aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/X86/X86InstrSSE.td
blob: 7c1947389abf779aca6c73789b1b8c537072fa67 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
//====- X86InstrSSE.td - Describe the X86 Instruction Set --*- tablegen -*-===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by Evan Cheng and is distributed under the University
// of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
//
// This file describes the X86 SSE instruction set, defining the instructions,
// and properties of the instructions which are needed for code generation,
// machine code emission, and analysis.
//
//===----------------------------------------------------------------------===//


//===----------------------------------------------------------------------===//
// SSE specific DAG Nodes.
//===----------------------------------------------------------------------===//

def SDTX86FPShiftOp : SDTypeProfile<1, 2, [ SDTCisSameAs<0, 1>,
                                            SDTCisFP<0>, SDTCisInt<2> ]>;

def X86fmin    : SDNode<"X86ISD::FMIN",      SDTFPBinOp>;
def X86fmax    : SDNode<"X86ISD::FMAX",      SDTFPBinOp>;
def X86fand    : SDNode<"X86ISD::FAND",      SDTFPBinOp,
                        [SDNPCommutative, SDNPAssociative]>;
def X86for     : SDNode<"X86ISD::FOR",       SDTFPBinOp,
                        [SDNPCommutative, SDNPAssociative]>;
def X86fxor    : SDNode<"X86ISD::FXOR",      SDTFPBinOp,
                        [SDNPCommutative, SDNPAssociative]>;
def X86frsqrt  : SDNode<"X86ISD::FRSQRT",    SDTFPUnaryOp>;
def X86frcp    : SDNode<"X86ISD::FRCP",      SDTFPUnaryOp>;
def X86fsrl    : SDNode<"X86ISD::FSRL",      SDTX86FPShiftOp>;
def X86comi    : SDNode<"X86ISD::COMI",      SDTX86CmpTest>;
def X86ucomi   : SDNode<"X86ISD::UCOMI",     SDTX86CmpTest>;
def X86s2vec   : SDNode<"X86ISD::S2VEC",  SDTypeProfile<1, 1, []>, []>;
def X86pextrw  : SDNode<"X86ISD::PEXTRW", SDTypeProfile<1, 2, []>, []>;
def X86pinsrw  : SDNode<"X86ISD::PINSRW", SDTypeProfile<1, 3, []>, []>;

//===----------------------------------------------------------------------===//
// SSE 'Special' Instructions
//===----------------------------------------------------------------------===//

def IMPLICIT_DEF_VR128 : I<0, Pseudo, (outs VR128:$dst), (ins),
                           "#IMPLICIT_DEF $dst",
                           [(set VR128:$dst, (v4f32 (undef)))]>,
                         Requires<[HasSSE1]>;
def IMPLICIT_DEF_FR32  : I<0, Pseudo, (outs FR32:$dst), (ins),
                           "#IMPLICIT_DEF $dst",
                           [(set FR32:$dst, (undef))]>, Requires<[HasSSE1]>;
def IMPLICIT_DEF_FR64  : I<0, Pseudo, (outs FR64:$dst), (ins),
                           "#IMPLICIT_DEF $dst",
                           [(set FR64:$dst, (undef))]>, Requires<[HasSSE2]>;

//===----------------------------------------------------------------------===//
// SSE Complex Patterns
//===----------------------------------------------------------------------===//

// These are 'extloads' from a scalar to the low element of a vector, zeroing
// the top elements.  These are used for the SSE 'ss' and 'sd' instruction
// forms.
def sse_load_f32 : ComplexPattern<v4f32, 4, "SelectScalarSSELoad", [],
                                  [SDNPHasChain]>;
def sse_load_f64 : ComplexPattern<v2f64, 4, "SelectScalarSSELoad", [],
                                  [SDNPHasChain]>;

def ssmem : Operand<v4f32> {
  let PrintMethod = "printf32mem";
  let MIOperandInfo = (ops ptr_rc, i8imm, ptr_rc, i32imm);
}
def sdmem : Operand<v2f64> {
  let PrintMethod = "printf64mem";
  let MIOperandInfo = (ops ptr_rc, i8imm, ptr_rc, i32imm);
}

//===----------------------------------------------------------------------===//
// SSE pattern fragments
//===----------------------------------------------------------------------===//

def loadv4f32    : PatFrag<(ops node:$ptr), (v4f32 (load node:$ptr))>;
def loadv2f64    : PatFrag<(ops node:$ptr), (v2f64 (load node:$ptr))>;
def loadv4i32    : PatFrag<(ops node:$ptr), (v4i32 (load node:$ptr))>;
def loadv2i64    : PatFrag<(ops node:$ptr), (v2i64 (load node:$ptr))>;

// Like 'store', but always requires vector alignment.
def alignedstore : PatFrag<(ops node:$val, node:$ptr),
                           (st node:$val, node:$ptr), [{
  if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N))
    return !ST->isTruncatingStore() &&
           ST->getAddressingMode() == ISD::UNINDEXED &&
           ST->getAlignment() >= 16;
  return false;
}]>;

// Like 'load', but always requires vector alignment.
def alignedload : PatFrag<(ops node:$ptr), (ld node:$ptr), [{
  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
    return LD->getExtensionType() == ISD::NON_EXTLOAD &&
           LD->getAddressingMode() == ISD::UNINDEXED &&
           LD->getAlignment() >= 16;
  return false;
}]>;

def alignedloadfsf32 : PatFrag<(ops node:$ptr), (f32   (alignedload node:$ptr))>;
def alignedloadfsf64 : PatFrag<(ops node:$ptr), (f64   (alignedload node:$ptr))>;
def alignedloadv4f32 : PatFrag<(ops node:$ptr), (v4f32 (alignedload node:$ptr))>;
def alignedloadv2f64 : PatFrag<(ops node:$ptr), (v2f64 (alignedload node:$ptr))>;
def alignedloadv4i32 : PatFrag<(ops node:$ptr), (v4i32 (alignedload node:$ptr))>;
def alignedloadv2i64 : PatFrag<(ops node:$ptr), (v2i64 (alignedload node:$ptr))>;

// Like 'load', but uses special alignment checks suitable for use in
// memory operands in most SSE instructions, which are required to
// be naturally aligned on some targets but not on others.
// FIXME: Actually implement support for targets that don't require the
//        alignment. This probably wants a subtarget predicate.
def memop : PatFrag<(ops node:$ptr), (ld node:$ptr), [{
  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
    return LD->getExtensionType() == ISD::NON_EXTLOAD &&
           LD->getAddressingMode() == ISD::UNINDEXED &&
           LD->getAlignment() >= 16;
  return false;
}]>;

def memopfsf32 : PatFrag<(ops node:$ptr), (f32   (memop node:$ptr))>;
def memopfsf64 : PatFrag<(ops node:$ptr), (f64   (memop node:$ptr))>;
def memopv4f32 : PatFrag<(ops node:$ptr), (v4f32 (memop node:$ptr))>;
def memopv2f64 : PatFrag<(ops node:$ptr), (v2f64 (memop node:$ptr))>;
def memopv4i32 : PatFrag<(ops node:$ptr), (v4i32 (memop node:$ptr))>;
def memopv2i64 : PatFrag<(ops node:$ptr), (v2i64 (memop node:$ptr))>;

// SSSE3 uses MMX registers for some instructions. They aren't aligned on a
// 16-byte boundary.
def memop64 : PatFrag<(ops node:$ptr), (ld node:$ptr), [{
  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
    return LD->getExtensionType() == ISD::NON_EXTLOAD &&
           LD->getAddressingMode() == ISD::UNINDEXED &&
           LD->getAlignment() >= 8;
  return false;
}]>;

def memopv8i8  : PatFrag<(ops node:$ptr), (v8i8  (memop64 node:$ptr))>;
def memopv16i8 : PatFrag<(ops node:$ptr), (v16i8 (memop64 node:$ptr))>;
def memopv4i16 : PatFrag<(ops node:$ptr), (v4i16 (memop64 node:$ptr))>;
def memopv8i16 : PatFrag<(ops node:$ptr), (v8i16 (memop64 node:$ptr))>;
def memopv2i32 : PatFrag<(ops node:$ptr), (v2i32 (memop64 node:$ptr))>;

def bc_v4f32 : PatFrag<(ops node:$in), (v4f32 (bitconvert node:$in))>;
def bc_v2f64 : PatFrag<(ops node:$in), (v2f64 (bitconvert node:$in))>;
def bc_v16i8 : PatFrag<(ops node:$in), (v16i8 (bitconvert node:$in))>;
def bc_v8i16 : PatFrag<(ops node:$in), (v8i16 (bitconvert node:$in))>;
def bc_v4i32 : PatFrag<(ops node:$in), (v4i32 (bitconvert node:$in))>;
def bc_v2i64 : PatFrag<(ops node:$in), (v2i64 (bitconvert node:$in))>;

def fp32imm0 : PatLeaf<(f32 fpimm), [{
  return N->isExactlyValue(+0.0);
}]>;

def PSxLDQ_imm  : SDNodeXForm<imm, [{
  // Transformation function: imm >> 3
  return getI32Imm(N->getValue() >> 3);
}]>;

// SHUFFLE_get_shuf_imm xform function: convert vector_shuffle mask to PSHUF*,
// SHUFP* etc. imm.
def SHUFFLE_get_shuf_imm : SDNodeXForm<build_vector, [{
  return getI8Imm(X86::getShuffleSHUFImmediate(N));
}]>;

// SHUFFLE_get_pshufhw_imm xform function: convert vector_shuffle mask to 
// PSHUFHW imm.
def SHUFFLE_get_pshufhw_imm : SDNodeXForm<build_vector, [{
  return getI8Imm(X86::getShufflePSHUFHWImmediate(N));
}]>;

// SHUFFLE_get_pshuflw_imm xform function: convert vector_shuffle mask to 
// PSHUFLW imm.
def SHUFFLE_get_pshuflw_imm : SDNodeXForm<build_vector, [{
  return getI8Imm(X86::getShufflePSHUFLWImmediate(N));
}]>;

def SSE_splat_mask : PatLeaf<(build_vector), [{
  return X86::isSplatMask(N);
}], SHUFFLE_get_shuf_imm>;

def SSE_splat_lo_mask : PatLeaf<(build_vector), [{
  return X86::isSplatLoMask(N);
}]>;

def MOVHLPS_shuffle_mask : PatLeaf<(build_vector), [{
  return X86::isMOVHLPSMask(N);
}]>;

def MOVHLPS_v_undef_shuffle_mask : PatLeaf<(build_vector), [{
  return X86::isMOVHLPS_v_undef_Mask(N);
}]>;

def MOVHP_shuffle_mask : PatLeaf<(build_vector), [{
  return X86::isMOVHPMask(N);
}]>;

def MOVLP_shuffle_mask : PatLeaf<(build_vector), [{
  return X86::isMOVLPMask(N);
}]>;

def MOVL_shuffle_mask : PatLeaf<(build_vector), [{
  return X86::isMOVLMask(N);
}]>;

def MOVSHDUP_shuffle_mask : PatLeaf<(build_vector), [{
  return X86::isMOVSHDUPMask(N);
}]>;

def MOVSLDUP_shuffle_mask : PatLeaf<(build_vector), [{
  return X86::isMOVSLDUPMask(N);
}]>;

def UNPCKL_shuffle_mask : PatLeaf<(build_vector), [{
  return X86::isUNPCKLMask(N);
}]>;

def UNPCKH_shuffle_mask : PatLeaf<(build_vector), [{
  return X86::isUNPCKHMask(N);
}]>;

def UNPCKL_v_undef_shuffle_mask : PatLeaf<(build_vector), [{
  return X86::isUNPCKL_v_undef_Mask(N);
}]>;

def UNPCKH_v_undef_shuffle_mask : PatLeaf<(build_vector), [{
  return X86::isUNPCKH_v_undef_Mask(N);
}]>;

def PSHUFD_shuffle_mask : PatLeaf<(build_vector), [{
  return X86::isPSHUFDMask(N);
}], SHUFFLE_get_shuf_imm>;

def PSHUFHW_shuffle_mask : PatLeaf<(build_vector), [{
  return X86::isPSHUFHWMask(N);
}], SHUFFLE_get_pshufhw_imm>;

def PSHUFLW_shuffle_mask : PatLeaf<(build_vector), [{
  return X86::isPSHUFLWMask(N);
}], SHUFFLE_get_pshuflw_imm>;

def SHUFP_unary_shuffle_mask : PatLeaf<(build_vector), [{
  return X86::isPSHUFDMask(N);
}], SHUFFLE_get_shuf_imm>;

def SHUFP_shuffle_mask : PatLeaf<(build_vector), [{
  return X86::isSHUFPMask(N);
}], SHUFFLE_get_shuf_imm>;

def PSHUFD_binary_shuffle_mask : PatLeaf<(build_vector), [{
  return X86::isSHUFPMask(N);
}], SHUFFLE_get_shuf_imm>;

//===----------------------------------------------------------------------===//
// SSE scalar FP Instructions
//===----------------------------------------------------------------------===//

// CMOV* - Used to implement the SSE SELECT DAG operation.  Expanded by the
// scheduler into a branch sequence.
// These are expanded by the scheduler.
let Uses = [EFLAGS], usesCustomDAGSchedInserter = 1 in {
  def CMOV_FR32 : I<0, Pseudo,
                    (outs FR32:$dst), (ins FR32:$t, FR32:$f, i8imm:$cond),
                    "#CMOV_FR32 PSEUDO!",
                    [(set FR32:$dst, (X86cmov FR32:$t, FR32:$f, imm:$cond,
                                                  EFLAGS))]>;
  def CMOV_FR64 : I<0, Pseudo,
                    (outs FR64:$dst), (ins FR64:$t, FR64:$f, i8imm:$cond),
                    "#CMOV_FR64 PSEUDO!",
                    [(set FR64:$dst, (X86cmov FR64:$t, FR64:$f, imm:$cond,
                                                  EFLAGS))]>;
  def CMOV_V4F32 : I<0, Pseudo,
                    (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
                    "#CMOV_V4F32 PSEUDO!",
                    [(set VR128:$dst,
                      (v4f32 (X86cmov VR128:$t, VR128:$f, imm:$cond,
                                          EFLAGS)))]>;
  def CMOV_V2F64 : I<0, Pseudo,
                    (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
                    "#CMOV_V2F64 PSEUDO!",
                    [(set VR128:$dst,
                      (v2f64 (X86cmov VR128:$t, VR128:$f, imm:$cond,
                                          EFLAGS)))]>;
  def CMOV_V2I64 : I<0, Pseudo,
                    (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
                    "#CMOV_V2I64 PSEUDO!",
                    [(set VR128:$dst,
                      (v2i64 (X86cmov VR128:$t, VR128:$f, imm:$cond,
                                          EFLAGS)))]>;
}

//===----------------------------------------------------------------------===//
// SSE1 Instructions
//===----------------------------------------------------------------------===//

// Move Instructions
def MOVSSrr : SSI<0x10, MRMSrcReg, (outs FR32:$dst), (ins FR32:$src),
                  "movss\t{$src, $dst|$dst, $src}", []>;
let isLoad = 1, isReMaterializable = 1 in
def MOVSSrm : SSI<0x10, MRMSrcMem, (outs FR32:$dst), (ins f32mem:$src),
                  "movss\t{$src, $dst|$dst, $src}",
                  [(set FR32:$dst, (loadf32 addr:$src))]>;
def MOVSSmr : SSI<0x11, MRMDestMem, (outs), (ins f32mem:$dst, FR32:$src),
                  "movss\t{$src, $dst|$dst, $src}",
                  [(store FR32:$src, addr:$dst)]>;

// Conversion instructions
def CVTTSS2SIrr : SSI<0x2C, MRMSrcReg, (outs GR32:$dst), (ins FR32:$src),
                      "cvttss2si\t{$src, $dst|$dst, $src}",
                      [(set GR32:$dst, (fp_to_sint FR32:$src))]>;
def CVTTSS2SIrm : SSI<0x2C, MRMSrcMem, (outs GR32:$dst), (ins f32mem:$src),
                      "cvttss2si\t{$src, $dst|$dst, $src}",
                      [(set GR32:$dst, (fp_to_sint (loadf32 addr:$src)))]>;
def CVTSI2SSrr  : SSI<0x2A, MRMSrcReg, (outs FR32:$dst), (ins GR32:$src),
                      "cvtsi2ss\t{$src, $dst|$dst, $src}",
                      [(set FR32:$dst, (sint_to_fp GR32:$src))]>;
def CVTSI2SSrm  : SSI<0x2A, MRMSrcMem, (outs FR32:$dst), (ins i32mem:$src),
                      "cvtsi2ss\t{$src, $dst|$dst, $src}",
                      [(set FR32:$dst, (sint_to_fp (loadi32 addr:$src)))]>;

// Match intrinsics which expect XMM operand(s).
def Int_CVTSS2SIrr : SSI<0x2D, MRMSrcReg, (outs GR32:$dst), (ins VR128:$src),
                         "cvtss2si\t{$src, $dst|$dst, $src}",
                         [(set GR32:$dst, (int_x86_sse_cvtss2si VR128:$src))]>;
def Int_CVTSS2SIrm : SSI<0x2D, MRMSrcMem, (outs GR32:$dst), (ins f32mem:$src),
                         "cvtss2si\t{$src, $dst|$dst, $src}",
                         [(set GR32:$dst, (int_x86_sse_cvtss2si
                                           (load addr:$src)))]>;

// Aliases for intrinsics
def Int_CVTTSS2SIrr : SSI<0x2C, MRMSrcReg, (outs GR32:$dst), (ins VR128:$src),
                          "cvttss2si\t{$src, $dst|$dst, $src}",
                          [(set GR32:$dst,
                            (int_x86_sse_cvttss2si VR128:$src))]>;
def Int_CVTTSS2SIrm : SSI<0x2C, MRMSrcMem, (outs GR32:$dst), (ins f32mem:$src),
                          "cvttss2si\t{$src, $dst|$dst, $src}",
                          [(set GR32:$dst,
                            (int_x86_sse_cvttss2si(load addr:$src)))]>;

let isTwoAddress = 1 in {
  def Int_CVTSI2SSrr : SSI<0x2A, MRMSrcReg,
                           (outs VR128:$dst), (ins VR128:$src1, GR32:$src2),
                           "cvtsi2ss\t{$src2, $dst|$dst, $src2}",
                           [(set VR128:$dst, (int_x86_sse_cvtsi2ss VR128:$src1,
                                              GR32:$src2))]>;
  def Int_CVTSI2SSrm : SSI<0x2A, MRMSrcMem,
                           (outs VR128:$dst), (ins VR128:$src1, i32mem:$src2),
                           "cvtsi2ss\t{$src2, $dst|$dst, $src2}",
                           [(set VR128:$dst, (int_x86_sse_cvtsi2ss VR128:$src1,
                                              (loadi32 addr:$src2)))]>;
}

// Comparison instructions
let isTwoAddress = 1 in {
  def CMPSSrr : SSI<0xC2, MRMSrcReg, 
                    (outs FR32:$dst), (ins FR32:$src1, FR32:$src, SSECC:$cc),
                    "cmp${cc}ss\t{$src, $dst|$dst, $src}", []>;
  def CMPSSrm : SSI<0xC2, MRMSrcMem, 
                    (outs FR32:$dst), (ins FR32:$src1, f32mem:$src, SSECC:$cc),
                    "cmp${cc}ss\t{$src, $dst|$dst, $src}", []>;
}

let Defs = [EFLAGS] in {
def UCOMISSrr: PSI<0x2E, MRMSrcReg, (outs), (ins FR32:$src1, FR32:$src2),
                   "ucomiss\t{$src2, $src1|$src1, $src2}",
                   [(X86cmp FR32:$src1, FR32:$src2), (implicit EFLAGS)]>;
def UCOMISSrm: PSI<0x2E, MRMSrcMem, (outs), (ins FR32:$src1, f32mem:$src2),
                   "ucomiss\t{$src2, $src1|$src1, $src2}",
                   [(X86cmp FR32:$src1, (loadf32 addr:$src2)),
                    (implicit EFLAGS)]>;
} // Defs = [EFLAGS]

// Aliases to match intrinsics which expect XMM operand(s).
let isTwoAddress = 1 in {
  def Int_CMPSSrr : SSI<0xC2, MRMSrcReg, 
                        (outs VR128:$dst), (ins VR128:$src1, VR128:$src, SSECC:$cc),
                        "cmp${cc}ss\t{$src, $dst|$dst, $src}",
                        [(set VR128:$dst, (int_x86_sse_cmp_ss VR128:$src1,
                                           VR128:$src, imm:$cc))]>;
  def Int_CMPSSrm : SSI<0xC2, MRMSrcMem, 
                        (outs VR128:$dst), (ins VR128:$src1, f32mem:$src, SSECC:$cc),
                        "cmp${cc}ss\t{$src, $dst|$dst, $src}",
                        [(set VR128:$dst, (int_x86_sse_cmp_ss VR128:$src1,
                                           (load addr:$src), imm:$cc))]>;
}

let Defs = [EFLAGS] in {
def Int_UCOMISSrr: PSI<0x2E, MRMSrcReg, (outs),
                                            (ins VR128:$src1, VR128:$src2),
                       "ucomiss\t{$src2, $src1|$src1, $src2}",
                       [(X86ucomi (v4f32 VR128:$src1), VR128:$src2),
                        (implicit EFLAGS)]>;
def Int_UCOMISSrm: PSI<0x2E, MRMSrcMem, (outs),
                                            (ins VR128:$src1, f128mem:$src2),
                       "ucomiss\t{$src2, $src1|$src1, $src2}",
                       [(X86ucomi (v4f32 VR128:$src1), (load addr:$src2)),
                        (implicit EFLAGS)]>;

def Int_COMISSrr: PSI<0x2F, MRMSrcReg, (outs),
                                           (ins VR128:$src1, VR128:$src2),
                      "comiss\t{$src2, $src1|$src1, $src2}",
                      [(X86comi (v4f32 VR128:$src1), VR128:$src2),
                       (implicit EFLAGS)]>;
def Int_COMISSrm: PSI<0x2F, MRMSrcMem, (outs),
                                           (ins VR128:$src1, f128mem:$src2),
                      "comiss\t{$src2, $src1|$src1, $src2}",
                      [(X86comi (v4f32 VR128:$src1), (load addr:$src2)),
                       (implicit EFLAGS)]>;
} // Defs = [EFLAGS]

// Aliases of packed SSE1 instructions for scalar use. These all have names that
// start with 'Fs'.

