aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/X86/X86MCInstLower.cpp
blob: cd3076d0b1c486541e4bb027e953134d72ed324d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
//===-- X86MCInstLower.cpp - Convert X86 MachineInstr to an MCInst --------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains code to lower X86 MachineInstrs to their corresponding
// MCInst records.
//
//===----------------------------------------------------------------------===//

#include "X86AsmPrinter.h"
#include "X86RegisterInfo.h"
#include "InstPrinter/X86ATTInstPrinter.h"
#include "MCTargetDesc/X86BaseInfo.h"
#include "Utils/X86ShuffleDecode.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineModuleInfoImpls.h"
#include "llvm/CodeGen/StackMaps.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/Mangler.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCCodeEmitter.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstBuilder.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Support/TargetRegistry.h"
using namespace llvm;

namespace {

/// X86MCInstLower - This class is used to lower an MachineInstr into an MCInst.
class X86MCInstLower {
  MCContext &Ctx;
  const MachineFunction &MF;
  const TargetMachine &TM;
  const MCAsmInfo &MAI;
  X86AsmPrinter &AsmPrinter;
public:
  X86MCInstLower(const MachineFunction &MF, X86AsmPrinter &asmprinter);

  void Lower(const MachineInstr *MI, MCInst &OutMI) const;

  MCSymbol *GetSymbolFromOperand(const MachineOperand &MO) const;
  MCOperand LowerSymbolOperand(const MachineOperand &MO, MCSymbol *Sym) const;

private:
  MachineModuleInfoMachO &getMachOMMI() const;
  Mangler *getMang() const {
    return AsmPrinter.Mang;
  }
};

} // end anonymous namespace

// Emit a minimal sequence of nops spanning NumBytes bytes.
static void EmitNops(MCStreamer &OS, unsigned NumBytes, bool Is64Bit,
                     const MCSubtargetInfo &STI);

namespace llvm {
   X86AsmPrinter::StackMapShadowTracker::StackMapShadowTracker(TargetMachine &TM)
     : TM(TM), InShadow(false), RequiredShadowSize(0), CurrentShadowSize(0) {}

  X86AsmPrinter::StackMapShadowTracker::~StackMapShadowTracker() {}

  void
  X86AsmPrinter::StackMapShadowTracker::startFunction(MachineFunction &F) {
    MF = &F;
    CodeEmitter.reset(TM.getTarget().createMCCodeEmitter(
        *MF->getSubtarget().getInstrInfo(),
        *MF->getSubtarget().getRegisterInfo(), MF->getContext()));
  }

  void X86AsmPrinter::StackMapShadowTracker::count(MCInst &Inst,
                                                   const MCSubtargetInfo &STI) {
    if (InShadow) {
      SmallString<256> Code;
      SmallVector<MCFixup, 4> Fixups;
      raw_svector_ostream VecOS(Code);
      CodeEmitter->EncodeInstruction(Inst, VecOS, Fixups, STI);
      VecOS.flush();
      CurrentShadowSize += Code.size();
      if (CurrentShadowSize >= RequiredShadowSize)
        InShadow = false; // The shadow is big enough. Stop counting.
    }
  }

  void X86AsmPrinter::StackMapShadowTracker::emitShadowPadding(
    MCStreamer &OutStreamer, const MCSubtargetInfo &STI) {
    if (InShadow && CurrentShadowSize < RequiredShadowSize) {
      InShadow = false;
      EmitNops(OutStreamer, RequiredShadowSize - CurrentShadowSize,
               MF->getSubtarget<X86Subtarget>().is64Bit(), STI);
    }
  }

  void X86AsmPrinter::EmitAndCountInstruction(MCInst &Inst) {
    OutStreamer.EmitInstruction(Inst, getSubtargetInfo());
    SMShadowTracker.count(Inst, getSubtargetInfo());
  }
} // end llvm namespace

X86MCInstLower::X86MCInstLower(const MachineFunction &mf,
                               X86AsmPrinter &asmprinter)
    : Ctx(mf.getContext()), MF(mf), TM(mf.getTarget()), MAI(*TM.getMCAsmInfo()),
      AsmPrinter(asmprinter) {}

MachineModuleInfoMachO &X86MCInstLower::getMachOMMI() const {
  return MF.getMMI().getObjFileInfo<MachineModuleInfoMachO>();
}


