8>, TB, OpSize; // R16 = zeroext(R8)
def MOVZXr32r8 : X86Inst<"movzx", 0xB6, MRMSrcReg, Arg8>, TB;         // R32 = zeroext(R8)
def MOVZXr32r16: X86Inst<"movzx", 0xB7, MRMSrcReg, Arg8>, TB;         // R32 = zeroext(R16)


//===----------------------------------------------------------------------===//
// Floating point support
//===----------------------------------------------------------------------===//

// FIXME: These need to indicate mod/ref sets for FP regs... & FP 'TOP'

// Floating point pseudo instructions...
class FPInst<string n, bits<8> o, Format F, ArgType t, FPFormat fp>
  : X86Inst<n, o, F, t> { let FPForm = fp; let FPFormBits = FPForm.Value; }

def FpMOV : FPInst<"FMOV", 0, Pseudo, ArgF80, SpecialFP>;   // f1 = fmov f2
def FpADD : FPInst<"FADD", 0, Pseudo, ArgF80, TwoArgFP>;    // f1 = fadd f2, f3
def FpSUB : FPInst<"FSUB", 0, Pseudo, ArgF80, TwoArgFP>;    // f1 = fsub f2, f3
def FpMUL : FPInst<"FMUL", 0, Pseudo, ArgF80, TwoArgFP>;    // f1 = fmul f2, f3
def FpDIV : FPInst<"FDIV", 0, Pseudo, ArgF80, TwoArgFP>;    // f1 = fdiv f2, f3

def FpUCOM : FPInst<"FUCOM", 0, Pseudo, ArgF80, TwoArgFP>;  // FPSW = fucom f1, f2

def FpGETRESULT : FPInst<"FGETRESULT",0, Pseudo, ArgF80, SpecialFP>;  // FPR = ST(0)

def FpSETRESULT : FPInst<"FSETRESULT",0, Pseudo, ArgF80, SpecialFP>;  // ST(0) = FPR

// Floating point loads & stores...
def FLDrr   : FPInst<"fld"   , 0xC0, AddRegFrm, ArgF80, NotFP>, D9;   // push(ST(i))
def FLDr32  : FPInst<"fld"   , 0xD9, MRMS0m   , ArgF32, ZeroArgFP>;        // load float
def FLDr64  : FPInst<"fld"   , 0xDD, MRMS0m   , ArgF64, ZeroArgFP>;        // load double
def FLDr80  : FPInst<"fld"   , 0xDB, MRMS5m   , ArgF80, ZeroArgFP>;        // load extended
def FILDr16 : FPInst<"fild"  , 0xDF, MRMS0m   , Arg16 , ZeroArgFP>;        // load signed short
def FILDr32 : FPInst<"fild"  , 0xDB, MRMS0m   , Arg32 , ZeroArgFP>;        // load signed int
def FILDr64 : FPInst<"fild"  , 0xDF, MRMS5m   , Arg64 , ZeroArgFP>;        // load signed long

def FSTr32   : FPInst<"fst" , 0xD9, MRMS2m   , ArgF32, OneArgFP>;          // store float
def FSTr64   : FPInst<"fst" , 0xDD, MRMS2m   , ArgF64, OneArgFP>;          // store double
def FSTPr32  : FPInst<"fstp", 0xD9, MRMS3m   , ArgF32, OneArgFP>;          // store float, pop
def FSTPr64  : FPInst<"fstp", 0xDD, MRMS3m   , ArgF64, OneArgFP>;          // store double, pop
def FSTPr80  : FPInst<"fstp", 0xDB, MRMS7m   , ArgF80, OneArgFP>;          // store extended, pop
def FSTrr    : FPInst<"fst" , 0xD0, AddRegFrm, ArgF80, NotFP   >, DD;      // ST(i) = ST(0)
def FSTPrr   : FPInst<"fstp", 0xD8, AddRegFrm, ArgF80, NotFP   >, DD;      // ST(i) = ST(0), pop

def FISTr16  : FPInst<"fist",    0xDF, MRMS2m, Arg16 , OneArgFP>;          // store signed short
def FISTr32  : FPInst<"fist",    0xDB, MRMS2m, Arg32 , OneArgFP>;          // store signed int
def FISTPr16 : FPInst<"fistp",   0xDF, MRMS3m, Arg16 , NotFP   >;          // store signed short, pop
def FISTPr32 : FPInst<"fistp",   0xDB, MRMS3m, Arg32 , NotFP   >;          // store signed int, pop
def FISTPr64 : FPInst<"fistpll", 0xDF, MRMS7m, Arg64 , OneArgFP>;          // store signed long, pop

def FXCH     : FPInst<"fxch",    0xC8, AddRegFrm, ArgF80, NotFP>, D9;      // fxch ST(i), ST(0)

// Floating point constant loads...
def FLD0 : FPInst<"fldz", 0xEE, RawFrm, ArgF80, ZeroArgFP>, D9;
def FLD1 : FPInst<"fld1", 0xE8, RawFrm, ArgF80, ZeroArgFP>, D9;