// Alias instructions that map fld0 to pxor for sse.
let isReMaterializable = 1 in
def FsFLD0SS : I<0xEF, MRMInitReg, (outs FR32:$dst), (ins),
                 "pxor\t$dst, $dst", [(set FR32:$dst, fp32imm0)]>,
               Requires<[HasSSE1]>, TB, OpSize;

// Alias instruction to do FR32 reg-to-reg copy using movaps. Upper bits are
// disregarded.
def FsMOVAPSrr : PSI<0x28, MRMSrcReg, (outs FR32:$dst), (ins FR32:$src),
                     "movaps\t{$src, $dst|$dst, $src}", []>;

// Alias instruction to load FR32 from f128mem using movaps. Upper bits are
// disregarded.
let isLoad = 1 in
def FsMOVAPSrm : PSI<0x28, MRMSrcMem, (outs FR32:$dst), (ins f128mem:$src),
                     "movaps\t{$src, $dst|$dst, $src}",
                     [(set FR32:$dst, (alignedloadfsf32 addr:$src))]>;

// Alias bitwise logical operations using SSE logical ops on packed FP values.
let isTwoAddress = 1 in {
let isCommutable = 1 in {
  def FsANDPSrr : PSI<0x54, MRMSrcReg, (outs FR32:$dst), (ins FR32:$src1, FR32:$src2),
                      "andps\t{$src2, $dst|$dst, $src2}",
                      [(set FR32:$dst, (X86fand FR32:$src1, FR32:$src2))]>;
  def FsORPSrr  : PSI<0x56, MRMSrcReg, (outs FR32:$dst), (ins FR32:$src1, FR32:$src2),
                      "orps\t{$src2, $dst|$dst, $src2}",
                      [(set FR32:$dst, (X86for FR32:$src1, FR32:$src2))]>;
  def FsXORPSrr : PSI<0x57, MRMSrcReg, (outs FR32:$dst), (ins FR32:$src1, FR32:$src2),
                      "xorps\t{$src2, $dst|$dst, $src2}",
                      [(set FR32:$dst, (X86fxor FR32:$src1, FR32:$src2))]>;
}

def FsANDPSrm : PSI<0x54, MRMSrcMem, (outs FR32:$dst), (ins FR32:$src1, f128mem:$src2),
                    "andps\t{$src2, $dst|$dst, $src2}",
                    [(set FR32:$dst, (X86fand FR32:$src1,
                                      (memopfsf32 addr:$src2)))]>;
def FsORPSrm  : PSI<0x56, MRMSrcMem, (outs FR32:$dst), (ins FR32:$src1, f128mem:$src2),
                    "orps\t{$src2, $dst|$dst, $src2}",
                    [(set FR32:$dst, (X86for FR32:$src1,
                                      (memopfsf32 addr:$src2)))]>;
def FsXORPSrm : PSI<0x57, MRMSrcMem, (outs FR32:$dst), (ins FR32:$src1, f128mem:$src2),
                    "xorps\t{$src2, $dst|$dst, $src2}",
                    [(set FR32:$dst, (X86fxor FR32:$src1,
                                      (memopfsf32 addr:$src2)))]>;

def FsANDNPSrr : PSI<0x55, MRMSrcReg,
                     (outs FR32:$dst), (ins FR32:$src1, FR32:$src2),
                     "andnps\t{$src2, $dst|$dst, $src2}", []>;
def FsANDNPSrm : PSI<0x55, MRMSrcMem,
                     (outs FR32:$dst), (ins FR32:$src1, f128mem:$src2),
                     "andnps\t{$src2, $dst|$dst, $src2}", []>;
}

/// basic_sse1_fp_binop_rm - SSE1 binops come in both scalar and vector forms.
///
/// In addition, we also have a special variant of the scalar form here to
/// represent the associated intrinsic operation.  This form is unlike the
/// plain scalar form, in that it takes an entire vector (instead of a scalar)
/// and leaves the top elements undefined.
///
/// These three forms can each be reg+reg or reg+mem, so there are a total of
/// six "instructions".
///
let isTwoAddress = 1 in {
multiclass basic_sse1_fp_binop_rm<bits<8> opc, string OpcodeStr,
                                  SDNode OpNode, Intrinsic F32Int,
                                  bit Commutable = 0> {
  // Scalar operation, reg+reg.
  def SSrr : SSI<opc, MRMSrcReg, (outs FR32:$dst), (ins FR32:$src1, FR32:$src2),
                 !strconcat(OpcodeStr, "ss\t{$src2, $dst|$dst, $src2}"),
                 [(set FR32:$dst, (OpNode FR32:$src1, FR32:$src2))]> {
    let isCommutable = Commutable;
  }

  // Scalar operation, reg+mem.
  def SSrm : SSI<opc, MRMSrcMem, (outs FR32:$dst), (ins FR32:$src1, f32mem:$src2),
                 !strconcat(OpcodeStr, "ss\t{$src2, $dst|$dst, $src2}"),
                 [(set FR32:$dst, (OpNode FR32:$src1, (load addr:$src2)))]>;
                 
  // Vector operation, reg+reg.
  def PSrr : PSI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
               !strconcat(OpcodeStr, "ps\t{$src2, $dst|$dst, $src2}"),
               [(set VR128:$dst, (v4f32 (OpNode VR128:$src1, VR128:$src2)))]> {
    let isCommutable = Commutable;
  }

  // Vector operation, reg+mem.
  def PSrm : PSI<opc, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, f128mem:$src2),
                 !strconcat(OpcodeStr, "ps\t{$src2, $dst|$dst, $src2}"),
                 [(set VR128:$dst, (OpNode VR128:$src1, (memopv4f32 addr:$src2)))]>;

  // Intrinsic operation, reg+reg.
  def SSrr_Int : SSI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
                     !strconcat(OpcodeStr, "ss\t{$src2, $dst|$dst, $src2}"),
                     [(set VR128:$dst, (F32Int VR128:$src1, VR128:$src2))]> {
    let isCommutable = Commutable;
  }

  // Intrinsic operation, reg+mem.
  def SSrm_Int : SSI<opc, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, ssmem:$src2),
                     !strconcat(OpcodeStr, "ss\t{$src2, $dst|$dst, $src2}"),
                     [(set VR128:$dst, (F32Int VR128:$src1,
                                               sse_load_f32:$src2))]>;
}
}

// Arithmetic instructions
defm ADD : basic_sse1_fp_binop_rm<0x58, "add", fadd, int_x86_sse_add_ss, 1>;
defm MUL : basic_sse1_fp_binop_rm<0x59, "mul", fmul, int_x86_sse_mul_ss, 1>;
defm SUB : basic_sse1_fp_binop_rm<0x5C, "sub", fsub, int_x86_sse_sub_ss>;
defm DIV : basic_sse1_fp_binop_rm<0x5E, "div", fdiv, int_x86_sse_div_ss>;

/// sse1_fp_binop_rm - Other SSE1 binops
///
/// This multiclass is like basic_sse1_fp_binop_rm, with the addition of
/// instructions for a full-vector intrinsic form.  Operations that map
/// onto C operators don't use this form since they just use the plain
/// vector form instead of having a separate vector intrinsic form.
///
/// This provides a total of eight "instructions".
///
let isTwoAddress = 1 in {
multiclass sse1_fp_binop_rm<bits<8> opc, string OpcodeStr,
                            SDNode OpNode,
                            Intrinsic F32Int,
                            Intrinsic V4F32Int,
                            bit Commutable = 0> {

  // Scalar operation, reg+reg.
  def SSrr : SSI<opc, MRMSrcReg, (outs FR32:$dst), (ins FR32:$src1, FR32:$src2),
                 !strconcat(OpcodeStr, "ss\t{$src2, $dst|$dst, $src2}"),
                 [(set FR32:$dst, (OpNode FR32:$src1, FR32:$src2))]> {
    let isCommutable = Commutable;
  }

  // Scalar operation, reg+mem.
  def SSrm : SSI<opc, MRMSrcMem, (outs FR32:$dst), (ins FR32:$src1, f32mem:$src2),
                 !strconcat(OpcodeStr, "ss\t{$src2, $dst|$dst, $src2}"),
                 [(set FR32:$dst, (OpNode FR32:$src1, (load addr:$src2)))]>;
                 
  // Vector operation, reg+reg.
  def PSrr : PSI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
               !strconcat(OpcodeStr, "ps\t{$src2, $dst|$dst, $src2}"),
               [(set VR128:$dst, (v4f32 (OpNode VR128:$src1, VR128:$src2)))]> {
    let isCommutable = Commutable;
  }

  // Vector operation, reg+mem.
  def PSrm : PSI<opc, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, f128mem:$src2),
                 !strconcat(OpcodeStr, "ps\t{$src2, $dst|$dst, $src2}"),
                 [(set VR128:$dst, (OpNode VR128:$src1, (memopv4f32 addr:$src2)))]>;

  // Intrinsic operation, reg+reg.
  def SSrr_Int : SSI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
                     !strconcat(OpcodeStr, "ss\t{$src2, $dst|$dst, $src2}"),
                     [(set VR128:$dst, (F32Int VR128:$src1, VR128:$src2))]> {
    let isCommutable = Commutable;
  }

  // Intrinsic operation, reg+mem.
  def SSrm_Int : SSI<opc, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, ssmem:$src2),
                     !strconcat(OpcodeStr, "ss\t{$src2, $dst|$dst, $src2}"),
                     [(set VR128:$dst, (F32Int VR128:$src1,
                                               sse_load_f32:$src2))]>;

  // Vector intrinsic operation, reg+reg.
  def PSrr_Int : PSI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
                     !strconcat(OpcodeStr, "ps\t{$src2, $dst|$dst, $src2}"),
                     [(set VR128:$dst, (V4F32Int VR128:$src1, VR128:$src2))]> {
    let isCommutable = Commutable;
  }

  // Vector intrinsic operation, reg+mem.
  def PSrm_Int : PSI<opc, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, f128mem:$src2),
                     !strconcat(OpcodeStr, "ps\t{$src2, $dst|$dst, $src2}"),
                     [(set VR128:$dst, (V4F32Int VR128:$src1, (load addr:$src2)))]>;
}
}

defm MAX : sse1_fp_binop_rm<0x5F, "max", X86fmax,
                            int_x86_sse_max_ss, int_x86_sse_max_ps>;
defm MIN : sse1_fp_binop_rm<0x5D, "min", X86fmin,
                            int_x86_sse_min_ss, int_x86_sse_min_ps>;

//===----------------------------------------------------------------------===//
// SSE packed FP Instructions

// Move Instructions
def MOVAPSrr : PSI<0x28, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
                   "movaps\t{$src, $dst|$dst, $src}", []>;
let isLoad = 1, isReMaterializable = 1 in
def MOVAPSrm : PSI<0x28, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
                   "movaps\t{$src, $dst|$dst, $src}",
                   [(set VR128:$dst, (alignedloadv4f32 addr:$src))]>;

def MOVAPSmr : PSI<0x29, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
                   "movaps\t{$src, $dst|$dst, $src}",
                   [(alignedstore (v4f32 VR128:$src), addr:$dst)]>;

def MOVUPSrr : PSI<0x10, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
                   "movups\t{$src, $dst|$dst, $src}", []>;
let isLoad = 1 in
def MOVUPSrm : PSI<0x10, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
                   "movups\t{$src, $dst|$dst, $src}",
                   [(set VR128:$dst, (loadv4f32 addr:$src))]>;
def MOVUPSmr : PSI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
                   "movups\t{$src, $dst|$dst, $src}",
                   [(store (v4f32 VR128:$src), addr:$dst)]>;

// Intrinsic forms of MOVUPS load and store
let isLoad = 1 in
def MOVUPSrm_Int : PSI<0x10, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
                       "movups\t{$src, $dst|$dst, $src}",
                       [(set VR128:$dst, (int_x86_sse_loadu_ps addr:$src))]>;
def MOVUPSmr_Int : PSI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
                       "movups\t{$src, $dst|$dst, $src}",
                       [(int_x86_sse_storeu_ps addr:$dst, VR128:$src)]>;

let isTwoAddress = 1 in {
  let AddedComplexity = 20 in {
    def MOVLPSrm : PSI<0x12, MRMSrcMem,
                       (outs VR128:$dst), (ins VR128:$src1, f64mem:$src2),
                       "movlps\t{$src2, $dst|$dst, $src2}",
                       [(set VR128:$dst, 
                         (v4f32 (vector_shuffle VR128:$src1,
                         (bc_v4f32 (v2f64 (scalar_to_vector (loadf64 addr:$src2)))),
                                 MOVLP_shuffle_mask)))]>;
    def MOVHPSrm : PSI<0x16, MRMSrcMem,
                       (outs VR128:$dst), (ins VR128:$src1, f64mem:$src2),
                       "movhps\t{$src2, $dst|$dst, $src2}",
                       [(set VR128:$dst, 
                         (v4f32 (vector_shuffle VR128:$src1,
                         (bc_v4f32 (v2f64 (scalar_to_vector (loadf64 addr:$src2)))),
                                 MOVHP_shuffle_mask)))]>;
  } // AddedComplexity
} // isTwoAddress

def MOVLPSmr : PSI<0x13, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src),
                   "movlps\t{$src, $dst|$dst, $src}",
                   [(store (f64 (vector_extract (bc_v2f64 (v4f32 VR128:$src)),
                                 (iPTR 0))), addr:$dst)]>;

// v2f64 extract element 1 is always custom lowered to unpack high to low
// and extract element 0 so the non-store version isn't too horrible.
def MOVHPSmr : PSI<0x17, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src),
                   "movhps\t{$src, $dst|$dst, $src}",
                   [(store (f64 (vector_extract
                                 (v2f64 (vector_shuffle
                                         (bc_v2f64 (v4f32 VR128:$src)), (undef),
                                         UNPCKH_shuffle_mask)), (iPTR 0))),
                     addr:$dst)]>;

let isTwoAddress = 1 in {
let AddedComplexity = 15 in {
def MOVLHPSrr : PSI<0x16, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
                    "movlhps\t{$src2, $dst|$dst, $src2}",
                    [(set VR128:$dst,
                      (v4f32 (vector_shuffle VR128:$src1, VR128:$src2,
                              MOVHP_shuffle_mask)))]>;

def MOVHLPSrr : PSI<0x12, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
                    "movhlps\t{$src2, $dst|$dst, $src2}",
                    [(set VR128:$dst,
                      (v4f32 (vector_shuffle VR128:$src1, VR128:$src2,
                              MOVHLPS_shuffle_mask)))]>;
} // AddedComplexity
} // isTwoAddress



// Arithmetic

/// sse1_fp_unop_rm - SSE1 unops come in both scalar and vector forms.
///
/// In addition, we also have a special variant of the scalar form here to
/// represent the associated intrinsic operation.  This form is unlike the
/// plain scalar form, in that it takes an entire vector (instead of a
/// scalar) and leaves the top elements undefined.
///
/// And, we have a special variant form for a full-vector intrinsic form.
///
/// These four forms can each have a reg or a mem operand, so there are a
/// total of eight "instructions".
///
multiclass sse1_fp_unop_rm<bits<8> opc, string OpcodeStr,
                           SDNode OpNode,
                           Intrinsic F32Int,
                           Intrinsic V4F32Int,
                           bit Commutable = 0> {
  // Scalar operation, reg.
  def SSr : SSI<opc, MRMSrcReg, (outs FR32:$dst), (ins FR32:$src),
                !strconcat(OpcodeStr, "ss\t{$src, $dst|$dst, $src}"),
                [(set FR32:$dst, (OpNode FR32:$src))]> {
    let isCommutable = Commutable;
  }

  // Scalar operation, mem.
  def SSm : SSI<opc, MRMSrcMem, (outs FR32:$dst), (ins f32mem:$src),
                !strconcat(OpcodeStr, "ss\t{$src, $dst|$dst, $src}"),
                [(set FR32:$dst, (OpNode (load addr:$src)))]>;
                 
  // Vector operation, reg.
  def PSr : PSI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
              !strconcat(OpcodeStr, "ps\t{$src, $dst|$dst, $src}"),
              [(set VR128:$dst, (v4f32 (OpNode VR128:$src)))]> {
    let isCommutable = Commutable;
  }

  // Vector operation, mem.
  def PSm : PSI<opc, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
                !strconcat(OpcodeStr, "ps\t{$src, $dst|$dst, $src}"),
                [(set VR128:$dst, (OpNode (memopv4f32 addr:$src)))]>;

  // Intrinsic operation, reg.
  def SSr_Int : SSI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
                    !strconcat(OpcodeStr, "ss\t{$src, $dst|$dst, $src}"),
                    [(set VR128:$dst, (F32Int VR128:$src))]> {
    let isCommutable = Commutable;
  }

  // Intrinsic operation, mem.
  def SSm_Int : SSI<opc, MRMSrcMem, (outs VR128:$dst), (ins ssmem:$src),
                    !strconcat(OpcodeStr, "ss\t{$src, $dst|$dst, $src}"),
                    [(set VR128:$dst, (F32Int sse_load_f32:$src))]>;

  // Vector intrinsic operation, reg
  def PSr_Int : PSI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
                    !strconcat(OpcodeStr, "ps\t{$src, $dst|$dst, $src}"),
                    [(set VR128:$dst, (V4F32Int VR128:$src))]> {
    let isCommutable = Commutable;
  }

  // Vector intrinsic operation, mem
  def PSm_Int : PSI<opc, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
                    !strconcat(OpcodeStr, "ps\t{$src, $dst|$dst, $src}"),
                    [(set VR128:$dst, (V4F32Int (load addr:$src)))]>;
}

// Square root.
defm SQRT  : sse1_fp_unop_rm<0x51, "sqrt",  fsqrt,
                             int_x86_sse_sqrt_ss, int_x86_sse_sqrt_ps>;

// Reciprocal approximations. Note that these typically require refinement
// in order to obtain suitable precision.
defm RSQRT : sse1_fp_unop_rm<0x52, "rsqrt", X86frsqrt,
                             int_x86_sse_rsqrt_ss, int_x86_sse_rsqrt_ps>;
defm RCP   : sse1_fp_unop_rm<0x53, "rcp",   X86frcp,
                             int_x86_sse_rcp_ss, int_x86_sse_rcp_ps>;