/// GetSymbolFromOperand - Lower an MO_GlobalAddress or MO_ExternalSymbol
/// operand to an MCSymbol.
MCSymbol *X86MCInstLower::
GetSymbolFromOperand(const MachineOperand &MO) const {
  const DataLayout *DL = TM.getDataLayout();
  assert((MO.isGlobal() || MO.isSymbol() || MO.isMBB()) && "Isn't a symbol reference");

  SmallString<128> Name;
  StringRef Suffix;

  switch (MO.getTargetFlags()) {
  case X86II::MO_DLLIMPORT:
    // Handle dllimport linkage.
    Name += "__imp_";
    break;
  case X86II::MO_DARWIN_STUB:
    Suffix = "$stub";
    break;
  case X86II::MO_DARWIN_NONLAZY:
  case X86II::MO_DARWIN_NONLAZY_PIC_BASE:
  case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE:
    Suffix = "$non_lazy_ptr";
    break;
  }

  if (!Suffix.empty())
    Name += DL->getPrivateGlobalPrefix();

  unsigned PrefixLen = Name.size();

  if (MO.isGlobal()) {
    const GlobalValue *GV = MO.getGlobal();
    AsmPrinter.getNameWithPrefix(Name, GV);
  } else if (MO.isSymbol()) {
    getMang()->getNameWithPrefix(Name, MO.getSymbolName());
  } else if (MO.isMBB()) {
    Name += MO.getMBB()->getSymbol()->getName();
  }
  unsigned OrigLen = Name.size() - PrefixLen;

  Name += Suffix;
  MCSymbol *Sym = Ctx.GetOrCreateSymbol(Name);

  StringRef OrigName = StringRef(Name).substr(PrefixLen, OrigLen);

  // If the target flags on the operand changes the name of the symbol, do that
  // before we return the symbol.
  switch (MO.getTargetFlags()) {
  default: break;
  case X86II::MO_DARWIN_NONLAZY:
  case X86II::MO_DARWIN_NONLAZY_PIC_BASE: {
    MachineModuleInfoImpl::StubValueTy &StubSym =
      getMachOMMI().getGVStubEntry(Sym);
    if (!StubSym.getPointer()) {
      assert(MO.isGlobal() && "Extern symbol not handled yet");
      StubSym =
        MachineModuleInfoImpl::
        StubValueTy(AsmPrinter.getSymbol(MO.getGlobal()),
                    !MO.getGlobal()->hasInternalLinkage());
    }
    break;
  }
  case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: {
    MachineModuleInfoImpl::StubValueTy &StubSym =
      getMachOMMI().getHiddenGVStubEntry(Sym);
    if (!StubSym.getPointer()) {
      assert(MO.isGlobal() && "Extern symbol not handled yet");
      StubSym =
        MachineModuleInfoImpl::
        StubValueTy(AsmPrinter.getSymbol(MO.getGlobal()),
                    !MO.getGlobal()->hasInternalLinkage());
    }
    break;
  }
  case X86II::MO_DARWIN_STUB: {
    MachineModuleInfoImpl::StubValueTy &StubSym =
      getMachOMMI().getFnStubEntry(Sym);
    if (StubSym.getPointer())
      return Sym;

    if (MO.isGlobal()) {
      StubSym =
        MachineModuleInfoImpl::
        StubValueTy(AsmPrinter.getSymbol(MO.getGlobal()),
                    !MO.getGlobal()->hasInternalLinkage());
    } else {
      StubSym =
        MachineModuleInfoImpl::
        StubValueTy(Ctx.GetOrCreateSymbol(OrigName), false);
    }
    break;
  }
  }

  return Sym;
}

MCOperand X86MCInstLower::LowerSymbolOperand(const MachineOperand &MO,
                                             MCSymbol *Sym) const {
  // FIXME: We would like an efficient form for this, so we don't have to do a
  // lot of extra uniquing.
  const MCExpr *Expr = nullptr;
  MCSymbolRefExpr::VariantKind RefKind = MCSymbolRefExpr::VK_None;

  switch (MO.getTargetFlags()) {
  default: llvm_unreachable("Unknown target flag on GV operand");
  case X86II::MO_NO_FLAG:    // No flag.
  // These affect the name of the symbol, not any suffix.
  case X86II::MO_DARWIN_NONLAZY:
  case X86II::MO_DLLIMPORT:
  case X86II::MO_DARWIN_STUB:
    break;