// Binary arithmetic operations...
class FPST0rInst<string n, bits<8> o>
  : X86Inst<n, o, AddRegFrm, ArgF80>, D8 {
  list<Register> Uses = [ST0];
  list<Register> Defs = [ST0];
}
class FPrST0Inst<string n, bits<8> o>
  : X86Inst<n, o, AddRegFrm, ArgF80>, DC {
  bit printImplicitUses = 1;
  list<Register> Uses = [ST0];
}
class FPrST0PInst<string n, bits<8> o>
  : X86Inst<n, o, AddRegFrm, ArgF80>, DE {
  list<Register> Uses = [ST0];
}

def FADDST0r   : FPST0rInst <"fadd",    0xC0>;
def FADDrST0   : FPrST0Inst <"fadd",    0xC0>;
def FADDPrST0  : FPrST0PInst<"faddp",   0xC0>;

def FSUBRST0r  : FPST0rInst <"fsubr",   0xE8>;
def FSUBrST0   : FPrST0Inst <"fsub",    0xE8>;
def FSUBPrST0  : FPrST0PInst<"fsubp",   0xE8>;

def FSUBST0r   : FPST0rInst <"fsub",    0xE0>;
def FSUBRrST0  : FPrST0Inst <"fsubr",   0xE0>;
def FSUBRPrST0 : FPrST0PInst<"fsubrp",  0xE0>;

def FMULST0r   : FPST0rInst <"fmul",    0xC8>;
def FMULrST0   : FPrST0Inst <"fmul",    0xC8>;
def FMULPrST0  : FPrST0PInst<"fmulp",   0xC8>;

def FDIVRST0r  : FPST0rInst <"fdivr",   0xF8>;
def FDIVrST0   : FPrST0Inst <"fdiv",    0xF8>;
def FDIVPrST0  : FPrST0PInst<"fdivp",   0xF8>;

def FDIVST0r   : FPST0rInst <"fdiv",    0xF0>;   // ST(0) = ST(0) / ST(i)
def FDIVRrST0  : FPrST0Inst <"fdivr",   0xF0>;   // ST(i) = ST(0) / ST(i)
def FDIVRPrST0 : FPrST0PInst<"fdivrp",  0xF0>;   // ST(i) = ST(0) / ST(i), pop

// Floating point compares
def FUCOMr    : X86Inst<"fucom"  , 0xE0, AddRegFrm, ArgF80>, DD, Imp<[ST0],[]>;  // FPSW = compare ST(0) with ST(i)
def FUCOMPr   : X86Inst<"fucomp" , 0xE8, AddRegFrm, ArgF80>, DD, Imp<[ST0],[]>;  // FPSW = compare ST(0) with ST(i), pop
def FUCOMPPr  : X86Inst<"fucompp", 0xE9, RawFrm   , ArgF80>, DA, Imp<[ST0],[]>;  // compare ST(0) with ST(1), pop, pop

// Floating point flag ops
def FNSTSWr8  : X86Inst<"fnstsw" , 0xE0, RawFrm   , ArgF80>, DF, Imp<[],[AX]>;   // AX = fp flags
def FNSTCWm16 : X86Inst<"fnstcw" , 0xD9, MRMS7m   , Arg16 >;                     // [mem16] = X87 control world
def FLDCWm16  : X86Inst<"fldcw"  , 0xD9, MRMS5m   , Arg16 >;                     // X87 control world = [mem16]


//===----------------------------------------------------------------------===//
//  Instruction Expanders
//

def RET_R32 : Expander<(ret R32:$reg),
                       [(MOVrr32 EAX, R32:$reg),
                        (RET)]>;

// FIXME: This should eventually just be implemented by defining a frameidx as a
// value address for a load.
def LOAD_FI16 : Expander<(set R16:$dest, (load frameidx:$fi)),
                         [(MOVmr16 R16:$dest, frameidx:$fi, 1, 0/*NoReg*/, 0)]>;

def LOAD_FI32 : Expander<(set R32:$dest, (load frameidx:$fi)),
                         [(MOVmr32 R32:$dest, frameidx:$fi, 1, 0/*NoReg*/, 0)]>;


def LOAD_R16 : Expander<(set R16:$dest, (load R32:$src)),
                         [(MOVmr16 R16:$dest, R32:$src, 1, 0/*NoReg*/, 0)]>;

def LOAD_R32 : Expander<(set R32:$dest, (load R32:$src)),
                         [(MOVmr32 R32:$dest, R32:$src, 1, 0/*NoReg*/, 0)]>;

def BR_EQ : Expander<(brcond (seteq R32:$a1, R32:$a2),
                             basicblock:$d1, basicblock:$d2),
                     [(CMPrr32 R32:$a1, R32:$a2),
                      (JE basicblock:$d1),
                      (JMP basicblock:$d2)]>;