// Logical
let isTwoAddress = 1 in {
  let isCommutable = 1 in {
    def ANDPSrr : PSI<0x54, MRMSrcReg,
                      (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
                      "andps\t{$src2, $dst|$dst, $src2}",
                      [(set VR128:$dst, (v2i64
                                         (and VR128:$src1, VR128:$src2)))]>;
    def ORPSrr  : PSI<0x56, MRMSrcReg,
                      (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
                      "orps\t{$src2, $dst|$dst, $src2}",
                      [(set VR128:$dst, (v2i64
                                         (or VR128:$src1, VR128:$src2)))]>;
    def XORPSrr : PSI<0x57, MRMSrcReg,
                      (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
                      "xorps\t{$src2, $dst|$dst, $src2}",
                      [(set VR128:$dst, (v2i64
                                         (xor VR128:$src1, VR128:$src2)))]>;
  }

  def ANDPSrm : PSI<0x54, MRMSrcMem,
                    (outs VR128:$dst), (ins VR128:$src1, f128mem:$src2),
                    "andps\t{$src2, $dst|$dst, $src2}",
                    [(set VR128:$dst, (and (bc_v2i64 (v4f32 VR128:$src1)),
                                       (memopv2i64 addr:$src2)))]>;
  def ORPSrm  : PSI<0x56, MRMSrcMem,
                    (outs VR128:$dst), (ins VR128:$src1, f128mem:$src2),
                    "orps\t{$src2, $dst|$dst, $src2}",
                    [(set VR128:$dst, (or (bc_v2i64 (v4f32 VR128:$src1)),
                                       (memopv2i64 addr:$src2)))]>;
  def XORPSrm : PSI<0x57, MRMSrcMem,
                    (outs VR128:$dst), (ins VR128:$src1, f128mem:$src2),
                    "xorps\t{$src2, $dst|$dst, $src2}",
                    [(set VR128:$dst, (xor (bc_v2i64 (v4f32 VR128:$src1)),
                                       (memopv2i64 addr:$src2)))]>;
  def ANDNPSrr : PSI<0x55, MRMSrcReg,
                     (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
                     "andnps\t{$src2, $dst|$dst, $src2}",
                     [(set VR128:$dst,
                       (v2i64 (and (xor VR128:$src1,
                                    (bc_v2i64 (v4i32 immAllOnesV))),
                               VR128:$src2)))]>;
  def ANDNPSrm : PSI<0x55, MRMSrcMem,
                     (outs VR128:$dst), (ins VR128:$src1,f128mem:$src2),
                     "andnps\t{$src2, $dst|$dst, $src2}",
                     [(set VR128:$dst,
                       (v2i64 (and (xor (bc_v2i64 (v4f32 VR128:$src1)),
                                    (bc_v2i64 (v4i32 immAllOnesV))),
                               (memopv2i64 addr:$src2))))]>;
}

let isTwoAddress = 1 in {
  def CMPPSrri : PSIi8<0xC2, MRMSrcReg, 
                      (outs VR128:$dst), (ins VR128:$src1, VR128:$src, SSECC:$cc),
                      "cmp${cc}ps\t{$src, $dst|$dst, $src}",
                      [(set VR128:$dst, (int_x86_sse_cmp_ps VR128:$src1,
                                         VR128:$src, imm:$cc))]>;
  def CMPPSrmi : PSIi8<0xC2, MRMSrcMem, 
                      (outs VR128:$dst), (ins VR128:$src1, f128mem:$src, SSECC:$cc),
                      "cmp${cc}ps\t{$src, $dst|$dst, $src}",
                      [(set VR128:$dst, (int_x86_sse_cmp_ps VR128:$src1,
                                         (load addr:$src), imm:$cc))]>;
}

// Shuffle and unpack instructions
let isTwoAddress = 1 in {
  let isConvertibleToThreeAddress = 1 in // Convert to pshufd
    def SHUFPSrri : PSIi8<0xC6, MRMSrcReg, 
                          (outs VR128:$dst), (ins VR128:$src1,
                           VR128:$src2, i32i8imm:$src3),
                          "shufps\t{$src3, $src2, $dst|$dst, $src2, $src3}",
                          [(set VR128:$dst,
                            (v4f32 (vector_shuffle
                                    VR128:$src1, VR128:$src2,
                                    SHUFP_shuffle_mask:$src3)))]>;
  def SHUFPSrmi : PSIi8<0xC6, MRMSrcMem, 
                        (outs VR128:$dst), (ins VR128:$src1,
                         f128mem:$src2, i32i8imm:$src3),
                        "shufps\t{$src3, $src2, $dst|$dst, $src2, $src3}",
                        [(set VR128:$dst,
                          (v4f32 (vector_shuffle
                                  VR128:$src1, (memopv4f32 addr:$src2),
                                  SHUFP_shuffle_mask:$src3)))]>;

  let AddedComplexity = 10 in {
    def UNPCKHPSrr : PSI<0x15, MRMSrcReg, 
                         (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
                         "unpckhps\t{$src2, $dst|$dst, $src2}",
                         [(set VR128:$dst,
                           (v4f32 (vector_shuffle
                                   VR128:$src1, VR128:$src2,
                                   UNPCKH_shuffle_mask)))]>;
    def UNPCKHPSrm : PSI<0x15, MRMSrcMem, 
                         (outs VR128:$dst), (ins VR128:$src1, f128mem:$src2),
                         "unpckhps\t{$src2, $dst|$dst, $src2}",
                         [(set VR128:$dst,
                           (v4f32 (vector_shuffle
                                   VR128:$src1, (memopv4f32 addr:$src2),
                                   UNPCKH_shuffle_mask)))]>;

    def UNPCKLPSrr : PSI<0x14, MRMSrcReg, 
                         (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
                         "unpcklps\t{$src2, $dst|$dst, $src2}",
                         [(set VR128:$dst,
                           (v4f32 (vector_shuffle
                                   VR128:$src1, VR128:$src2,
                                   UNPCKL_shuffle_mask)))]>;
    def UNPCKLPSrm : PSI<0x14, MRMSrcMem, 
                         (outs VR128:$dst), (ins VR128:$src1, f128mem:$src2),
                         "unpcklps\t{$src2, $dst|$dst, $src2}",
                         [(set VR128:$dst,
                           (v4f32 (vector_shuffle
                                   VR128:$src1, (memopv4f32 addr:$src2),
                                   UNPCKL_shuffle_mask)))]>;
  } // AddedComplexity
} // isTwoAddress

// Mask creation
def MOVMSKPSrr : PSI<0x50, MRMSrcReg, (outs GR32:$dst), (ins VR128:$src),
                     "movmskps\t{$src, $dst|$dst, $src}",
                     [(set GR32:$dst, (int_x86_sse_movmsk_ps VR128:$src))]>;
def MOVMSKPDrr : PSI<0x50, MRMSrcReg, (outs GR32:$dst), (ins VR128:$src),
                     "movmskpd\t{$src, $dst|$dst, $src}",
                     [(set GR32:$dst, (int_x86_sse2_movmsk_pd VR128:$src))]>;

// Prefetching loads.
// TODO: no intrinsics for these?
def PREFETCHT0   : PSI<0x18, MRM1m, (outs), (ins i8mem:$src), "prefetcht0\t$src", []>;
def PREFETCHT1   : PSI<0x18, MRM2m, (outs), (ins i8mem:$src), "prefetcht1\t$src", []>;
def PREFETCHT2   : PSI<0x18, MRM3m, (outs), (ins i8mem:$src), "prefetcht2\t$src", []>;
def PREFETCHNTA  : PSI<0x18, MRM0m, (outs), (ins i8mem:$src), "prefetchnta\t$src", []>;

// Non-temporal stores
def MOVNTPSmr : PSI<0x2B, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src),
                    "movntps\t{$src, $dst|$dst, $src}",
                    [(int_x86_sse_movnt_ps addr:$dst, VR128:$src)]>;

// Load, store, and memory fence
def SFENCE : PSI<0xAE, MRM7m, (outs), (ins), "sfence", [(int_x86_sse_sfence)]>;

// MXCSR register
def LDMXCSR : PSI<0xAE, MRM2m, (outs), (ins i32mem:$src),
                  "ldmxcsr\t$src", [(int_x86_sse_ldmxcsr addr:$src)]>;
def STMXCSR : PSI<0xAE, MRM3m, (outs), (ins i32mem:$dst),
                  "stmxcsr\t$dst", [(int_x86_sse_stmxcsr addr:$dst)]>;

// Alias instructions that map zero vector to pxor / xorp* for sse.
// FIXME: remove when we can teach regalloc that xor reg, reg is ok.
let isReMaterializable = 1 in
def V_SET0 : PSI<0x57, MRMInitReg, (outs VR128:$dst), (ins),
                 "xorps\t$dst, $dst",
                 [(set VR128:$dst, (v4f32 immAllZerosV))]>;

// FR32 to 128-bit vector conversion.
def MOVSS2PSrr : SSI<0x10, MRMSrcReg, (outs VR128:$dst), (ins FR32:$src),
                      "movss\t{$src, $dst|$dst, $src}",
                      [(set VR128:$dst,
                        (v4f32 (scalar_to_vector FR32:$src)))]>;
def MOVSS2PSrm : SSI<0x10, MRMSrcMem, (outs VR128:$dst), (ins f32mem:$src),
                     "movss\t{$src, $dst|$dst, $src}",
                     [(set VR128:$dst,
                       (v4f32 (scalar_to_vector (loadf32 addr:$src))))]>;

// FIXME: may not be able to eliminate this movss with coalescing the src and
// dest register classes are different. We really want to write this pattern
// like this:
// def : Pat<(f32 (vector_extract (v4f32 VR128:$src), (iPTR 0))),
//           (f32 FR32:$src)>;
def MOVPS2SSrr : SSI<0x10, MRMSrcReg, (outs FR32:$dst), (ins VR128:$src),
                     "movss\t{$src, $dst|$dst, $src}",
                     [(set FR32:$dst, (vector_extract (v4f32 VR128:$src),
                                       (iPTR 0)))]>;
def MOVPS2SSmr : SSI<0x11, MRMDestMem, (outs), (ins f32mem:$dst, VR128:$src),
                     "movss\t{$src, $dst|$dst, $src}",
                     [(store (f32 (vector_extract (v4f32 VR128:$src),
                                   (iPTR 0))), addr:$dst)]>;


// Move to lower bits of a VR128, leaving upper bits alone.
// Three operand (but two address) aliases.
let isTwoAddress = 1 in {
  def MOVLSS2PSrr : SSI<0x10, MRMSrcReg,
                        (outs VR128:$dst), (ins VR128:$src1, FR32:$src2),
                        "movss\t{$src2, $dst|$dst, $src2}", []>;

  let AddedComplexity = 15 in
    def MOVLPSrr : SSI<0x10, MRMSrcReg,
                       (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
                       "movss\t{$src2, $dst|$dst, $src2}",
                       [(set VR128:$dst,
                         (v4f32 (vector_shuffle VR128:$src1, VR128:$src2,
                                 MOVL_shuffle_mask)))]>;
}

// Move to lower bits of a VR128 and zeroing upper bits.
// Loading from memory automatically zeroing upper bits.
let AddedComplexity = 20 in
def MOVZSS2PSrm : SSI<0x10, MRMSrcMem, (outs VR128:$dst), (ins f32mem:$src),
                      "movss\t{$src, $dst|$dst, $src}",
                      [(set VR128:$dst, (v4f32 (vector_shuffle immAllZerosV,
                                 (v4f32 (scalar_to_vector (loadf32 addr:$src))),
                                                MOVL_shuffle_mask)))]>;


//===----------------------------------------------------------------------===//
// SSE2 Instructions
//===----------------------------------------------------------------------===//

// Move Instructions
def MOVSDrr : SDI<0x10, MRMSrcReg, (outs FR64:$dst), (ins FR64:$src),
                  "movsd\t{$src, $dst|$dst, $src}", []>;
let isLoad = 1, isReMaterializable = 1 in
def MOVSDrm : SDI<0x10, MRMSrcMem, (outs FR64:$dst), (ins f64mem:$src),
                  "movsd\t{$src, $dst|$dst, $src}",
                  [(set FR64:$dst, (loadf64 addr:$src))]>;
def MOVSDmr : SDI<0x11, MRMDestMem, (outs), (ins f64mem:$dst, FR64:$src),
                  "movsd\t{$src, $dst|$dst, $src}",
                  [(store FR64:$src, addr:$dst)]>;

// Conversion instructions
def CVTTSD2SIrr : SDI<0x2C, MRMSrcReg, (outs GR32:$dst), (ins FR64:$src),
                      "cvttsd2si\t{$src, $dst|$dst, $src}",
                      [(set GR32:$dst, (fp_to_sint FR64:$src))]>;
def CVTTSD2SIrm : SDI<0x2C, MRMSrcMem, (outs GR32:$dst), (ins f64mem:$src),
                      "cvttsd2si\t{$src, $dst|$dst, $src}",
                      [(set GR32:$dst, (fp_to_sint (loadf64 addr:$src)))]>;
def CVTSD2SSrr  : SDI<0x5A, MRMSrcReg, (outs FR32:$dst), (ins FR64:$src),
                      "cvtsd2ss\t{$src, $dst|$dst, $src}",
                      [(set FR32:$dst, (fround FR64:$src))]>;
def CVTSD2SSrm  : SDI<0x5A, MRMSrcMem, (outs FR32:$dst), (ins f64mem:$src), 
                      "cvtsd2ss\t{$src, $dst|$dst, $src}",
                      [(set FR32:$dst, (fround (loadf64 addr:$src)))]>;
def CVTSI2SDrr  : SDI<0x2A, MRMSrcReg, (outs FR64:$dst), (ins GR32:$src),
                      "cvtsi2sd\t{$src, $dst|$dst, $src}",
                      [(set FR64:$dst, (sint_to_fp GR32:$src))]>;
def CVTSI2SDrm  : SDI<0x2A, MRMSrcMem, (outs FR64:$dst), (ins i32mem:$src),
                      "cvtsi2sd\t{$src, $dst|$dst, $src}",
                      [(set FR64:$dst, (sint_to_fp (loadi32 addr:$src)))]>;

// SSE2 instructions with XS prefix
def CVTSS2SDrr : I<0x5A, MRMSrcReg, (outs FR64:$dst), (ins FR32:$src),
                   "cvtss2sd\t{$src, $dst|$dst, $src}",
                   [(set FR64:$dst, (fextend FR32:$src))]>, XS,
                 Requires<[HasSSE2]>;
def CVTSS2SDrm : I<0x5A, MRMSrcMem, (outs FR64:$dst), (ins f32mem:$src),
                   "cvtss2sd\t{$src, $dst|$dst, $src}",
                   [(set FR64:$dst, (extloadf32 addr:$src))]>, XS,
                 Requires<[HasSSE2]>;

// Match intrinsics which expect XMM operand(s).
def Int_CVTSD2SIrr : SDI<0x2D, MRMSrcReg, (outs GR32:$dst), (ins VR128:$src),
                         "cvtsd2si\t{$src, $dst|$dst, $src}",
                         [(set GR32:$dst, (int_x86_sse2_cvtsd2si VR128:$src))]>;
def Int_CVTSD2SIrm : SDI<0x2D, MRMSrcMem, (outs GR32:$dst), (ins f128mem:$src),
                         "cvtsd2si\t{$src, $dst|$dst, $src}",
                         [(set GR32:$dst, (int_x86_sse2_cvtsd2si
                                           (load addr:$src)))]>;

// Aliases for intrinsics
def Int_CVTTSD2SIrr : SDI<0x2C, MRMSrcReg, (outs GR32:$dst), (ins VR128:$src),
                          "cvttsd2si\t{$src, $dst|$dst, $src}",
                          [(set GR32:$dst,
                            (int_x86_sse2_cvttsd2si VR128:$src))]>;
def Int_CVTTSD2SIrm : SDI<0x2C, MRMSrcMem, (outs GR32:$dst), (ins f128mem:$src),
                          "cvttsd2si\t{$src, $dst|$dst, $src}",
                          [(set GR32:$dst, (int_x86_sse2_cvttsd2si
                                            (load addr:$src)))]>;

// Comparison instructions
let isTwoAddress = 1 in {
  def CMPSDrr : SDI<0xC2, MRMSrcReg, 
                    (outs FR64:$dst), (ins FR64:$src1, FR64:$src, SSECC:$cc),
                    "cmp${cc}sd\t{$src, $dst|$dst, $src}", []>;
  def CMPSDrm : SDI<0xC2, MRMSrcMem, 
                    (outs FR64:$dst), (ins FR64:$src1, f64mem:$src, SSECC:$cc),
                    "cmp${cc}sd\t{$src, $dst|$dst, $src}", []>;
}

let Defs = [EFLAGS] in {
def UCOMISDrr: PDI<0x2E, MRMSrcReg, (outs), (ins FR64:$src1, FR64:$src2),
                   "ucomisd\t{$src2, $src1|$src1, $src2}",
                   [(X86cmp FR64:$src1, FR64:$src2), (implicit EFLAGS)]>;
def UCOMISDrm: PDI<0x2E, MRMSrcMem, (outs), (ins FR64:$src1, f64mem:$src2),
                   "ucomisd\t{$src2, $src1|$src1, $src2}",
                   [(X86cmp FR64:$src1, (loadf64 addr:$src2)),
                    (implicit EFLAGS)]>;
}

// Aliases to match intrinsics which expect XMM operand(s).
let isTwoAddress = 1 in {
  def Int_CMPSDrr : SDI<0xC2, MRMSrcReg, 
                        (outs VR128:$dst), (ins VR128:$src1, VR128:$src, SSECC:$cc),
                        "cmp${cc}sd\t{$src, $dst|$dst, $src}",
                        [(set VR128:$dst, (int_x86_sse2_cmp_sd VR128:$src1,
                                           VR128:$src, imm:$cc))]>;
  def Int_CMPSDrm : SDI<0xC2, MRMSrcMem, 
                        (outs VR128:$dst), (ins VR128:$src1, f64mem:$src, SSECC:$cc),
                        "cmp${cc}sd\t{$src, $dst|$dst, $src}",
                        [(set VR128:$dst, (int_x86_sse2_cmp_sd VR128:$src1,
                                           (load addr:$src), imm:$cc))]>;
}

let Defs = [EFLAGS] in {
def Int_UCOMISDrr: PDI<0x2E, MRMSrcReg, (outs), (ins VR128:$src1, VR128:$src2),
                       "ucomisd\t{$src2, $src1|$src1, $src2}",
                       [(X86ucomi (v2f64 VR128:$src1), (v2f64 VR128:$src2)),
                        (implicit EFLAGS)]>;
def Int_UCOMISDrm: PDI<0x2E, MRMSrcMem, (outs),(ins VR128:$src1, f128mem:$src2),
                       "ucomisd\t{$src2, $src1|$src1, $src2}",
                       [(X86ucomi (v2f64 VR128:$src1), (load addr:$src2)),
                        (implicit EFLAGS)]>;

def Int_COMISDrr: PDI<0x2F, MRMSrcReg, (outs), (ins VR128:$src1, VR128:$src2),
                      "comisd\t{$src2, $src1|$src1, $src2}",
                      [(X86comi (v2f64 VR128:$src1), (v2f64 VR128:$src2)),
                       (implicit EFLAGS)]>;
def Int_COMISDrm: PDI<0x2F, MRMSrcMem, (outs), (ins VR128:$src1, f128mem:$src2),
                      "comisd\t{$src2, $src1|$src1, $src2}",
                      [(X86comi (v2f64 VR128:$src1), (load addr:$src2)),
                       (implicit EFLAGS)]>;
} // Defs = EFLAGS]

// Aliases of packed SSE2 instructions for scalar use. These all have names that
// start with 'Fs'.

// Alias instructions that map fld0 to pxor for sse.
let isReMaterializable = 1 in
def FsFLD0SD : I<0xEF, MRMInitReg, (outs FR64:$dst), (ins),
                 "pxor\t$dst, $dst", [(set FR64:$dst, fpimm0)]>,
               Requires<[HasSSE2]>, TB, OpSize;

// Alias instruction to do FR64 reg-to-reg copy using movapd. Upper bits are
// disregarded.
def FsMOVAPDrr : PDI<0x28, MRMSrcReg, (outs FR64:$dst), (ins FR64:$src),
                     "movapd\t{$src, $dst|$dst, $src}", []>;

// Alias instruction to load FR64 from f128mem using movapd. Upper bits are
// disregarded.
let isLoad = 1 in
def FsMOVAPDrm : PDI<0x28, MRMSrcMem, (outs FR64:$dst), (ins f128mem:$src),
                     "movapd\t{$src, $dst|$dst, $src}",
                     [(set FR64:$dst, (alignedloadfsf64 addr:$src))]>;

// Alias bitwise logical operations using SSE logical ops on packed FP values.
let isTwoAddress = 1 in {
let isCommutable = 1 in {
  def FsANDPDrr : PDI<0x54, MRMSrcReg, (outs FR64:$dst), (ins FR64:$src1, FR64:$src2),
                      "andpd\t{$src2, $dst|$dst, $src2}",
                      [(set FR64:$dst, (X86fand FR64:$src1, FR64:$src2))]>;
  def FsORPDrr  : PDI<0x56, MRMSrcReg, (outs FR64:$dst), (ins FR64:$src1, FR64:$src2),
                      "orpd\t{$src2, $dst|$dst, $src2}",
                      [(set FR64:$dst, (X86for FR64:$src1, FR64:$src2))]>;
  def FsXORPDrr : PDI<0x57, MRMSrcReg, (outs FR64:$dst), (ins FR64:$src1, FR64:$src2),
                      "xorpd\t{$src2, $dst|$dst, $src2}",
                      [(set FR64:$dst, (X86fxor FR64:$src1, FR64:$src2))]>;
}

def FsANDPDrm : PDI<0x54, MRMSrcMem, (outs FR64:$dst), (ins FR64:$src1, f128mem:$src2),
                    "andpd\t{$src2, $dst|$dst, $src2}",
                    [(set FR64:$dst, (X86fand FR64:$src1,
                                      (memopfsf64 addr:$src2)))]>;
def FsORPDrm  : PDI<0x56, MRMSrcMem, (outs FR64:$dst), (ins FR64:$src1, f128mem:$src2),
                    "orpd\t{$src2, $dst|$dst, $src2}",
                    [(set FR64:$dst, (X86for FR64:$src1,
                                      (memopfsf64 addr:$src2)))]>;
def FsXORPDrm : PDI<0x57, MRMSrcMem, (outs FR64:$dst), (ins FR64:$src1, f128mem:$src2),
                    "xorpd\t{$src2, $dst|$dst, $src2}",
                    [(set FR64:$dst, (X86fxor FR64:$src1,
                                      (memopfsf64 addr:$src2)))]>;

def FsANDNPDrr : PDI<0x55, MRMSrcReg,
                     (outs FR64:$dst), (ins FR64:$src1, FR64:$src2),
                     "andnpd\t{$src2, $dst|$dst, $src2}", []>;
def FsANDNPDrm : PDI<0x55, MRMSrcMem,
                     (outs FR64:$dst), (ins FR64:$src1, f128mem:$src2),
                     "andnpd\t{$src2, $dst|$dst, $src2}", []>;
}

/// basic_sse2_fp_binop_rm - SSE2 binops come in both scalar and vector forms.
///
/// In addition, we also have a special variant of the scalar form here to
/// represent the associated intrinsic operation.  This form is unlike the
/// plain scalar form, in that it takes an entire vector (instead of a scalar)
/// and leaves the top elements undefined.
///
/// These three forms can each be reg+reg or reg+mem, so there are a total of
/// six "instructions".
///
let isTwoAddress = 1 in {
multiclass basic_sse2_fp_binop_rm<bits<8> opc, string OpcodeStr,
                                  SDNode OpNode, Intrinsic F64Int,
                                  bit Commutable = 0> {
  // Scalar operation, reg+reg.
  def SDrr : SDI<opc, MRMSrcReg, (outs FR64:$dst), (ins FR64:$src1, FR64:$src2),
                 !strconcat(OpcodeStr, "sd\t{$src2, $dst|$dst, $src2}"),
                 [(set FR64:$dst, (OpNode FR64:$src1, FR64:$src2))]> {
    let isCommutable = Commutable;
  }

  // Scalar operation, reg+mem.
  def SDrm : SDI<opc, MRMSrcMem, (outs FR64:$dst), (ins FR64:$src1, f64mem:$src2),
                 !strconcat(OpcodeStr, "sd\t{$src2, $dst|$dst, $src2}"),
                 [(set FR64:$dst, (OpNode FR64:$src1, (load addr:$src2)))]>;
                 
  // Vector operation, reg+reg.
  def PDrr : PDI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
               !strconcat(OpcodeStr, "pd\t{$src2, $dst|$dst, $src2}"),
               [(set VR128:$dst, (v2f64 (OpNode VR128:$src1, VR128:$src2)))]> {
    let isCommutable = Commutable;
  }

  // Vector operation, reg+mem.
  def PDrm : PDI<opc, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, f128mem:$src2),
                 !strconcat(OpcodeStr, "pd\t{$src2, $dst|$dst, $src2}"),
                 [(set VR128:$dst, (OpNode VR128:$src1, (memopv2f64 addr:$src2)))]>;

  // Intrinsic operation, reg+reg.
  def SDrr_Int : SDI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
                     !strconcat(OpcodeStr, "sd\t{$src2, $dst|$dst, $src2}"),
                     [(set VR128:$dst, (F64Int VR128:$src1, VR128:$src2))]> {
    let isCommutable = Commutable;
  }

  // Intrinsic operation, reg+mem.
  def SDrm_Int : SDI<opc, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, sdmem:$src2),
                     !strconcat(OpcodeStr, "sd\t{$src2, $dst|$dst, $src2}"),
                     [(set VR128:$dst, (F64Int VR128:$src1,
                                               sse_load_f64:$src2))]>;
}
}

// Arithmetic instructions
defm ADD : basic_sse2_fp_binop_rm<0x58, "add", fadd, int_x86_sse2_add_sd, 1>;
defm MUL : basic_sse2_fp_binop_rm<0x59, "mul", fmul, int_x86_sse2_mul_sd, 1>;
defm SUB : basic_sse2_fp_binop_rm<0x5C, "sub", fsub, int_x86_sse2_sub_sd>;
defm DIV : basic_sse2_fp_binop_rm<0x5E, "div", fdiv, int_x86_sse2_div_sd>;

/// sse2_fp_binop_rm - Other SSE2 binops
///
/// This multiclass is like basic_sse2_fp_binop_rm, with the addition of
/// instructions for a full-vector intrinsic form.  Operations that map
/// onto C operators don't use this form since they just use the plain
/// vector form instead of having a separate vector intrinsic form.
///
/// This provides a total of eight "instructions".
///
let isTwoAddress = 1 in {
multiclass sse2_fp_binop_rm<bits<8> opc, string OpcodeStr,
                            SDNode OpNode,
                            Intrinsic F64Int,
                            Intrinsic V2F64Int,
                            bit Commutable = 0> {

  // Scalar operation, reg+reg.
  def SDrr : SDI<opc, MRMSrcReg, (outs FR64:$dst), (ins FR64:$src1, FR64:$src2),
                 !strconcat(OpcodeStr, "sd\t{$src2, $dst|$dst, $src2}"),
                 [(set FR64:$dst, (OpNode FR64:$src1, FR64:$src2))]> {
    let isCommutable = Commutable;
  }

  // Scalar operation, reg+mem.
  def SDrm : SDI<opc, MRMSrcMem, (outs FR64:$dst), (ins FR64:$src1, f64mem:$src2),
                 !strconcat(OpcodeStr, "sd\t{$src2, $dst|$dst, $src2}"),
                 [(set FR64:$dst, (OpNode FR64:$src1, (load addr:$src2)))]>;
                 
  // Vector operation, reg+reg.
  def PDrr : PDI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
               !strconcat(OpcodeStr, "pd\t{$src2, $dst|$dst, $src2}"),
               [(set VR128:$dst, (v2f64 (OpNode VR128:$src1, VR128:$src2)))]> {
    let isCommutable = Commutable;
  }

  // Vector operation, reg+mem.
  def PDrm : PDI<opc, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, f128mem:$src2),
                 !strconcat(OpcodeStr, "pd\t{$src2, $dst|$dst, $src2}"),
                 [(set VR128:$dst, (OpNode VR128:$src1, (memopv2f64 addr:$src2)))]>;

  // Intrinsic operation, reg+reg.
  def SDrr_Int : SDI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
                     !strconcat(OpcodeStr, "sd\t{$src2, $dst|$dst, $src2}"),
                     [(set VR128:$dst, (F64Int VR128:$src1, VR128:$src2))]> {
    let isCommutable = Commutable;
  }

  // Intrinsic operation, reg+mem.
  def SDrm_Int : SDI<opc, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, sdmem:$src2),
                     !strconcat(OpcodeStr, "sd\t{$src2, $dst|$dst, $src2}"),
                     [(set VR128:$dst, (F64Int VR128:$src1,
                                               sse_load_f64:$src2))]>;

  // Vector intrinsic operation, reg+reg.
  def PDrr_Int : PDI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
                     !strconcat(OpcodeStr, "pd\t{$src2, $dst|$dst, $src2}"),
                     [(set VR128:$dst, (V2F64Int VR128:$src1, VR128:$src2))]> {
    let isCommutable = Commutable;
  }

  // Vector intrinsic operation, reg+mem.
  def PDrm_Int : PDI<opc, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, f128mem:$src2),
                     !strconcat(OpcodeStr, "pd\t{$src2, $dst|$dst, $src2}"),
                     [(set VR128:$dst, (V2F64Int VR128:$src1, (load addr:$src2)))]>;
}
}

defm MAX : sse2_fp_binop_rm<0x5F, "max", X86fmax,
                            int_x86_sse2_max_sd, int_x86_sse2_max_pd>;
defm MIN : sse2_fp_binop_rm<0x5D, "min", X86fmin,
                            int_x86_sse2_min_sd, int_x86_sse2_min_pd>;

//===----------------------------------------------------------------------===//
// SSE packed FP Instructions

// Move Instructions
def MOVAPDrr : PDI<0x28, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
                   "movapd\t{$src, $dst|$dst, $src}", []>;
let isLoad = 1, isReMaterializable = 1 in
def MOVAPDrm : PDI<0x28, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
                   "movapd\t{$src, $dst|$dst, $src}",
                   [(set VR128:$dst, (alignedloadv2f64 addr:$src))]>;

def MOVAPDmr : PDI<0x29, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
                   "movapd\t{$src, $dst|$dst, $src}",
                   [(alignedstore (v2f64 VR128:$src), addr:$dst)]>;

def MOVUPDrr : PDI<0x10, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
                   "movupd\t{$src, $dst|$dst, $src}", []>;
let isLoad = 1 in
def MOVUPDrm : PDI<0x10, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
                   "movupd\t{$src, $dst|$dst, $src}",
                   [(set VR128:$dst, (loadv2f64 addr:$src))]>;
def MOVUPDmr : PDI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
                   "movupd\t{$src, $dst|$dst, $src}",
                   [(store (v2f64 VR128:$src), addr:$dst)]>;

// Intrinsic forms of MOVUPD load and store
def MOVUPDrm_Int : PDI<0x10, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
                       "movupd\t{$src, $dst|$dst, $src}",
                       [(set VR128:$dst, (int_x86_sse2_loadu_pd addr:$src))]>;
def MOVUPDmr_Int : PDI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
                       "movupd\t{$src, $dst|$dst, $src}",
                       [(int_x86_sse2_storeu_pd addr:$dst, VR128:$src)]>;

let isTwoAddress = 1 in {
  let AddedComplexity = 20 in {
    def MOVLPDrm : PDI<0x12, MRMSrcMem,
                       (outs VR128:$dst), (ins VR128:$src1, f64mem:$src2),
                       "movlpd\t{$src2, $dst|$dst, $src2}",
                       [(set VR128:$dst, 
                         (v2f64 (vector_shuffle VR128:$src1,
                                 (scalar_to_vector (loadf64 addr:$src2)),
                                 MOVLP_shuffle_mask)))]>;
    def MOVHPDrm : PDI<0x16, MRMSrcMem,
                       (outs VR128:$dst), (ins VR128:$src1, f64mem:$src2),
                       "movhpd\t{$src2, $dst|$dst, $src2}",
                       [(set VR128:$dst, 
                         (v2f64 (vector_shuffle VR128:$src1,
                                 (scalar_to_vector (loadf64 addr:$src2)),
                                 MOVHP_shuffle_mask)))]>;
  } // AddedComplexity
} // isTwoAddress

def MOVLPDmr : PDI<0x13, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src),
                   "movlpd\t{$src, $dst|$dst, $src}",
                   [(store (f64 (vector_extract (v2f64 VR128:$src),
                                 (iPTR 0))), addr:$dst)]>;

// v2f64 extract element 1 is always custom lowered to unpack high to low
// and extract element 0 so the non-store version isn't too horrible.
def MOVHPDmr : PDI<0x17, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src),
                   "movhpd\t{$src, $dst|$dst, $src}",
                   [(store (f64 (vector_extract
                                 (v2f64 (vector_shuffle VR128:$src, (undef),
                                         UNPCKH_shuffle_mask)), (iPTR 0))),
                     addr:$dst)]>;

// SSE2 instructions without OpSize prefix
def Int_CVTDQ2PSrr : I<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
                       "cvtdq2ps\t{$src, $dst|$dst, $src}",
                       [(set VR128:$dst, (int_x86_sse2_cvtdq2ps VR128:$src))]>,
                     TB, Requires<[HasSSE2]>;
def Int_CVTDQ2PSrm : I<0x5B, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src),
                       "cvtdq2ps\t{$src, $dst|$dst, $src}",
                       [(set VR128:$dst, (int_x86_sse2_cvtdq2ps
                                         (bitconvert (memopv2i64 addr:$src))))]>,
                     TB, Requires<[HasSSE2]>;

// SSE2 instructions with XS prefix
def Int_CVTDQ2PDrr : I<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
                       "cvtdq2pd\t{$src, $dst|$dst, $src}",
                       [(set VR128:$dst, (int_x86_sse2_cvtdq2pd VR128:$src))]>,
                     XS, Requires<[HasSSE2]>;
def Int_CVTDQ2PDrm : I<0xE6, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src),
                       "cvtdq2pd\t{$src, $dst|$dst, $src}",
                       [(set VR128:$dst, (int_x86_sse2_cvtdq2pd
                                          (bitconvert (memopv2i64 addr:$src))))]>,
                     XS, Requires<[HasSSE2]>;

def Int_CVTPS2DQrr : PDI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
                         "cvtps2dq\t{$src, $dst|$dst, $src}",
                         [(set VR128:$dst, (int_x86_sse2_cvtps2dq VR128:$src))]>;
def Int_CVTPS2DQrm : PDI<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
                         "cvtps2dq\t{$src, $dst|$dst, $src}",
                         [(set VR128:$dst, (int_x86_sse2_cvtps2dq
                                            (load addr:$src)))]>;
// SSE2 packed instructions with XS prefix
def Int_CVTTPS2DQrr : I<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
                        "cvttps2dq\t{$src, $dst|$dst, $src}",
                        [(set VR128:$dst, (int_x86_sse2_cvttps2dq VR128:$src))]>,
                      XS, Requires<[HasSSE2]>;
def Int_CVTTPS2DQrm : I<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
                        "cvttps2dq\t{$src, $dst|$dst, $src}",
                        [(set VR128:$dst, (int_x86_sse2_cvttps2dq
                                           (load addr:$src)))]>,
                      XS, Requires<[HasSSE2]>;

// SSE2 packed instructions with XD prefix
def Int_CVTPD2DQrr : I<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
                       "cvtpd2dq\t{$src, $dst|$dst, $src}",
                       [(set VR128:$dst, (int_x86_sse2_cvtpd2dq VR128:$src))]>,
                     XD, Requires<[HasSSE2]>;
def Int_CVTPD2DQrm : I<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
                       "cvtpd2dq\t{$src, $dst|$dst, $src}",
                       [(set VR128:$dst, (int_x86_sse2_cvtpd2dq
                                          (load addr:$src)))]>,
                     XD, Requires<[HasSSE2]>;

def Int_CVTTPD2DQrr : PDI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
                          "cvttpd2dq\t{$src, $dst|$dst, $src}",
                       [(set VR128:$dst, (int_x86_sse2_cvttpd2dq VR128:$src))]>;
def Int_CVTTPD2DQrm : PDI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
                          "cvttpd2dq\t{$src, $dst|$dst, $src}",
                          [(set VR128:$dst, (int_x86_sse2_cvttpd2dq
                                             (load addr:$src)))]>;

// SSE2 instructions without OpSize prefix
def Int_CVTPS2PDrr : I<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
                       "cvtps2pd\t{$src, $dst|$dst, $src}",
                       [(set VR128:$dst, (int_x86_sse2_cvtps2pd VR128:$src))]>,
                     TB, Requires<[HasSSE2]>;
def Int_CVTPS2PDrm : I<0x5A, MRMSrcReg, (outs VR128:$dst), (ins f64mem:$src),
                       "cvtps2pd\t{$src, $dst|$dst, $src}",
                       [(set VR128:$dst, (int_x86_sse2_cvtps2pd
                                          (load addr:$src)))]>,
                     TB, Requires<[HasSSE2]>;

def Int_CVTPD2PSrr : PDI<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
                         "cvtpd2ps\t{$src, $dst|$dst, $src}",
                        [(set VR128:$dst, (int_x86_sse2_cvtpd2ps VR128:$src))]>;
def Int_CVTPD2PSrm : PDI<0x5A, MRMSrcReg, (outs VR128:$dst), (ins f128mem:$src),
                         "cvtpd2ps\t{$src, $dst|$dst, $src}",
                         [(set VR128:$dst, (int_x86_sse2_cvtpd2ps
                                            (load addr:$src)))]>;

// Match intrinsics which expect XMM operand(s).
// Aliases for intrinsics
let isTwoAddress = 1 in {
def Int_CVTSI2SDrr: SDI<0x2A, MRMSrcReg,
                        (outs VR128:$dst), (ins VR128:$src1, GR32:$src2),
                        "cvtsi2sd\t{$src2, $dst|$dst, $src2}",
                        [(set VR128:$dst, (int_x86_sse2_cvtsi2sd VR128:$src1,
                                           GR32:$src2))]>;
def Int_CVTSI2SDrm: SDI<0x2A, MRMSrcMem,
                        (outs VR128:$dst), (ins VR128:$src1, i32mem:$src2),
                        "cvtsi2sd\t{$src2, $dst|$dst, $src2}",
                        [(set VR128:$dst, (int_x86_sse2_cvtsi2sd VR128:$src1,
                                           (loadi32 addr:$src2)))]>;
def Int_CVTSD2SSrr: SDI<0x5A, MRMSrcReg,
                        (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
                   "cvtsd2ss\t{$src2, $dst|$dst, $src2}",
                   [(set VR128:$dst, (int_x86_sse2_cvtsd2ss VR128:$src1,
                                      VR128:$src2))]>;
def Int_CVTSD2SSrm: SDI<0x5A, MRMSrcMem,
                        (outs VR128:$dst), (ins VR128:$src1, f64mem:$src2), 
                   "cvtsd2ss\t{$src2, $dst|$dst, $src2}",
                   [(set VR128:$dst, (int_x86_sse2_cvtsd2ss VR128:$src1,
                                      (load addr:$src2)))]>;
def Int_CVTSS2SDrr: I<0x5A, MRMSrcReg,
                      (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
                    "cvtss2sd\t{$src2, $dst|$dst, $src2}",
                    [(set VR128:$dst, (int_x86_sse2_cvtss2sd VR128:$src1,
                                       VR128:$src2))]>, XS,
                    Requires<[HasSSE2]>;
def Int_CVTSS2SDrm: I<0x5A, MRMSrcMem,
                      (outs VR128:$dst), (ins VR128:$src1, f32mem:$src2),
                    "cvtss2sd\t{$src2, $dst|$dst, $src2}",
                    [(set VR128:$dst, (int_x86_sse2_cvtss2sd VR128:$src1,
                                       (load addr:$src2)))]>, XS,
                    Requires<[HasSSE2]>;
}

// Arithmetic

/// sse2_fp_unop_rm - SSE2 unops come in both scalar and vector forms.
///
/// In addition, we also have a special variant of the scalar form here to
/// represent the associated intrinsic operation.  This form is unlike the
/// plain scalar form, in that it takes an entire vector (instead of a
/// scalar) and leaves the top elements undefined.
///
/// And, we have a special variant form for a full-vector intrinsic form.
///
/// These four forms can each have a reg or a mem operand, so there are a
/// total of eight "instructions".
///
multiclass sse2_fp_unop_rm<bits<8> opc, string OpcodeStr,
                           SDNode OpNode,
                           Intrinsic F64Int,
                           Intrinsic V2F64Int,
                           bit Commutable = 0> {
  // Scalar operation, reg.
  def SDr : SDI<opc, MRMSrcReg, (outs FR64:$dst), (ins FR64:$src),
                !strconcat(OpcodeStr, "sd\t{$src, $dst|$dst, $src}"),
                [(set FR64:$dst, (OpNode FR64:$src))]> {
    let isCommutable = Commutable;
  }

  // Scalar operation, mem.
  def SDm : SDI<opc, MRMSrcMem, (outs FR64:$dst), (ins f64mem:$src),
                !strconcat(OpcodeStr, "sd\t{$src, $dst|$dst, $src}"),
                [(set FR64:$dst, (OpNode (load addr:$src)))]>;
                 
  // Vector operation, reg.
  def PDr : PDI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
              !strconcat(OpcodeStr, "pd\t{$src, $dst|$dst, $src}"),
              [(set VR128:$dst, (v2f64 (OpNode VR128:$src)))]> {
    let isCommutable = Commutable;
  }

  // Vector operation, mem.
  def PDm : PDI<opc, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
                !strconcat(OpcodeStr, "pd\t{$src, $dst|$dst, $src}"),
                [(set VR128:$dst, (OpNode (memopv2f64 addr:$src)))]>;

  // Intrinsic operation, reg.
  def SDr_Int : SDI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
                    !strconcat(OpcodeStr, "sd\t{$src, $dst|$dst, $src}"),
                    [(set VR128:$dst, (F64Int VR128:$src))]> {
    let isCommutable = Commutable;
  }

  // Intrinsic operation, mem.
  def SDm_Int : SDI<opc, MRMSrcMem, (outs VR128:$dst), (ins sdmem:$src),
                    !strconcat(OpcodeStr, "sd\t{$src, $dst|$dst, $src}"),
                    [(set VR128:$dst, (F64Int sse_load_f64:$src))]>;

  // Vector intrinsic operation, reg
  def PDr_Int : PDI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
                    !strconcat(OpcodeStr, "pd\t{$src, $dst|$dst, $src}"),
                    [(set VR128:$dst, (V2F64Int VR128:$src))]> {
    let isCommutable = Commutable;
  }

  // Vector intrinsic operation, mem
  def PDm_Int : PDI<opc, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
                    !strconcat(OpcodeStr, "pd\t{$src, $dst|$dst, $src}"),
                    [(set VR128:$dst, (V2F64Int (load addr:$src)))]>;
}

// Square root.
defm SQRT  : sse2_fp_unop_rm<0x51, "sqrt",  fsqrt,
                             int_x86_sse2_sqrt_sd, int_x86_sse2_sqrt_pd>;

// There is no f64 version of the reciprocal approximation instructions.

// Logical
let isTwoAddress = 1 in {
  let isCommutable = 1 in {
    def ANDPDrr : PDI<0x54, MRMSrcReg,
                      (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
                      "andpd\t{$src2, $dst|$dst, $src2}",
                      [(set VR128:$dst,
                        (and (bc_v2i64 (v2f64 VR128:$src1)),
                         (bc_v2i64 (v2f64 VR128:$src2))))]>;
    def ORPDrr  : PDI<0x56, MRMSrcReg,
                      (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
                      "orpd\t{$src2, $dst|$dst, $src2}",
                      [(set VR128:$dst,
                        (or (bc_v2i64 (v2f64 VR128:$src1)),
                         (bc_v2i64 (v2f64 VR128:$src2))))]>;
    def XORPDrr : PDI<0x57, MRMSrcReg,
                      (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
                      "xorpd\t{$src2, $dst|$dst, $src2}",
                      [(set VR128:$dst,
                        (xor (bc_v2i64 (v2f64 VR128:$src1)),
                         (bc_v2i64 (v2f64 VR128:$src2))))]>;
  }

  def ANDPDrm : PDI<0x54, MRMSrcMem,
                    (outs VR128:$dst), (ins VR128:$src1, f128mem:$src2),
                    "andpd\t{$src2, $dst|$dst, $src2}",
                    [(set VR128:$dst,
                      (and (bc_v2i64 (v2f64 VR128:$src1)),
                       (memopv2i64 addr:$src2)))]>;
  def ORPDrm  : PDI<0x56, MRMSrcMem,
                    (outs VR128:$dst), (ins VR128:$src1, f128mem:$src2),
                    "orpd\t{$src2, $dst|$dst, $src2}",
                    [(set VR128:$dst,
                      (or (bc_v2i64 (v2f64 VR128:$src1)),
                       (memopv2i64 addr:$src2)))]>;
  def XORPDrm : PDI<0x57, MRMSrcMem,
                    (outs VR128:$dst), (ins VR128:$src1, f128mem:$src2),
                    "xorpd\t{$src2, $dst|$dst, $src2}",
                    [(set VR128:$dst,
                      (xor (bc_v2i64 (v2f64 VR128:$src1)),
                       (memopv2i64 addr:$src2)))]>;
  def ANDNPDrr : PDI<0x55, MRMSrcReg,
                     (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
                     "andnpd\t{$src2, $dst|$dst, $src2}",
                     [(set VR128:$dst,
                       (and (vnot (bc_v2i64 (v2f64 VR128:$src1))),
                        (bc_v2i64 (v2f64 VR128:$src2))))]>;
  def ANDNPDrm : PDI<0x55, MRMSrcMem,
                     (outs VR128:$dst), (ins VR128:$src1,f128mem:$src2),
                     "andnpd\t{$src2, $dst|$dst, $src2}",
                     [(set VR128:$dst,
                       (and (vnot (bc_v2i64 (v2f64 VR128:$src1))),
                        (memopv2i64 addr:$src2)))]>;
}

let isTwoAddress = 1 in {
  def CMPPDrri : PDIi8<0xC2, MRMSrcReg, 
                      (outs VR128:$dst), (ins VR128:$src1, VR128:$src, SSECC:$cc),
                      "cmp${cc}pd\t{$src, $dst|$dst, $src}",
                      [(set VR128:$dst, (int_x86_sse2_cmp_pd VR128:$src1,
                                         VR128:$src, imm:$cc))]>;
  def CMPPDrmi : PDIi8<0xC2, MRMSrcMem, 
                      (outs VR128:$dst), (ins VR128:$src1, f128mem:$src, SSECC:$cc),
                      "cmp${cc}pd\t{$src, $dst|$dst, $src}",
                      [(set VR128:$dst, (int_x86_sse2_cmp_pd VR128:$src1,
                                         (load addr:$src), imm:$cc))]>;
}

// Shuffle and unpack instructions
let isTwoAddress = 1 in {
  def SHUFPDrri : PDIi8<0xC6, MRMSrcReg, 
                        (outs VR128:$dst), (ins VR128:$src1, VR128:$src2, i8imm:$src3),
                        "shufpd\t{$src3, $src2, $dst|$dst, $src2, $src3}",
                        [(set VR128:$dst, (v2f64 (vector_shuffle
                                                  VR128:$src1, VR128:$src2,
                                                  SHUFP_shuffle_mask:$src3)))]>;
  def SHUFPDrmi : PDIi8<0xC6, MRMSrcMem, 
                        (outs VR128:$dst), (ins VR128:$src1,
                         f128mem:$src2, i8imm:$src3),
                        "shufpd\t{$src3, $src2, $dst|$dst, $src2, $src3}",
                        [(set VR128:$dst,
                          (v2f64 (vector_shuffle
                                  VR128:$src1, (memopv2f64 addr:$src2),
                                  SHUFP_shuffle_mask:$src3)))]>;

  let AddedComplexity = 10 in {
    def UNPCKHPDrr : PDI<0x15, MRMSrcReg, 
                         (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
                         "unpckhpd\t{$src2, $dst|$dst, $src2}",
                         [(set VR128:$dst,
                           (v2f64 (vector_shuffle
                                   VR128:$src1, VR128:$src2,
                                   UNPCKH_shuffle_mask)))]>;
    def UNPCKHPDrm : PDI<0x15, MRMSrcMem, 
                         (outs VR128:$dst), (ins VR128:$src1, f128mem:$src2),
                         "unpckhpd\t{$src2, $dst|$dst, $src2}",
                         [(set VR128:$dst,
                           (v2f64 (vector_shuffle
                                   VR128:$src1, (memopv2f64 addr:$src2),
                                   UNPCKH_shuffle_mask)))]>;

    def UNPCKLPDrr : PDI<0x14, MRMSrcReg, 
                         (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
                         "unpcklpd\t{$src2, $dst|$dst, $src2}",
                         [(set VR128:$dst,
                           (v2f64 (vector_shuffle
                                   VR128:$src1, VR128:$src2,
                                   UNPCKL_shuffle_mask)))]>;
    def UNPCKLPDrm : PDI<0x14, MRMSrcMem, 
                         (outs VR128:$dst), (ins VR128:$src1, f128mem:$src2),
                         "unpcklpd\t{$src2, $dst|$dst, $src2}",
                         [(set VR128:$dst,
                           (v2f64 (vector_shuffle
                                   VR128:$src1, (memopv2f64 addr:$src2),
                                   UNPCKL_shuffle_mask)))]>;
  } // AddedComplexity
} // isTwoAddress


//===----------------------------------------------------------------------===//
// SSE integer instructions

// Move Instructions
def MOVDQArr : PDI<0x6F, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
                   "movdqa\t{$src, $dst|$dst, $src}", []>;
let isLoad = 1 in
def MOVDQArm : PDI<0x6F, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src),
                   "movdqa\t{$src, $dst|$dst, $src}",
                   [/*(set VR128:$dst, (alignedloadv2i64 addr:$src))*/]>;
def MOVDQAmr : PDI<0x7F, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src),
                   "movdqa\t{$src, $dst|$dst, $src}",
                   [/*(alignedstore (v2i64 VR128:$src), addr:$dst)*/]>;
let isLoad = 1 in
def MOVDQUrm :   I<0x6F, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src),
                   "movdqu\t{$src, $dst|$dst, $src}",
                   [/*(set VR128:$dst, (loadv2i64 addr:$src))*/]>,
                 XS, Requires<[HasSSE2]>;
def MOVDQUmr :   I<0x7F, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src),
                   "movdqu\t{$src, $dst|$dst, $src}",
                   [/*(store (v2i64 VR128:$src), addr:$dst)*/]>,
                 XS, Requires<[HasSSE2]>;

// Intrinsic forms of MOVDQU load and store
let isLoad = 1 in
def MOVDQUrm_Int :   I<0x6F, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src),
                       "movdqu\t{$src, $dst|$dst, $src}",
                       [(set VR128:$dst, (int_x86_sse2_loadu_dq addr:$src))]>,
                 XS, Requires<[HasSSE2]>;
def MOVDQUmr_Int :   I<0x7F, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src),
                       "movdqu\t{$src, $dst|$dst, $src}",
                       [(int_x86_sse2_storeu_dq addr:$dst, VR128:$src)]>,
                     XS, Requires<[HasSSE2]>;

let isTwoAddress = 1 in {

multiclass PDI_binop_rm_int<bits<8> opc, string OpcodeStr, Intrinsic IntId,
                            bit Commutable = 0> {
  def rr : PDI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
               !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
               [(set VR128:$dst, (IntId VR128:$src1, VR128:$src2))]> {
    let isCommutable = Commutable;
  }
  def rm : PDI<opc, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, i128mem:$src2),
               !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
               [(set VR128:$dst, (IntId VR128:$src1,
                                        (bitconvert (memopv2i64 addr:$src2))))]>;
}

multiclass PDI_binop_rmi_int<bits<8> opc, bits<8> opc2, Format ImmForm,
                             string OpcodeStr, Intrinsic IntId> {
  def rr : PDI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
               !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
               [(set VR128:$dst, (IntId VR128:$src1, VR128:$src2))]>;
  def rm : PDI<opc, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, i128mem:$src2),
               !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
               [(set VR128:$dst, (IntId VR128:$src1,
                                        (bitconvert (memopv2i64 addr:$src2))))]>;
  def ri : PDIi8<opc2, ImmForm, (outs VR128:$dst), (ins VR128:$src1, i32i8imm:$src2),
               !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
               [(set VR128:$dst, (IntId VR128:$src1,
                                        (scalar_to_vector (i32 imm:$src2))))]>;
}


/// PDI_binop_rm - Simple SSE2 binary operator.
multiclass PDI_binop_rm<bits<8> opc, string OpcodeStr, SDNode OpNode,
                        ValueType OpVT, bit Commutable = 0> {
  def rr : PDI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
               !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
               [(set VR128:$dst, (OpVT (OpNode VR128:$src1, VR128:$src2)))]> {
    let isCommutable = Commutable;
  }
  def rm : PDI<opc, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, i128mem:$src2),
               !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
               [(set VR128:$dst, (OpVT (OpNode VR128:$src1,
                                       (bitconvert (memopv2i64 addr:$src2)))))]>;
}

/// PDI_binop_rm_v2i64 - Simple SSE2 binary operator whose type is v2i64.
///
/// FIXME: we could eliminate this and use PDI_binop_rm instead if tblgen knew
/// to collapse (bitconvert VT to VT) into its operand.
///
multiclass PDI_binop_rm_v2i64<bits<8> opc, string OpcodeStr, SDNode OpNode,
                              bit Commutable = 0> {
  def rr : PDI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
               !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
               [(set VR128:$dst, (v2i64 (OpNode VR128:$src1, VR128:$src2)))]> {
    let isCommutable = Commutable;
  }
  def rm : PDI<opc, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, i128mem:$src2),
               !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
               [(set VR128:$dst, (OpNode VR128:$src1,(memopv2i64 addr:$src2)))]>;
}

} // isTwoAddress

// 128-bit Integer Arithmetic

defm PADDB : PDI_binop_rm<0xFC, "paddb", add, v16i8, 1>;
defm PADDW : PDI_binop_rm<0xFD, "paddw", add, v8i16, 1>;
defm PADDD : PDI_binop_rm<0xFE, "paddd", add, v4i32, 1>;
defm PADDQ : PDI_binop_rm_v2i64<0xD4, "paddq", add, 1>;

defm PADDSB  : PDI_binop_rm_int<0xEC, "paddsb" , int_x86_sse2_padds_b, 1>;
defm PADDSW  : PDI_binop_rm_int<0xED, "paddsw" , int_x86_sse2_padds_w, 1>;
defm PADDUSB : PDI_binop_rm_int<0xDC, "paddusb", int_x86_sse2_paddus_b, 1>;
defm PADDUSW : PDI_binop_rm_int<0xDD, "paddusw", int_x86_sse2_paddus_w, 1>;

defm PSUBB : PDI_binop_rm<0xF8, "psubb", sub, v16i8>;
defm PSUBW : PDI_binop_rm<0xF9, "psubw", sub, v8i16>;
defm PSUBD : PDI_binop_rm<0xFA, "psubd", sub, v4i32>;
defm PSUBQ : PDI_binop_rm_v2i64<0xFB, "psubq", sub>;

defm PSUBSB  : PDI_binop_rm_int<0xE8, "psubsb" , int_x86_sse2_psubs_b>;
defm PSUBSW  : PDI_binop_rm_int<0xE9, "psubsw" , int_x86_sse2_psubs_w>;
defm PSUBUSB : PDI_binop_rm_int<0xD8, "psubusb", int_x86_sse2_psubus_b>;
defm PSUBUSW : PDI_binop_rm_int<0xD9, "psubusw", int_x86_sse2_psubus_w>;

defm PMULLW : PDI_binop_rm<0xD5, "pmullw", mul, v8i16, 1>;

defm PMULHUW : PDI_binop_rm_int<0xE4, "pmulhuw", int_x86_sse2_pmulhu_w, 1>;
defm PMULHW  : PDI_binop_rm_int<0xE5, "pmulhw" , int_x86_sse2_pmulh_w , 1>;
defm PMULUDQ : PDI_binop_rm_int<0xF4, "pmuludq", int_x86_sse2_pmulu_dq, 1>;

defm PMADDWD : PDI_binop_rm_int<0xF5, "pmaddwd", int_x86_sse2_pmadd_wd, 1>;

defm PAVGB  : PDI_binop_rm_int<0xE0, "pavgb", int_x86_sse2_pavg_b, 1>;
defm PAVGW  : PDI_binop_rm_int<0xE3, "pavgw", int_x86_sse2_pavg_w, 1>;


defm PMINUB : PDI_binop_rm_int<0xDA, "pminub", int_x86_sse2_pminu_b, 1>;
defm PMINSW : PDI_binop_rm_int<0xEA, "pminsw", int_x86_sse2_pmins_w, 1>;
defm PMAXUB : PDI_binop_rm_int<0xDE, "pmaxub", int_x86_sse2_pmaxu_b, 1>;
defm PMAXSW : PDI_binop_rm_int<0xEE, "pmaxsw", int_x86_sse2_pmaxs_w, 1>;
defm PSADBW : PDI_binop_rm_int<0xE0, "psadbw", int_x86_sse2_psad_bw, 1>;


defm PSLLW : PDI_binop_rmi_int<0xF1, 0x71, MRM6r, "psllw", int_x86_sse2_psll_w>;
defm PSLLD : PDI_binop_rmi_int<0xF2, 0x72, MRM6r, "pslld", int_x86_sse2_psll_d>;
defm PSLLQ : PDI_binop_rmi_int<0xF3, 0x73, MRM6r, "psllq", int_x86_sse2_psll_q>;

defm PSRLW : PDI_binop_rmi_int<0xD1, 0x71, MRM2r, "psrlw", int_x86_sse2_psrl_w>;
defm PSRLD : PDI_binop_rmi_int<0xD2, 0x72, MRM2r, "psrld", int_x86_sse2_psrl_d>;
defm PSRLQ : PDI_binop_rmi_int<0xD3, 0x73, MRM2r, "psrlq", int_x86_sse2_psrl_q>;

defm PSRAW : PDI_binop_rmi_int<0xE1, 0x71, MRM4r, "psraw", int_x86_sse2_psra_w>;
defm PSRAD : PDI_binop_rmi_int<0xE2, 0x72, MRM4r, "psrad", int_x86_sse2_psra_d>;
// PSRAQ doesn't exist in SSE[1-3].

// 128-bit logical shifts.
let isTwoAddress = 1 in {
  def PSLLDQri : PDIi8<0x73, MRM7r,
                       (outs VR128:$dst), (ins VR128:$src1, i32i8imm:$src2),
                       "pslldq\t{$src2, $dst|$dst, $src2}", []>;
  def PSRLDQri : PDIi8<0x73, MRM3r,
                       (outs VR128:$dst), (ins VR128:$src1, i32i8imm:$src2),
                       "psrldq\t{$src2, $dst|$dst, $src2}", []>;
  // PSRADQri doesn't exist in SSE[1-3].
}

let Predicates = [HasSSE2] in {
  def : Pat<(int_x86_sse2_psll_dq VR128:$src1, imm:$src2),
            (v2i64 (PSLLDQri VR128:$src1, (PSxLDQ_imm imm:$src2)))>;
  def : Pat<(int_x86_sse2_psrl_dq VR128:$src1, imm:$src2),
            (v2i64 (PSRLDQri VR128:$src1, (PSxLDQ_imm imm:$src2)))>;
  def : Pat<(v2f64 (X86fsrl VR128:$src1, i32immSExt8:$src2)),
            (v2f64 (PSRLDQri VR128:$src1, (PSxLDQ_imm imm:$src2)))>;
}

// Logical
defm PAND : PDI_binop_rm_v2i64<0xDB, "pand", and, 1>;
defm POR  : PDI_binop_rm_v2i64<0xEB, "por" , or , 1>;
defm PXOR : PDI_binop_rm_v2i64<0xEF, "pxor", xor, 1>;

let isTwoAddress = 1 in {
  def PANDNrr : PDI<0xDF, MRMSrcReg,
                    (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
                    "pandn\t{$src2, $dst|$dst, $src2}",
                    [(set VR128:$dst, (v2i64 (and (vnot VR128:$src1),
                                              VR128:$src2)))]>;

  def PANDNrm : PDI<0xDF, MRMSrcMem,
                    (outs VR128:$dst), (ins VR128:$src1, i128mem:$src2),
                    "pandn\t{$src2, $dst|$dst, $src2}",
                    [(set VR128:$dst, (v2i64 (and (vnot VR128:$src1),
                                              (memopv2i64 addr:$src2))))]>;
}

// SSE2 Integer comparison
defm PCMPEQB  : PDI_binop_rm_int<0x74, "pcmpeqb", int_x86_sse2_pcmpeq_b>;
defm PCMPEQW  : PDI_binop_rm_int<0x75, "pcmpeqw", int_x86_sse2_pcmpeq_w>;
defm PCMPEQD  : PDI_binop_rm_int<0x76, "pcmpeqd", int_x86_sse2_pcmpeq_d>;
defm PCMPGTB  : PDI_binop_rm_int<0x64, "pcmpgtb", int_x86_sse2_pcmpgt_b>;
defm PCMPGTW  : PDI_binop_rm_int<0x65, "pcmpgtw", int_x86_sse2_pcmpgt_w>;
defm PCMPGTD  : PDI_binop_rm_int<0x66, "pcmpgtd", int_x86_sse2_pcmpgt_d>;

// Pack instructions
defm PACKSSWB : PDI_binop_rm_int<0x63, "packsswb", int_x86_sse2_packsswb_128>;
defm PACKSSDW : PDI_binop_rm_int<0x6B, "packssdw", int_x86_sse2_packssdw_128>;
defm PACKUSWB : PDI_binop_rm_int<0x67, "packuswb", int_x86_sse2_packuswb_128>;

// Shuffle and unpack instructions
def PSHUFDri : PDIi8<0x70, MRMSrcReg,
                     (outs VR128:$dst), (ins VR128:$src1, i8imm:$src2),
                     "pshufd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
                     [(set VR128:$dst, (v4i32 (vector_shuffle
                                               VR128:$src1, (undef),
                                               PSHUFD_shuffle_mask:$src2)))]>;
def PSHUFDmi : PDIi8<0x70, MRMSrcMem,
                     (outs VR128:$dst), (ins i128mem:$src1, i8imm:$src2),
                     "pshufd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
                     [(set VR128:$dst, (v4i32 (vector_shuffle
                                               (bc_v4i32(memopv2i64 addr:$src1)),
                                               (undef),
                                               PSHUFD_shuffle_mask:$src2)))]>;

// SSE2 with ImmT == Imm8 and XS prefix.
def PSHUFHWri : Ii8<0x70, MRMSrcReg,
                    (outs VR128:$dst), (ins VR128:$src1, i8imm:$src2),
                    "pshufhw\t{$src2, $src1, $dst|$dst, $src1, $src2}",
                    [(set VR128:$dst, (v8i16 (vector_shuffle
                                              VR128:$src1, (undef),
                                              PSHUFHW_shuffle_mask:$src2)))]>,
                XS, Requires<[HasSSE2]>;
def PSHUFHWmi : Ii8<0x70, MRMSrcMem,
                    (outs VR128:$dst), (ins i128mem:$src1, i8imm:$src2),
                    "pshufhw\t{$src2, $src1, $dst|$dst, $src1, $src2}",
                    [(set VR128:$dst, (v8i16 (vector_shuffle
                                              (bc_v8i16 (memopv2i64 addr:$src1)),
                                              (undef),
                                              PSHUFHW_shuffle_mask:$src2)))]>,
                XS, Requires<[HasSSE2]>;

// SSE2 with ImmT == Imm8 and XD prefix.
def PSHUFLWri : Ii8<0x70, MRMSrcReg,
                    (outs VR128:$dst), (ins VR128:$src1, i32i8imm:$src2),
                    "pshuflw\t{$src2, $src1, $dst|$dst, $src1, $src2}",
                    [(set VR128:$dst, (v8i16 (vector_shuffle
                                              VR128:$src1, (undef),
                                              PSHUFLW_shuffle_mask:$src2)))]>,
                XD, Requires<[HasSSE2]>;
def PSHUFLWmi : Ii8<0x70, MRMSrcMem,
                    (outs VR128:$dst), (ins i128mem:$src1, i32i8imm:$src2),
                    "pshuflw\t{$src2, $src1, $dst|$dst, $src1, $src2}",
                    [(set VR128:$dst, (v8i16 (vector_shuffle
                                              (bc_v8i16 (memopv2i64 addr:$src1)),
                                              (undef),
                                              PSHUFLW_shuffle_mask:$src2)))]>,
                XD, Requires<[HasSSE2]>;


let isTwoAddress = 1 in {
  def PUNPCKLBWrr : PDI<0x60, MRMSrcReg, 
                        (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
                        "punpcklbw\t{$src2, $dst|$dst, $src2}",
                        [(set VR128:$dst,
                          (v16i8 (vector_shuffle VR128:$src1, VR128:$src2,
                                  UNPCKL_shuffle_mask)))]>;
  def PUNPCKLBWrm : PDI<0x60, MRMSrcMem, 
                        (outs VR128:$dst), (ins VR128:$src1, i128mem:$src2),
                        "punpcklbw\t{$src2, $dst|$dst, $src2}",
                        [(set VR128:$dst,
                          (v16i8 (vector_shuffle VR128:$src1,
                                  (bc_v16i8 (memopv2i64 addr:$src2)),
                                  UNPCKL_shuffle_mask)))]>;
  def PUNPCKLWDrr : PDI<0x61, MRMSrcReg, 
                        (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
                        "punpcklwd\t{$src2, $dst|$dst, $src2}",
                        [(set VR128:$dst,
                          (v8i16 (vector_shuffle VR128:$src1, VR128:$src2,
                                  UNPCKL_shuffle_mask)))]>;
  def PUNPCKLWDrm : PDI<0x61, MRMSrcMem, 
                        (outs VR128:$dst), (ins VR128:$src1, i128mem:$src2),
                        "punpcklwd\t{$src2, $dst|$dst, $src2}",
                        [(set VR128:$dst,
                          (v8i16 (vector_shuffle VR128:$src1,
                                  (bc_v8i16 (memopv2i64 addr:$src2)),
                                  UNPCKL_shuffle_mask)))]>;
  def PUNPCKLDQrr : PDI<0x62, MRMSrcReg, 
                        (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
                        "punpckldq\t{$src2, $dst|$dst, $src2}",
                        [(set VR128:$dst,
                          (v4i32 (vector_shuffle VR128:$src1, VR128:$src2,
                                  UNPCKL_shuffle_mask)))]>;
  def PUNPCKLDQrm : PDI<0x62, MRMSrcMem, 
                        (outs VR128:$dst), (ins VR128:$src1, i128mem:$src2),
                        "punpckldq\t{$src2, $dst|$dst, $src2}",
                        [(set VR128:$dst,
                          (v4i32 (vector_shuffle VR128:$src1,
                                  (bc_v4i32 (memopv2i64 addr:$src2)),
                                  UNPCKL_shuffle_mask)))]>;
  def PUNPCKLQDQrr : PDI<0x6C, MRMSrcReg, 
                         (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
                         "punpcklqdq\t{$src2, $dst|$dst, $src2}",
                        [(set VR128:$dst,
                          (v2i64 (vector_shuffle VR128:$src1, VR128:$src2,
                                  UNPCKL_shuffle_mask)))]>;
  def PUNPCKLQDQrm : PDI<0x6C, MRMSrcMem, 
                         (outs VR128:$dst), (ins VR128:$src1, i128mem:$src2),
                         "punpcklqdq\t{$src2, $dst|$dst, $src2}",
                        [(set VR128:$dst,
                          (v2i64 (vector_shuffle VR128:$src1,
                                  (memopv2i64 addr:$src2),
                                  UNPCKL_shuffle_mask)))]>;
  
  def PUNPCKHBWrr : PDI<0x68, MRMSrcReg, 
                        (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
                        "punpckhbw\t{$src2, $dst|$dst, $src2}",
                        [(set VR128:$dst,
                          (v16i8 (vector_shuffle VR128:$src1, VR128:$src2,
                                  UNPCKH_shuffle_mask)))]>;
  def PUNPCKHBWrm : PDI<0x68, MRMSrcMem, 
                        (outs VR128:$dst), (ins VR128:$src1, i128mem:$src2),
                        "punpckhbw\t{$src2, $dst|$dst, $src2}",
                        [(set VR128:$dst,
                          (v16i8 (vector_shuffle VR128:$src1,
                                  (bc_v16i8 (memopv2i64 addr:$src2)),
                                  UNPCKH_shuffle_mask)))]>;
  def PUNPCKHWDrr : PDI<0x69, MRMSrcReg, 
                        (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
                        "punpckhwd\t{$src2, $dst|$dst, $src2}",
                        [(set VR128:$dst,
                          (v8i16 (vector_shuffle VR128:$src1, VR128:$src2,
                                  UNPCKH_shuffle_mask)))]>;
  def PUNPCKHWDrm : PDI<0x69, MRMSrcMem, 
                        (outs VR128:$dst), (ins VR128:$src1, i128mem:$src2),
                        "punpckhwd\t{$src2, $dst|$dst, $src2}",
                        [(set VR128:$dst,
                          (v8i16 (vector_shuffle VR128:$src1,
                                  (bc_v8i16 (memopv2i64 addr:$src2)),
                                  UNPCKH_shuffle_mask)))]>;
  def PUNPCKHDQrr : PDI<0x6A, MRMSrcReg, 
                        (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
                        "punpckhdq\t{$src2, $dst|$dst, $src2}",
                        [(set VR128:$dst,
                          (v4i32 (vector_shuffle VR128:$src1, VR128:$src2,
                                  UNPCKH_shuffle_mask)))]>;
  def PUNPCKHDQrm : PDI<0x6A, MRMSrcMem, 
                        (outs VR128:$dst), (ins VR128:$src1, i128mem:$src2),
                        "punpckhdq\t{$src2, $dst|$dst, $src2}",
                        [(set VR128:$dst,
                          (v4i32 (vector_shuffle VR128:$src1,
                                  (bc_v4i32 (memopv2i64 addr:$src2)),
                                  UNPCKH_shuffle_mask)))]>;
  def PUNPCKHQDQrr : PDI<0x6D, MRMSrcReg, 
                         (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
                         "punpckhqdq\t{$src2, $dst|$dst, $src2}",
                        [(set VR128:$dst,
                          (v2i64 (vector_shuffle VR128:$src1, VR128:$src2,
                                  UNPCKH_shuffle_mask)))]>;
  def PUNPCKHQDQrm : PDI<0x6D, MRMSrcMem, 
                        (outs VR128:$dst), (ins VR128:$src1, i128mem:$src2),
                        "punpckhqdq\t{$src2, $dst|$dst, $src2}",
                        [(set VR128:$dst,
                          (v2i64 (vector_shuffle VR128:$src1,
                                  (memopv2i64 addr:$src2),
                                  UNPCKH_shuffle_mask)))]>;
}

// Extract / Insert
def PEXTRWri : PDIi8<0xC5, MRMSrcReg,
                    (outs GR32:$dst), (ins VR128:$src1, i32i8imm:$src2),
                    "pextrw\t{$src2, $src1, $dst|$dst, $src1, $src2}",
                    [(set GR32:$dst, (X86pextrw (v8i16 VR128:$src1),
                                     (iPTR imm:$src2)))]>;
let isTwoAddress = 1 in {
  def PINSRWrri : PDIi8<0xC4, MRMSrcReg,
                       (outs VR128:$dst), (ins VR128:$src1,
                        GR32:$src2, i32i8imm:$src3),
                       "pinsrw\t{$src3, $src2, $dst|$dst, $src2, $src3}",
                       [(set VR128:$dst,
                         (v8i16 (X86pinsrw (v8i16 VR128:$src1),
                                 GR32:$src2, (iPTR imm:$src3))))]>;
  def PINSRWrmi : PDIi8<0xC4, MRMSrcMem,
                       (outs VR128:$dst), (ins VR128:$src1,
                        i16mem:$src2, i32i8imm:$src3),
                       "pinsrw\t{$src3, $src2, $dst|$dst, $src2, $src3}",
                       [(set VR128:$dst,
                         (v8i16 (X86pinsrw (v8i16 VR128:$src1),
                                 (i32 (anyext (loadi16 addr:$src2))),
                                 (iPTR imm:$src3))))]>;
}

// Mask creation
def PMOVMSKBrr : PDI<0xD7, MRMSrcReg, (outs GR32:$dst), (ins VR128:$src),
                     "pmovmskb\t{$src, $dst|$dst, $src}",
                     [(set GR32:$dst, (int_x86_sse2_pmovmskb_128 VR128:$src))]>;

// Conditional store
let Uses = [EDI] in
def MASKMOVDQU : PDI<0xF7, MRMSrcReg, (outs), (ins VR128:$src, VR128:$mask),
                     "maskmovdqu\t{$mask, $src|$src, $mask}",
                     [(int_x86_sse2_maskmov_dqu VR128:$src, VR128:$mask, EDI)]>;

// Non-temporal stores
def MOVNTPDmr : PDI<0x2B, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src),
                    "movntpd\t{$src, $dst|$dst, $src}",
                    [(int_x86_sse2_movnt_pd addr:$dst, VR128:$src)]>;
def MOVNTDQmr : PDI<0xE7, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
                    "movntdq\t{$src, $dst|$dst, $src}",
                    [(int_x86_sse2_movnt_dq addr:$dst, VR128:$src)]>;
def MOVNTImr  :   I<0xC3, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src),
                    "movnti\t{$src, $dst|$dst, $src}",
                    [(int_x86_sse2_movnt_i addr:$dst, GR32:$src)]>, 
                  TB, Requires<[HasSSE2]>;

// Flush cache
def CLFLUSH : I<0xAE, MRM7m, (outs), (ins i8mem:$src),
               "clflush\t$src", [(int_x86_sse2_clflush addr:$src)]>,
              TB, Requires<[HasSSE2]>;

// Load, store, and memory fence
def LFENCE : I<0xAE, MRM5m, (outs), (ins),
               "lfence", [(int_x86_sse2_lfence)]>, TB, Requires<[HasSSE2]>;
def MFENCE : I<0xAE, MRM6m, (outs), (ins),
               "mfence", [(int_x86_sse2_mfence)]>, TB, Requires<[HasSSE2]>;


// Alias instructions that map zero vector to pxor / xorp* for sse.
// FIXME: remove when we can teach regalloc that xor reg, reg is ok.
let isReMaterializable = 1 in
  def V_SETALLONES : PDI<0x76, MRMInitReg, (outs VR128:$dst), (ins),
                         "pcmpeqd\t$dst, $dst",
                         [(set VR128:$dst, (v2f64 immAllOnesV))]>;

// FR64 to 128-bit vector conversion.
def MOVSD2PDrr : SDI<0x10, MRMSrcReg, (outs VR128:$dst), (ins FR64:$src),
                      "movsd\t{$src, $dst|$dst, $src}",
                      [(set VR128:$dst,
                        (v2f64 (scalar_to_vector FR64:$src)))]>;
def MOVSD2PDrm : SDI<0x10, MRMSrcMem, (outs VR128:$dst), (ins f64mem:$src),
                     "movsd\t{$src, $dst|$dst, $src}",
                     [(set VR128:$dst, 
                       (v2f64 (scalar_to_vector (loadf64 addr:$src))))]>;

def MOVDI2PDIrr : PDI<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR32:$src),
                      "movd\t{$src, $dst|$dst, $src}",
                      [(set VR128:$dst,
                        (v4i32 (scalar_to_vector GR32:$src)))]>;
def MOVDI2PDIrm : PDI<0x6E, MRMSrcMem, (outs VR128:$dst), (ins i32mem:$src),
                      "movd\t{$src, $dst|$dst, $src}",
                      [(set VR128:$dst,
                        (v4i32 (scalar_to_vector (loadi32 addr:$src))))]>;

def MOVDI2SSrr  : PDI<0x6E, MRMSrcReg, (outs FR32:$dst), (ins GR32:$src),
                      "movd\t{$src, $dst|$dst, $src}",
                      [(set FR32:$dst, (bitconvert GR32:$src))]>;

def MOVDI2SSrm  : PDI<0x6E, MRMSrcMem, (outs FR32:$dst), (ins i32mem:$src),
                      "movd\t{$src, $dst|$dst, $src}",
                      [(set FR32:$dst, (bitconvert (loadi32 addr:$src)))]>;

// SSE2 instructions with XS prefix
def MOVQI2PQIrm : I<0x7E, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src),
                    "movq\t{$src, $dst|$dst, $src}",
                    [(set VR128:$dst,
                      (v2i64 (scalar_to_vector (loadi64 addr:$src))))]>, XS,
                  Requires<[HasSSE2]>;
def MOVPQI2QImr : PDI<0xD6, MRMDestMem, (outs), (ins i64mem:$dst, VR128:$src),
                      "movq\t{$src, $dst|$dst, $src}",
                      [(store (i64 (vector_extract (v2i64 VR128:$src),
                                    (iPTR 0))), addr:$dst)]>;

// FIXME: may not be able to eliminate this movss with coalescing the src and
// dest register classes are different. We really want to write this pattern
// like this:
// def : Pat<(f32 (vector_extract (v4f32 VR128:$src), (iPTR 0))),
//           (f32 FR32:$src)>;
def MOVPD2SDrr : SDI<0x10, MRMSrcReg, (outs FR64:$dst), (ins VR128:$src),
                     "movsd\t{$src, $dst|$dst, $src}",
                     [(set FR64:$dst, (vector_extract (v2f64 VR128:$src),
                                       (iPTR 0)))]>;
def MOVPD2SDmr : SDI<0x11, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src),
                     "movsd\t{$src, $dst|$dst, $src}",
                     [(store (f64 (vector_extract (v2f64 VR128:$src),
                                   (iPTR 0))), addr:$dst)]>;
def MOVPDI2DIrr  : PDI<0x7E, MRMDestReg, (outs GR32:$dst), (ins VR128:$src),
                       "movd\t{$src, $dst|$dst, $src}",
                       [(set GR32:$dst, (vector_extract (v4i32 VR128:$src),
                                        (iPTR 0)))]>;
def MOVPDI2DImr  : PDI<0x7E, MRMDestMem, (outs), (ins i32mem:$dst, VR128:$src),
                       "movd\t{$src, $dst|$dst, $src}",
                       [(store (i32 (vector_extract (v4i32 VR128:$src),
                                     (iPTR 0))), addr:$dst)]>;

def MOVSS2DIrr  : PDI<0x7E, MRMDestReg, (outs GR32:$dst), (ins FR32:$src),
                      "movd\t{$src, $dst|$dst, $src}",
                      [(set GR32:$dst, (bitconvert FR32:$src))]>;
def MOVSS2DImr  : PDI<0x7E, MRMDestMem, (outs), (ins i32mem:$dst, FR32:$src),
                      "movd\t{$src, $dst|$dst, $src}",
                      [(store (i32 (bitconvert FR32:$src)), addr:$dst)]>;


// Move to lower bits of a VR128, leaving upper bits alone.
// Three operand (but two address) aliases.
let isTwoAddress = 1 in {
  def MOVLSD2PDrr : SDI<0x10, MRMSrcReg,
                        (outs VR128:$dst), (ins VR128:$src1, FR64:$src2),
                        "movsd\t{$src2, $dst|$dst, $src2}", []>;

  let AddedComplexity = 15 in
    def MOVLPDrr : SDI<0x10, MRMSrcReg,
                       (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
                       "movsd\t{$src2, $dst|$dst, $src2}",
                       [(set VR128:$dst,
                         (v2f64 (vector_shuffle VR128:$src1, VR128:$src2,
                                 MOVL_shuffle_mask)))]>;
}

// Store / copy lower 64-bits of a XMM register.
def MOVLQ128mr : PDI<0xD6, MRMDestMem, (outs), (ins i64mem:$dst, VR128:$src),
                     "movq\t{$src, $dst|$dst, $src}",
                     [(int_x86_sse2_storel_dq addr:$dst, VR128:$src)]>;

// Move to lower bits of a VR128 and zeroing upper bits.
// Loading from memory automatically zeroing upper bits.
let AddedComplexity = 20 in
  def MOVZSD2PDrm : SDI<0x10, MRMSrcMem, (outs VR128:$dst), (ins f64mem:$src),
                        "movsd\t{$src, $dst|$dst, $src}",
                        [(set VR128:$dst,
                          (v2f64 (vector_shuffle immAllZerosV,
                                  (v2f64 (scalar_to_vector
                                          (loadf64 addr:$src))),
                                  MOVL_shuffle_mask)))]>;

let AddedComplexity = 15 in
// movd / movq to XMM register zero-extends
def MOVZDI2PDIrr : PDI<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR32:$src),
                       "movd\t{$src, $dst|$dst, $src}",
                       [(set VR128:$dst,
                         (v4i32 (vector_shuffle immAllZerosV,
                                 (v4i32 (scalar_to_vector GR32:$src)),
                                 MOVL_shuffle_mask)))]>;
let AddedComplexity = 20 in
def MOVZDI2PDIrm : PDI<0x6E, MRMSrcMem, (outs VR128:$dst), (ins i32mem:$src),
                       "movd\t{$src, $dst|$dst, $src}",
                       [(set VR128:$dst,
                         (v4i32 (vector_shuffle immAllZerosV,
                                 (v4i32 (scalar_to_vector (loadi32 addr:$src))),
                                 MOVL_shuffle_mask)))]>;

// Moving from XMM to XMM but still clear upper 64 bits.
let AddedComplexity = 15 in
def MOVZQI2PQIrr : I<0x7E, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
                     "movq\t{$src, $dst|$dst, $src}",
                     [(set VR128:$dst, (int_x86_sse2_movl_dq VR128:$src))]>,
                   XS, Requires<[HasSSE2]>;
let AddedComplexity = 20 in
def MOVZQI2PQIrm : I<0x7E, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src),
                     "movq\t{$src, $dst|$dst, $src}",
                     [(set VR128:$dst, (int_x86_sse2_movl_dq
                                        (bitconvert (memopv2i64 addr:$src))))]>,
                   XS, Requires<[HasSSE2]>;


//===----------------------------------------------------------------------===//
// SSE3 Instructions
//===----------------------------------------------------------------------===//

// Move Instructions
def MOVSHDUPrr : S3SI<0x16, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
                      "movshdup\t{$src, $dst|$dst, $src}",
                      [(set VR128:$dst, (v4f32 (vector_shuffle
                                                VR128:$src, (undef),
                                                MOVSHDUP_shuffle_mask)))]>;
def MOVSHDUPrm : S3SI<0x16, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
                      "movshdup\t{$src, $dst|$dst, $src}",
                      [(set VR128:$dst, (v4f32 (vector_shuffle
                                                (memopv4f32 addr:$src), (undef),
                                                MOVSHDUP_shuffle_mask)))]>;

def MOVSLDUPrr : S3SI<0x12, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
                      "movsldup\t{$src, $dst|$dst, $src}",
                      [(set VR128:$dst, (v4f32 (vector_shuffle
                                                VR128:$src, (undef),
                                                MOVSLDUP_shuffle_mask)))]>;
def MOVSLDUPrm : S3SI<0x12, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
                      "movsldup\t{$src, $dst|$dst, $src}",
                      [(set VR128:$dst, (v4f32 (vector_shuffle
                                                (memopv4f32 addr:$src), (undef),
                                                MOVSLDUP_shuffle_mask)))]>;

def MOVDDUPrr  : S3DI<0x12, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
                      "movddup\t{$src, $dst|$dst, $src}",
                      [(set VR128:$dst, (v2f64 (vector_shuffle
                                                VR128:$src, (undef),
                                                SSE_splat_lo_mask)))]>;
def MOVDDUPrm  : S3DI<0x12, MRMSrcMem, (outs VR128:$dst), (ins f64mem:$src),
                      "movddup\t{$src, $dst|$dst, $src}",
                      [(set VR128:$dst,
                        (v2f64 (vector_shuffle
                                (scalar_to_vector (loadf64 addr:$src)),
                                (undef),
                                SSE_splat_lo_mask)))]>;

// Arithmetic
let isTwoAddress = 1 in {
  def ADDSUBPSrr : S3DI<0xD0, MRMSrcReg,
                        (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
                        "addsubps\t{$src2, $dst|$dst, $src2}",
                        [(set VR128:$dst, (int_x86_sse3_addsub_ps VR128:$src1,
                                           VR128:$src2))]>;
  def ADDSUBPSrm : S3DI<0xD0, MRMSrcMem,
                        (outs VR128:$dst), (ins VR128:$src1, f128mem:$src2),
                        "addsubps\t{$src2, $dst|$dst, $src2}",
                        [(set VR128:$dst, (int_x86_sse3_addsub_ps VR128:$src1,
                                           (load addr:$src2)))]>;
  def ADDSUBPDrr : S3I<0xD0, MRMSrcReg,
                       (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
                       "addsubpd\t{$src2, $dst|$dst, $src2}",
                       [(set VR128:$dst, (int_x86_sse3_addsub_pd VR128:$src1,
                                          VR128:$src2))]>;
  def ADDSUBPDrm : S3I<0xD0, MRMSrcMem,
                       (outs VR128:$dst), (ins VR128:$src1, f128mem:$src2),
                       "addsubpd\t{$src2, $dst|$dst, $src2}",
                       [(set VR128:$dst, (int_x86_sse3_addsub_pd VR128:$src1,
                                          (load addr:$src2)))]>;
}

def LDDQUrm : S3DI<0xF0, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src),
                   "lddqu\t{$src, $dst|$dst, $src}",
                   [(set VR128:$dst, (int_x86_sse3_ldu_dq addr:$src))]>;

// Horizontal ops
class S3D_Intrr<bits<8> o, string OpcodeStr, Intrinsic IntId>
  : S3DI<o, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
         !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
         [(set VR128:$dst, (v4f32 (IntId VR128:$src1, VR128:$src2)))]>;
class S3D_Intrm<bits<8> o, string OpcodeStr, Intrinsic IntId>
  : S3DI<o, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, f128mem:$src2),
         !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
         [(set VR128:$dst, (v4f32 (IntId VR128:$src1, (load addr:$src2))))]>;
class S3_Intrr<bits<8> o, string OpcodeStr, Intrinsic IntId>
  : S3I<o, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
        !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
        [(set VR128:$dst, (v2f64 (IntId VR128:$src1, VR128:$src2)))]>;
class S3_Intrm<bits<8> o, string OpcodeStr, Intrinsic IntId>
  : S3I<o, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, f128mem:$src2),
        !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
        [(set VR128:$dst, (v2f64 (IntId VR128:$src1, (load addr:$src2))))]>;

let isTwoAddress = 1 in {
  def HADDPSrr : S3D_Intrr<0x7C, "haddps", int_x86_sse3_hadd_ps>;
  def HADDPSrm : S3D_Intrm<0x7C, "haddps", int_x86_sse3_hadd_ps>;
  def HADDPDrr : S3_Intrr <0x7C, "haddpd", int_x86_sse3_hadd_pd>;
  def HADDPDrm : S3_Intrm <0x7C, "haddpd", int_x86_sse3_hadd_pd>;
  def HSUBPSrr : S3D_Intrr<0x7D, "hsubps", int_x86_sse3_hsub_ps>;
  def HSUBPSrm : S3D_Intrm<0x7D, "hsubps", int_x86_sse3_hsub_ps>;
  def HSUBPDrr : S3_Intrr <0x7D, "hsubpd", int_x86_sse3_hsub_pd>;
  def HSUBPDrm : S3_Intrm <0x7D, "hsubpd", int_x86_sse3_hsub_pd>;
}

// Thread synchronization
def MONITOR : I<0xC8, RawFrm, (outs), (ins), "monitor",
                [(int_x86_sse3_monitor EAX, ECX, EDX)]>,TB, Requires<[HasSSE3]>;
def MWAIT   : I<0xC9, RawFrm, (outs), (ins), "mwait",
                [(int_x86_sse3_mwait ECX, EAX)]>, TB, Requires<[HasSSE3]>;

// vector_shuffle v1, <undef> <1, 1, 3, 3>
let AddedComplexity = 15 in
def : Pat<(v4i32 (vector_shuffle VR128:$src, (undef),
                  MOVSHDUP_shuffle_mask)),
          (MOVSHDUPrr VR128:$src)>, Requires<[HasSSE3]>;
let AddedComplexity = 20 in
def : Pat<(v4i32 (vector_shuffle (bc_v4i32 (memopv2i64 addr:$src)), (undef),
                  MOVSHDUP_shuffle_mask)),
          (MOVSHDUPrm addr:$src)>, Requires<[HasSSE3]>;

// vector_shuffle v1, <undef> <0, 0, 2, 2>
let AddedComplexity = 15 in
  def : Pat<(v4i32 (vector_shuffle VR128:$src, (undef),
                    MOVSLDUP_shuffle_mask)),
            (MOVSLDUPrr VR128:$src)>, Requires<[HasSSE3]>;
let AddedComplexity = 20 in
  def : Pat<(v4i32 (vector_shuffle (bc_v4i32 (memopv2i64 addr:$src)), (undef),
                    MOVSLDUP_shuffle_mask)),
            (MOVSLDUPrm addr:$src)>, Requires<[HasSSE3]>;

//===----------------------------------------------------------------------===//
// SSSE3 Instructions
//===----------------------------------------------------------------------===//

// SSSE3 Instruction Templates:
// 
//   SS38I - SSSE3 instructions with T8 prefix.
//   SS3AI - SSSE3 instructions with TA prefix.
//
// Note: SSSE3 instructions have 64-bit and 128-bit versions. The 64-bit version
// uses the MMX registers. We put those instructions here because they better
// fit into the SSSE3 instruction category rather than the MMX category.

class SS38I<bits<8> o, Format F, dag outs, dag ins, string asm,
            list<dag> pattern>
      : I<o, F, outs, ins, asm, pattern>, T8, Requires<[HasSSSE3]>;
class SS3AI<bits<8> o, Format F, dag outs, dag ins, string asm,
            list<dag> pattern>
      : I<o, F, outs, ins, asm, pattern>, TA, Requires<[HasSSSE3]>;

/// SS3I_unop_rm_int_8 - Simple SSSE3 unary operator whose type is v*i8.
let isTwoAddress = 1 in {
  multiclass SS3I_unop_rm_int_8<bits<8> opc, string OpcodeStr,
                                Intrinsic IntId64, Intrinsic IntId128,
                                bit Commutable = 0> {
    def rr64 : SS38I<opc, MRMSrcReg, (outs VR64:$dst), (ins VR64:$src),
                     !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
                     [(set VR64:$dst, (IntId64 VR64:$src))]> {
      let isCommutable = Commutable;
    }
    def rm64 : SS38I<opc, MRMSrcMem, (outs VR64:$dst), (ins i64mem:$src),
                     !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
                     [(set VR64:$dst,
                       (IntId64 (bitconvert (memopv8i8 addr:$src))))]>;

    def rr128 : SS38I<opc, MRMSrcReg, (outs VR128:$dst),
                      (ins VR128:$src),
                      !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
                      [(set VR128:$dst, (IntId128 VR128:$src))]>,
                      OpSize {
      let isCommutable = Commutable;
    }
    def rm128 : SS38I<opc, MRMSrcMem, (outs VR128:$dst),
                      (ins i128mem:$src),
                      !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
                      [(set VR128:$dst,
                        (IntId128
                         (bitconvert (memopv16i8 addr:$src))))]>, OpSize;
  }
}

/// SS3I_unop_rm_int_16 - Simple SSSE3 unary operator whose type is v*i16.
let isTwoAddress = 1 in {
  multiclass SS3I_unop_rm_int_16<bits<8> opc, string OpcodeStr,
                                 Intrinsic IntId64, Intrinsic IntId128,
                                 bit Commutable = 0> {
    def rr64 : SS38I<opc, MRMSrcReg, (outs VR64:$dst),
                     (ins VR64:$src),
                     !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
                     [(set VR64:$dst, (IntId64 VR64:$src))]> {
      let isCommutable = Commutable;
    }
    def rm64 : SS38I<opc, MRMSrcMem, (outs VR64:$dst),
                     (ins i64mem:$src),
                     !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
                     [(set VR64:$dst,
                       (IntId64
                        (bitconvert (memopv4i16 addr:$src))))]>;

    def rr128 : SS38I<opc, MRMSrcReg, (outs VR128:$dst),
                      (ins VR128:$src),
                      !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
                      [(set VR128:$dst, (IntId128 VR128:$src))]>,
                      OpSize {
      let isCommutable = Commutable;
    }
    def rm128 : SS38I<opc, MRMSrcMem, (outs VR128:$dst),
                      (ins i128mem:$src),
                      !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
                      [(set VR128:$dst,
                        (IntId128
                         (bitconvert (memopv8i16 addr:$src))))]>, OpSize;
  }
}

/// SS3I_unop_rm_int_32 - Simple SSSE3 unary operator whose type is v*i32.
let isTwoAddress = 1 in {
  multiclass SS3I_unop_rm_int_32<bits<8> opc, string OpcodeStr,
                                 Intrinsic IntId64, Intrinsic IntId128,
                                 bit Commutable = 0> {
    def rr64 : SS38I<opc, MRMSrcReg, (outs VR64:$dst),
                     (ins VR64:$src),
                     !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
                     [(set VR64:$dst, (IntId64 VR64:$src))]> {
      let isCommutable = Commutable;
    }
    def rm64 : SS38I<opc, MRMSrcMem, (outs VR64:$dst),
                     (ins i64mem:$src),
                     !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
                     [(set VR64:$dst,
                       (IntId64
                        (bitconvert (memopv2i32 addr:$src))))]>;

    def rr128 : SS38I<opc, MRMSrcReg, (outs VR128:$dst),
                      (ins VR128:$src),
                      !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
                      [(set VR128:$dst, (IntId128 VR128:$src))]>,
                      OpSize {
      let isCommutable = Commutable;
    }
    def rm128 : SS38I<opc, MRMSrcMem, (outs VR128:$dst),
                      (ins i128mem:$src),
                      !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
                      [(set VR128:$dst,
                        (IntId128
                         (bitconvert (memopv4i32 addr:$src))))]>, OpSize;
  }
}

defm PABSB       : SS3I_unop_rm_int_8 <0x1C, "pabsb",
                                       int_x86_ssse3_pabs_b,
                                       int_x86_ssse3_pabs_b_128>;
defm PABSW       : SS3I_unop_rm_int_16<0x1D, "pabsw",
                                       int_x86_ssse3_pabs_w,
                                       int_x86_ssse3_pabs_w_128>;
defm PABSD       : SS3I_unop_rm_int_32<0x1E, "pabsd",
                                       int_x86_ssse3_pabs_d,
                                       int_x86_ssse3_pabs_d_128>;

/// SS3I_binop_rm_int_8 - Simple SSSE3 binary operator whose type is v*i8.
let isTwoAddress = 1 in {
  multiclass SS3I_binop_rm_int_8<bits<8> opc, string OpcodeStr,
                                 Intrinsic IntId64, Intrinsic IntId128,
                                 bit Commutable = 0> {
    def rr64 : SS38I<opc, MRMSrcReg, (outs VR64:$dst),
                     (ins VR64:$src1, VR64:$src2),
                     !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
                     [(set VR64:$dst, (IntId64 VR64:$src1, VR64:$src2))]> {
      let isCommutable = Commutable;
    }
    def rm64 : SS38I<opc, MRMSrcMem, (outs VR64:$dst),
                     (ins VR64:$src1, i64mem:$src2),
                     !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
                     [(set VR64:$dst,
                       (IntId64 VR64:$src1,
                        (bitconvert (memopv8i8 addr:$src2))))]>;

    def rr128 : SS38I<opc, MRMSrcReg, (outs VR128:$dst),
                      (ins VR128:$src1, VR128:$src2),
                      !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
                      [(set VR128:$dst, (IntId128 VR128:$src1, VR128:$src2))]>,
                      OpSize {
      let isCommutable = Commutable;
    }
    def rm128 : SS38I<opc, MRMSrcMem, (outs VR128:$dst),
                      (ins VR128:$src1, i128mem:$src2),
                      !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
                      [(set VR128:$dst,
                        (IntId128 VR128:$src1,
                         (bitconvert (memopv16i8 addr:$src2))))]>, OpSize;
  }
}

/// SS3I_binop_rm_int_16 - Simple SSSE3 binary operator whose type is v*i16.
let isTwoAddress = 1 in {
  multiclass SS3I_binop_rm_int_16<bits<8> opc, string OpcodeStr,
                                  Intrinsic IntId64, Intrinsic IntId128,
                                  bit Commutable = 0> {
    def rr64 : SS38I<opc, MRMSrcReg, (outs VR64:$dst),
                     (ins VR64:$src1, VR64:$src2),
                     !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
                     [(set VR64:$dst, (IntId64 VR64:$src1, VR64:$src2))]> {
      let isCommutable = Commutable;
    }
    def rm64 : SS38I<opc, MRMSrcMem, (outs VR64:$dst),
                     (ins VR64:$src1, i64mem:$src2),
                     !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
                     [(set VR64:$dst,
                       (IntId64 VR64:$src1,
                        (bitconvert (memopv4i16 addr:$src2))))]>;

    def rr128 : SS38I<opc, MRMSrcReg, (outs VR128:$dst),
                      (ins VR128:$src1, VR128:$src2),
                      !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
                      [(set VR128:$dst, (IntId128 VR128:$src1, VR128:$src2))]>,
                      OpSize {
      let isCommutable = Commutable;
    }
    def rm128 : SS38I<opc, MRMSrcMem, (outs VR128:$dst),
                      (ins VR128:$src1, i128mem:$src2),
                      !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
                      [(set VR128:$dst,
                        (IntId128 VR128:$src1,
                         (bitconvert (memopv8i16 addr:$src2))))]>, OpSize;
  }
}

/// SS3I_binop_rm_int_32 - Simple SSSE3 binary operator whose type is v*i32.
let isTwoAddress = 1 in {
  multiclass SS3I_binop_rm_int_32<bits<8> opc, string OpcodeStr,
                                  Intrinsic IntId64, Intrinsic IntId128,
                                  bit Commutable = 0> {
    def rr64 : SS38I<opc, MRMSrcReg, (outs VR64:$dst),
                     (ins VR64:$src1, VR64:$src2),
                     !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
                     [(set VR64:$dst, (IntId64 VR64:$src1, VR64:$src2))]> {
      let isCommutable = Commutable;
    }
    def rm64 : SS38I<opc, MRMSrcMem, (outs VR64:$dst),
                     (ins VR64:$src1, i64mem:$src2),
                     !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
                     [(set VR64:$dst,
                       (IntId64 VR64:$src1,
                        (bitconvert (memopv2i32 addr:$src2))))]>;

    def rr128 : SS38I<opc, MRMSrcReg, (outs VR128:$dst),
                      (ins VR128:$src1, VR128:$src2),
                      !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
                      [(set VR128:$dst, (IntId128 VR128:$src1, VR128:$src2))]>,
                      OpSize {
      let isCommutable = Commutable;
    }
    def rm128 : SS38I<opc, MRMSrcMem, (outs VR128:$dst),
                      (ins VR128:$src1, i128mem:$src2),
                      !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
                      [(set VR128:$dst,
                        (IntId128 VR128:$src1,
                         (bitconvert (memopv4i32 addr:$src2))))]>, OpSize;
  }
}

defm PHADDW      : SS3I_binop_rm_int_16<0x01, "phaddw",
                                        int_x86_ssse3_phadd_w,
                                        int_x86_ssse3_phadd_w_128, 1>;
defm PHADDD      : SS3I_binop_rm_int_32<0x02, "phaddd",
                                        int_x86_ssse3_phadd_d,
                                        int_x86_ssse3_phadd_d_128, 1>;
defm PHADDSW     : SS3I_binop_rm_int_16<0x03, "phaddsw",
                                        int_x86_ssse3_phadd_sw,
                                        int_x86_ssse3_phadd_sw_128, 1>;
defm PHSUBW      : SS3I_binop_rm_int_16<0x05, "phsubw",
                                        int_x86_ssse3_phsub_w,
                                        int_x86_ssse3_phsub_w_128>;
defm PHSUBD      : SS3I_binop_rm_int_32<0x06, "phsubd",
                                        int_x86_ssse3_phsub_d,
                                        int_x86_ssse3_phsub_d_128>;
defm PHSUBSW     : SS3I_binop_rm_int_16<0x07, "phsubsw",
                                        int_x86_ssse3_phsub_sw,
                                        int_x86_ssse3_phsub_sw_128>;
defm PMADDUBSW   : SS3I_binop_rm_int_8 <0x04, "pmaddubsw",
                                        int_x86_ssse3_pmadd_ub_sw,
                                        int_x86_ssse3_pmadd_ub_sw_128, 1>;
defm PMULHRSW    : SS3I_binop_rm_int_16<0x0B, "pmulhrsw",
                                        int_x86_ssse3_pmul_hr_sw,
                                        int_x86_ssse3_pmul_hr_sw_128, 1>;
defm PSHUFB      : SS3I_binop_rm_int_8 <0x00, "pshufb",
                                        int_x86_ssse3_pshuf_b,
                                        int_x86_ssse3_pshuf_b_128>;
defm PSIGNB      : SS3I_binop_rm_int_8 <0x08, "psignb",
                                        int_x86_ssse3_psign_b,
                                        int_x86_ssse3_psign_b_128>;
defm PSIGNW      : SS3I_binop_rm_int_16<0x09, "psignw",
                                        int_x86_ssse3_psign_w,
                                        int_x86_ssse3_psign_w_128>;
defm PSIGND      : SS3I_binop_rm_int_32<0x09, "psignd",
                                        int_x86_ssse3_psign_d,
                                        int_x86_ssse3_psign_d_128>;

let isTwoAddress = 1 in {
  def PALIGNR64rr  : SS3AI<0x0F, MRMSrcReg, (outs VR64:$dst),
                           (ins VR64:$src1, VR64:$src2, i16imm:$src3),
                           "palignr\t{$src3, $src2, $dst|$dst, $src2, $src3}",
                           [(set VR64:$dst,
                             (int_x86_ssse3_palign_r
                              VR64:$src1, VR64:$src2,
                              imm:$src3))]>;
  def PALIGNR64rm  : SS3AI<0x0F, MRMSrcReg, (outs VR64:$dst),
                           (ins VR64:$src1, i64mem:$src2, i16imm:$src3),
                           "palignr\t{$src3, $src2, $dst|$dst, $src2, $src3}",
                           [(set VR64:$dst,
                             (int_x86_ssse3_palign_r
                              VR64:$src1,
                              (bitconvert (memopv2i32 addr:$src2)),
                              imm:$src3))]>;

  def PALIGNR128rr : SS3AI<0x0F, MRMSrcReg, (outs VR128:$dst),
                           (ins VR128:$src1, VR128:$src2, i32imm:$src3),
                           "palignr\t{$src3, $src2, $dst|$dst, $src2, $src3}",
                           [(set VR128:$dst,
                             (int_x86_ssse3_palign_r_128
                              VR128:$src1, VR128:$src2,
                              imm:$src3))]>, OpSize;
  def PALIGNR128rm : SS3AI<0x0F, MRMSrcReg, (outs VR128:$dst),
                           (ins VR128:$src1, i128mem:$src2, i32imm:$src3),
                           "palignr\t{$src3, $src2, $dst|$dst, $src2, $src3}",
                           [(set VR128:$dst,
                             (int_x86_ssse3_palign_r_128
                              VR128:$src1,
                              (bitconvert (memopv4i32 addr:$src2)),
                              imm:$src3))]>, OpSize;
}

//===----------------------------------------------------------------------===//
// Non-Instruction Patterns
//===----------------------------------------------------------------------===//

// 128-bit vector undef's.
def : Pat<(v4f32 (undef)), (IMPLICIT_DEF_VR128)>, Requires<[HasSSE2]>;
def : Pat<(v2f64 (undef)), (IMPLICIT_DEF_VR128)>, Requires<[HasSSE2]>;
def : Pat<(v16i8 (undef)), (IMPLICIT_DEF_VR128)>, Requires<[HasSSE2]>;
def : Pat<(v8i16 (undef)), (IMPLICIT_DEF_VR128)>, Requires<[HasSSE2]>;
def : Pat<(v4i32 (undef)), (IMPLICIT_DEF_VR128)>, Requires<[HasSSE2]>;
def : Pat<(v2i64 (undef)), (IMPLICIT_DEF_VR128)>, Requires<[HasSSE2]>;

// 128-bit vector all zero's.
def : Pat<(v16i8 immAllZerosV), (V_SET0)>, Requires<[HasSSE2]>;
def : Pat<(v8i16 immAllZerosV), (V_SET0)>, Requires<[HasSSE2]>;
def : Pat<(v4i32 immAllZerosV), (V_SET0)>, Requires<[HasSSE2]>;
def : Pat<(v2i64 immAllZerosV), (V_SET0)>, Requires<[HasSSE2]>;
def : Pat<(v2f64 immAllZerosV), (V_SET0)>, Requires<[HasSSE2]>;

// 128-bit vector all one's.
def : Pat<(v16i8 immAllOnesV), (V_SETALLONES)>, Requires<[HasSSE2]>;
def : Pat<(v8i16 immAllOnesV), (V_SETALLONES)>, Requires<[HasSSE2]>;
def : Pat<(v4i32 immAllOnesV), (V_SETALLONES)>, Requires<[HasSSE2]>;
def : Pat<(v2i64 immAllOnesV), (V_SETALLONES)>, Requires<[HasSSE2]>;
def : Pat<(v4f32 immAllOnesV), (V_SETALLONES)>, Requires<[HasSSE1]>;


// Scalar to v8i16 / v16i8. The source may be a GR32, but only the lower 8 or
// 16-bits matter.
def : Pat<(v8i16 (X86s2vec GR32:$src)), (MOVDI2PDIrr GR32:$src)>,
      Requires<[HasSSE2]>;
def : Pat<(v16i8 (X86s2vec GR32:$src)), (MOVDI2PDIrr GR32:$src)>,
      Requires<[HasSSE2]>;

// bit_convert
let Predicates = [HasSSE2] in {
  def : Pat<(v2i64 (bitconvert (v4i32 VR128:$src))), (v2i64 VR128:$src)>;
  def : Pat<(v2i64 (bitconvert (v8i16 VR128:$src))), (v2i64 VR128:$src)>;
  def : Pat<(v2i64 (bitconvert (v16i8 VR128:$src))), (v2i64 VR128:$src)>;
  def : Pat<(v2i64 (bitconvert (v2f64 VR128:$src))), (v2i64 VR128:$src)>;
  def : Pat<(v2i64 (bitconvert (v4f32 VR128:$src))), (v2i64 VR128:$src)>;
  def : Pat<(v4i32 (bitconvert (v2i64 VR128:$src))), (v4i32 VR128:$src)>;
  def : Pat<(v4i32 (bitconvert (v8i16 VR128:$src))), (v4i32 VR128:$src)>;
  def : Pat<(v4i32 (bitconvert (v16i8 VR128:$src))), (v4i32 VR128:$src)>;
  def : Pat<(v4i32 (bitconvert (v2f64 VR128:$src))), (v4i32 VR128:$src)>;
  def : Pat<(v4i32 (bitconvert (v4f32 VR128:$src))), (v4i32 VR128:$src)>;
  def : Pat<(v8i16 (bitconvert (v2i64 VR128:$src))), (v8i16 VR128:$src)>;
  def : Pat<(v8i16 (bitconvert (v4i32 VR128:$src))), (v8i16 VR128:$src)>;
  def : Pat<(v8i16 (bitconvert (v16i8 VR128:$src))), (v8i16 VR128:$src)>;
  def : Pat<(v8i16 (bitconvert (v2f64 VR128:$src))), (v8i16 VR128:$src)>;
  def : Pat<(v8i16 (bitconvert (v4f32 VR128:$src))), (v8i16 VR128:$src)>;
  def : Pat<(v16i8 (bitconvert (v2i64 VR128:$src))), (v16i8 VR128:$src)>;
  def : Pat<(v16i8 (bitconvert (v4i32 VR128:$src))), (v16i8 VR128:$src)>;
  def : Pat<(v16i8 (bitconvert (v8i16 VR128:$src))), (v16i8 VR128:$src)>;
  def : Pat<(v16i8 (bitconvert (v2f64 VR128:$src))), (v16i8 VR128:$src)>;
  def : Pat<(v16i8 (bitconvert (v4f32 VR128:$src))), (v16i8 VR128:$src)>;
  def : Pat<(v4f32 (bitconvert (v2i64 VR128:$src))), (v4f32 VR128:$src)>;
  def : Pat<(v4f32 (bitconvert (v4i32 VR128:$src))), (v4f32 VR128:$src)>;
  def : Pat<(v4f32 (bitconvert (v8i16 VR128:$src))), (v4f32 VR128:$src)>;
  def : Pat<(v4f32 (bitconvert (v16i8 VR128:$src))), (v4f32 VR128:$src)>;
  def : Pat<(v4f32 (bitconvert (v2f64 VR128:$src))), (v4f32 VR128:$src)>;
  def : Pat<(v2f64 (bitconvert (v2i64 VR128:$src))), (v2f64 VR128:$src)>;
  def : Pat<(v2f64 (bitconvert (v4i32 VR128:$src))), (v2f64 VR128:$src)>;
  def : Pat<(v2f64 (bitconvert (v8i16 VR128:$src))), (v2f64 VR128:$src)>;
  def : Pat<(v2f64 (bitconvert (v16i8 VR128:$src))), (v2f64 VR128:$src)>;
  def : Pat<(v2f64 (bitconvert (v4f32 VR128:$src))), (v2f64 VR128:$src)>;
}

// Move scalar to XMM zero-extended
// movd to XMM register zero-extends
let AddedComplexity = 15 in {
def : Pat<(v8i16 (vector_shuffle immAllZerosV,
                  (v8i16 (X86s2vec GR32:$src)), MOVL_shuffle_mask)),
          (MOVZDI2PDIrr GR32:$src)>, Requires<[HasSSE2]>;
def : Pat<(v16i8 (vector_shuffle immAllZerosV,
                  (v16i8 (X86s2vec GR32:$src)), MOVL_shuffle_mask)),
          (MOVZDI2PDIrr GR32:$src)>, Requires<[HasSSE2]>;
// Zeroing a VR128 then do a MOVS{S|D} to the lower bits.
def : Pat<(v2f64 (vector_shuffle immAllZerosV,
                  (v2f64 (scalar_to_vector FR64:$src)), MOVL_shuffle_mask)),
          (MOVLSD2PDrr (V_SET0), FR64:$src)>, Requires<[HasSSE2]>;
def : Pat<(v4f32 (vector_shuffle immAllZerosV,
                  (v4f32 (scalar_to_vector FR32:$src)), MOVL_shuffle_mask)),
          (MOVLSS2PSrr (V_SET0), FR32:$src)>, Requires<[HasSSE2]>;
}

// Splat v2f64 / v2i64
let AddedComplexity = 10 in {
def : Pat<(vector_shuffle (v2f64 VR128:$src), (undef), SSE_splat_lo_mask:$sm),
          (UNPCKLPDrr VR128:$src, VR128:$src)>,   Requires<[HasSSE2]>;
def : Pat<(vector_shuffle (v2f64 VR128:$src), (undef), UNPCKH_shuffle_mask:$sm),
          (UNPCKHPDrr VR128:$src, VR128:$src)>,   Requires<[HasSSE2]>;
def : Pat<(vector_shuffle (v2i64 VR128:$src), (undef), SSE_splat_lo_mask:$sm),
          (PUNPCKLQDQrr VR128:$src, VR128:$src)>, Requires<[HasSSE2]>;
def : Pat<(vector_shuffle (v2i64 VR128:$src), (undef), UNPCKH_shuffle_mask:$sm),
          (PUNPCKHQDQrr VR128:$src, VR128:$src)>, Requires<[HasSSE2]>;
}

// Splat v4f32
def : Pat<(vector_shuffle (v4f32 VR128:$src), (undef), SSE_splat_mask:$sm),
          (SHUFPSrri VR128:$src, VR128:$src, SSE_splat_mask:$sm)>,
      Requires<[HasSSE1]>;

// Special unary SHUFPSrri case.
// FIXME: when we want non two-address code, then we should use PSHUFD?
def : Pat<(vector_shuffle (v4f32 VR128:$src1), (undef),
           SHUFP_unary_shuffle_mask:$sm),
          (SHUFPSrri VR128:$src1, VR128:$src1, SHUFP_unary_shuffle_mask:$sm)>,
      Requires<[HasSSE1]>;
// Special unary SHUFPDrri case.
def : Pat<(vector_shuffle (v2f64 VR128:$src1), (undef),
           SHUFP_unary_shuffle_mask:$sm),
          (SHUFPDrri VR128:$src1, VR128:$src1, SHUFP_unary_shuffle_mask:$sm)>,
      Requires<[HasSSE2]>;
// Unary v4f32 shuffle with PSHUF* in order to fold a load.
def : Pat<(vector_shuffle (memopv4f32 addr:$src1), (undef),
           SHUFP_unary_shuffle_mask:$sm),
          (PSHUFDmi addr:$src1, SHUFP_unary_shuffle_mask:$sm)>,
      Requires<[HasSSE2]>;
// Special binary v4i32 shuffle cases with SHUFPS.
def : Pat<(vector_shuffle (v4i32 VR128:$src1), (v4i32 VR128:$src2),
           PSHUFD_binary_shuffle_mask:$sm),
          (SHUFPSrri VR128:$src1, VR128:$src2, PSHUFD_binary_shuffle_mask:$sm)>,
           Requires<[HasSSE2]>;
def : Pat<(vector_shuffle (v4i32 VR128:$src1),
           (bc_v4i32 (memopv2i64 addr:$src2)), PSHUFD_binary_shuffle_mask:$sm),
          (SHUFPSrmi VR128:$src1, addr:$src2, PSHUFD_binary_shuffle_mask:$sm)>,
           Requires<[HasSSE2]>;

// vector_shuffle v1, <undef>, <0, 0, 1, 1, ...>
let AddedComplexity = 10 in {
def : Pat<(v4f32 (vector_shuffle VR128:$src, (undef),
                  UNPCKL_v_undef_shuffle_mask)),
          (UNPCKLPSrr VR128:$src, VR128:$src)>, Requires<[HasSSE2]>;
def : Pat<(v16i8 (vector_shuffle VR128:$src, (undef),
                  UNPCKL_v_undef_shuffle_mask)),
          (PUNPCKLBWrr VR128:$src, VR128:$src)>, Requires<[HasSSE2]>;
def : Pat<(v8i16 (vector_shuffle VR128:$src, (undef),
                  UNPCKL_v_undef_shuffle_mask)),
          (PUNPCKLWDrr VR128:$src, VR128:$src)>, Requires<[HasSSE2]>;
def : Pat<(v4i32 (vector_shuffle VR128:$src, (undef),
                  UNPCKL_v_undef_shuffle_mask)),
          (PUNPCKLDQrr VR128:$src, VR128:$src)>, Requires<[HasSSE1]>;
}

// vector_shuffle v1, <undef>, <2, 2, 3, 3, ...>
let AddedComplexity = 10 in {
def : Pat<(v4f32 (vector_shuffle VR128:$src, (undef),
                  UNPCKH_v_undef_shuffle_mask)),
          (UNPCKHPSrr VR128:$src, VR128:$src)>, Requires<[HasSSE2]>;
def : Pat<(v16i8 (vector_shuffle VR128:$src, (undef),
                  UNPCKH_v_undef_shuffle_mask)),
          (PUNPCKHBWrr VR128:$src, VR128:$src)>, Requires<[HasSSE2]>;
def : Pat<(v8i16 (vector_shuffle VR128:$src, (undef),
                  UNPCKH_v_undef_shuffle_mask)),
          (PUNPCKHWDrr VR128:$src, VR128:$src)>, Requires<[HasSSE2]>;
def : Pat<(v4i32 (vector_shuffle VR128:$src, (undef),
                  UNPCKH_v_undef_shuffle_mask)),
          (PUNPCKHDQrr VR128:$src, VR128:$src)>, Requires<[HasSSE1]>;
}

let AddedComplexity = 15 in {
// vector_shuffle v1, v2 <0, 1, 4, 5> using MOVLHPS
def : Pat<(v4i32 (vector_shuffle VR128:$src1, VR128:$src2,
                  MOVHP_shuffle_mask)),
          (MOVLHPSrr VR128:$src1, VR128:$src2)>;

// vector_shuffle v1, v2 <6, 7, 2, 3> using MOVHLPS
def : Pat<(v4i32 (vector_shuffle VR128:$src1, VR128:$src2,
                  MOVHLPS_shuffle_mask)),
          (MOVHLPSrr VR128:$src1, VR128:$src2)>;

// vector_shuffle v1, undef <2, ?, ?, ?> using MOVHLPS
def : Pat<(v4f32 (vector_shuffle VR128:$src1, (undef),
                  MOVHLPS_v_undef_shuffle_mask)),
          (MOVHLPSrr VR128:$src1, VR128:$src1)>;
def : Pat<(v4i32 (vector_shuffle VR128:$src1, (undef),
                  MOVHLPS_v_undef_shuffle_mask)),
          (MOVHLPSrr VR128:$src1, VR128:$src1)>;
}

let AddedComplexity = 20 in {
// vector_shuffle v1, (load v2) <4, 5, 2, 3> using MOVLPS
// vector_shuffle v1, (load v2) <0, 1, 4, 5> using MOVHPS
def : Pat<(v4f32 (vector_shuffle VR128:$src1, (memopv4f32 addr:$src2),
                  MOVLP_shuffle_mask)),
          (MOVLPSrm VR128:$src1, addr:$src2)>, Requires<[HasSSE1]>;
def : Pat<(v2f64 (vector_shuffle VR128:$src1, (memopv2f64 addr:$src2),
                  MOVLP_shuffle_mask)),
          (MOVLPDrm VR128:$src1, addr:$src2)>, Requires<[HasSSE2]>;
def : Pat<(v4f32 (vector_shuffle VR128:$src1, (memopv4f32 addr:$src2),
                  MOVHP_shuffle_mask)),
          (MOVHPSrm VR128:$src1, addr:$src2)>, Requires<[HasSSE1]>;
def : Pat<(v2f64 (vector_shuffle VR128:$src1, (memopv2f64 addr:$src2),
                  MOVHP_shuffle_mask)),
          (MOVHPDrm VR128:$src1, addr:$src2)>, Requires<[HasSSE2]>;

def : Pat<(v4i32 (vector_shuffle VR128:$src1, (bc_v4i32 (memopv2i64 addr:$src2)),
                  MOVLP_shuffle_mask)),
          (MOVLPSrm VR128:$src1, addr:$src2)>, Requires<[HasSSE2]>;
def : Pat<(v2i64 (vector_shuffle VR128:$src1, (memopv2i64 addr:$src2),
                  MOVLP_shuffle_mask)),
          (MOVLPDrm VR128:$src1, addr:$src2)>, Requires<[HasSSE2]>;
def : Pat<(v4i32 (vector_shuffle VR128:$src1, (bc_v4i32 (memopv2i64 addr:$src2)),
                  MOVHP_shuffle_mask)),
          (MOVHPSrm VR128:$src1, addr:$src2)>, Requires<[HasSSE1]>;
def : Pat<(v2i64 (vector_shuffle VR128:$src1, (memopv2i64 addr:$src2),
                  MOVLP_shuffle_mask)),
          (MOVLPDrm VR128:$src1, addr:$src2)>, Requires<[HasSSE2]>;
}

let AddedComplexity = 15 in {
// Setting the lowest element in the vector.
def : Pat<(v4i32 (vector_shuffle VR128:$src1, VR128:$src2,
                  MOVL_shuffle_mask)),
          (MOVLPSrr VR128:$src1, VR128:$src2)>, Requires<[HasSSE2]>;
def : Pat<(v2i64 (vector_shuffle VR128:$src1, VR128:$src2,
                  MOVL_shuffle_mask)),
          (MOVLPDrr VR128:$src1, VR128:$src2)>, Requires<[HasSSE2]>;

// vector_shuffle v1, v2 <4, 5, 2, 3> using MOVLPDrr (movsd)
def : Pat<(v4f32 (vector_shuffle VR128:$src1, VR128:$src2,
                  MOVLP_shuffle_mask)),
          (MOVLPDrr VR128:$src1, VR128:$src2)>, Requires<[HasSSE2]>;
def : Pat<(v4i32 (vector_shuffle VR128:$src1, VR128:$src2,
                  MOVLP_shuffle_mask)),
          (MOVLPDrr VR128:$src1, VR128:$src2)>, Requires<[HasSSE2]>;
}

// Set lowest element and zero upper elements.
let AddedComplexity = 20 in
def : Pat<(bc_v2i64 (vector_shuffle immAllZerosV,
                     (v2f64 (scalar_to_vector (loadf64 addr:$src))),
                     MOVL_shuffle_mask)),
          (MOVZQI2PQIrm addr:$src)>, Requires<[HasSSE2]>;

// FIXME: Temporary workaround since 2-wide shuffle is broken.
def : Pat<(int_x86_sse2_movs_d  VR128:$src1, VR128:$src2),
          (v2f64 (MOVLPDrr VR128:$src1, VR128:$src2))>, Requires<[HasSSE2]>;
def : Pat<(int_x86_sse2_loadh_pd VR128:$src1, addr:$src2),
          (v2f64 (MOVHPDrm VR128:$src1, addr:$src2))>, Requires<[HasSSE2]>;
def : Pat<(int_x86_sse2_loadl_pd VR128:$src1, addr:$src2),
          (v2f64 (MOVLPDrm VR128:$src1, addr:$src2))>, Requires<[HasSSE2]>;
def : Pat<(int_x86_sse2_shuf_pd VR128:$src1, VR128:$src2, imm:$src3),
          (v2f64 (SHUFPDrri VR128:$src1, VR128:$src2, imm:$src3))>,
      Requires<[HasSSE2]>;
def : Pat<(int_x86_sse2_shuf_pd VR128:$src1, (load addr:$src2), imm:$src3),
          (v2f64 (SHUFPDrmi VR128:$src1, addr:$src2, imm:$src3))>,
      Requires<[HasSSE2]>;
def : Pat<(int_x86_sse2_unpckh_pd VR128:$src1, VR128:$src2),
          (v2f64 (UNPCKHPDrr VR128:$src1, VR128:$src2))>, Requires<[HasSSE2]>;
def : Pat<(int_x86_sse2_unpckh_pd VR128:$src1, (load addr:$src2)),
          (v2f64 (UNPCKHPDrm VR128:$src1, addr:$src2))>, Requires<[HasSSE2]>;
def : Pat<(int_x86_sse2_unpckl_pd VR128:$src1, VR128:$src2),
          (v2f64 (UNPCKLPDrr VR128:$src1, VR128:$src2))>, Requires<[HasSSE2]>;
def : Pat<(int_x86_sse2_unpckl_pd VR128:$src1, (load addr:$src2)),
          (v2f64 (UNPCKLPDrm VR128:$src1, addr:$src2))>, Requires<[HasSSE2]>;
def : Pat<(int_x86_sse2_punpckh_qdq VR128:$src1, VR128:$src2),
          (v2i64 (PUNPCKHQDQrr VR128:$src1, VR128:$src2))>, Requires<[HasSSE2]>;
def : Pat<(int_x86_sse2_punpckh_qdq VR128:$src1, (load addr:$src2)),
          (v2i64 (PUNPCKHQDQrm VR128:$src1, addr:$src2))>, Requires<[HasSSE2]>;
def : Pat<(int_x86_sse2_punpckl_qdq VR128:$src1, VR128:$src2),
          (v2i64 (PUNPCKLQDQrr VR128:$src1, VR128:$src2))>, Requires<[HasSSE2]>;
def : Pat<(int_x86_sse2_punpckl_qdq VR128:$src1, (load addr:$src2)),
          (PUNPCKLQDQrm VR128:$src1, addr:$src2)>, Requires<[HasSSE2]>;

// Some special case pandn patterns.
def : Pat<(v2i64 (and (xor VR128:$src1, (bc_v2i64 (v4i32 immAllOnesV))),
                  VR128:$src2)),
          (PANDNrr VR128:$src1, VR128:$src2)>, Requires<[HasSSE2]>;
def : Pat<(v2i64 (and (xor VR128:$src1, (bc_v2i64 (v8i16 immAllOnesV))),
                  VR128:$src2)),
          (PANDNrr VR128:$src1, VR128:$src2)>, Requires<[HasSSE2]>;
def : Pat<(v2i64 (and (xor VR128:$src1, (bc_v2i64 (v16i8 immAllOnesV))),
                  VR128:$src2)),
          (PANDNrr VR128:$src1, VR128:$src2)>, Requires<[HasSSE2]>;

def : Pat<(v2i64 (and (xor VR128:$src1, (bc_v2i64 (v4i32 immAllOnesV))),
                  (memopv2i64 addr:$src2))),
          (PANDNrm VR128:$src1, addr:$src2)>, Requires<[HasSSE2]>;
def : Pat<(v2i64 (and (xor VR128:$src1, (bc_v2i64 (v8i16 immAllOnesV))),
                  (memopv2i64 addr:$src2))),
          (PANDNrm VR128:$src1, addr:$src2)>, Requires<[HasSSE2]>;
def : Pat<(v2i64 (and (xor VR128:$src1, (bc_v2i64 (v16i8 immAllOnesV))),
                  (memopv2i64 addr:$src2))),
          (PANDNrm VR128:$src1, addr:$src2)>, Requires<[HasSSE2]>;

// Use movaps / movups for SSE integer load / store (one byte shorter).
def : Pat<(alignedloadv4i32 addr:$src),
          (MOVAPSrm addr:$src)>, Requires<[HasSSE1]>;
def : Pat<(loadv4i32 addr:$src),
          (MOVUPSrm addr:$src)>, Requires<[HasSSE1]>;
def : Pat<(alignedloadv2i64 addr:$src),
          (MOVAPSrm addr:$src)>, Requires<[HasSSE2]>;
def : Pat<(loadv2i64 addr:$src),
          (MOVUPSrm addr:$src)>, Requires<[HasSSE2]>;

def : Pat<(alignedstore (v2i64 VR128:$src), addr:$dst),
          (MOVAPSmr addr:$dst, VR128:$src)>, Requires<[HasSSE2]>;
def : Pat<(alignedstore (v4i32 VR128:$src), addr:$dst),
          (MOVAPSmr addr:$dst, VR128:$src)>, Requires<[HasSSE2]>;
def : Pat<(alignedstore (v8i16 VR128:$src), addr:$dst),
          (MOVAPSmr addr:$dst, VR128:$src)>, Requires<[HasSSE2]>;
def : Pat<(alignedstore (v16i8 VR128:$src), addr:$dst),
          (MOVAPSmr addr:$dst, VR128:$src)>, Requires<[HasSSE2]>;
def : Pat<(store (v2i64 VR128:$src), addr:$dst),
          (MOVUPSmr addr:$dst, VR128:$src)>, Requires<[HasSSE2]>;
def : Pat<(store (v4i32 VR128:$src), addr:$dst),
          (MOVUPSmr addr:$dst, VR128:$src)>, Requires<[HasSSE2]>;
def : Pat<(store (v8i16 VR128:$src), addr:$dst),
          (MOVUPSmr addr:$dst, VR128:$src)>, Requires<[HasSSE2]>;
def : Pat<(store (v16i8 VR128:$src), addr:$dst),
          (MOVUPSmr addr:$dst, VR128:$src)>, Requires<[HasSSE2]>;