  case X86II::MO_TLVP:      RefKind = MCSymbolRefExpr::VK_TLVP; break;
  case X86II::MO_TLVP_PIC_BASE:
    Expr = MCSymbolRefExpr::Create(Sym, MCSymbolRefExpr::VK_TLVP, Ctx);
    // Subtract the pic base.
    Expr = MCBinaryExpr::CreateSub(Expr,
                                  MCSymbolRefExpr::Create(MF.getPICBaseSymbol(),
                                                           Ctx),
                                   Ctx);
    break;
  case X86II::MO_SECREL:    RefKind = MCSymbolRefExpr::VK_SECREL; break;
  case X86II::MO_TLSGD:     RefKind = MCSymbolRefExpr::VK_TLSGD; break;
  case X86II::MO_TLSLD:     RefKind = MCSymbolRefExpr::VK_TLSLD; break;
  case X86II::MO_TLSLDM:    RefKind = MCSymbolRefExpr::VK_TLSLDM; break;
  case X86II::MO_GOTTPOFF:  RefKind = MCSymbolRefExpr::VK_GOTTPOFF; break;
  case X86II::MO_INDNTPOFF: RefKind = MCSymbolRefExpr::VK_INDNTPOFF; break;
  case X86II::MO_TPOFF:     RefKind = MCSymbolRefExpr::VK_TPOFF; break;
  case X86II::MO_DTPOFF:    RefKind = MCSymbolRefExpr::VK_DTPOFF; break;
  case X86II::MO_NTPOFF:    RefKind = MCSymbolRefExpr::VK_NTPOFF; break;
  case X86II::MO_GOTNTPOFF: RefKind = MCSymbolRefExpr::VK_GOTNTPOFF; break;
  case X86II::MO_GOTPCREL:  RefKind = MCSymbolRefExpr::VK_GOTPCREL; break;
  case X86II::MO_GOT:       RefKind = MCSymbolRefExpr::VK_GOT; break;
  case X86II::MO_GOTOFF:    RefKind = MCSymbolRefExpr::VK_GOTOFF; break;
  case X86II::MO_PLT:       RefKind = MCSymbolRefExpr::VK_PLT; break;
  case X86II::MO_PIC_BASE_OFFSET:
  case X86II::MO_DARWIN_NONLAZY_PIC_BASE:
  case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE:
    Expr = MCSymbolRefExpr::Create(Sym, Ctx);
    // Subtract the pic base.
    Expr = MCBinaryExpr::CreateSub(Expr,
                            MCSymbolRefExpr::Create(MF.getPICBaseSymbol(), Ctx),
                                   Ctx);
    if (MO.isJTI()) {
      assert(MAI.doesSetDirectiveSuppressesReloc());
      // If .set directive is supported, use it to reduce the number of
      // relocations the assembler will generate for differences between
      // local labels. This is only safe when the symbols are in the same
      // section so we are restricting it to jumptable references.
      MCSymbol *Label = Ctx.CreateTempSymbol();
      AsmPrinter.OutStreamer.EmitAssignment(Label, Expr);
      Expr = MCSymbolRefExpr::Create(Label, Ctx);
    }
    break;
  }

  if (!Expr)
    Expr = MCSymbolRefExpr::Create(Sym, RefKind, Ctx);

  if (!MO.isJTI() && !MO.isMBB() && MO.getOffset())
    Expr = MCBinaryExpr::CreateAdd(Expr,
                                   MCConstantExpr::Create(MO.getOffset(), Ctx),
                                   Ctx);
  return MCOperand::CreateExpr(Expr);
}


/// \brief Simplify FOO $imm, %{al,ax,eax,rax} to FOO $imm, for instruction with
/// a short fixed-register form.
static void SimplifyShortImmForm(MCInst &Inst, unsigned Opcode) {
  unsigned ImmOp = Inst.getNumOperands() - 1;
  assert(Inst.getOperand(0).isReg() &&
         (Inst.getOperand(ImmOp).isImm() || Inst.getOperand(ImmOp).isExpr()) &&
         ((Inst.getNumOperands() == 3 && Inst.getOperand(1).isReg() &&
           Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) ||
          Inst.getNumOperands() == 2) && "Unexpected instruction!");

  // Check whether the destination register can be fixed.
  unsigned Reg = Inst.getOperand(0).getReg();
  if (Reg != X86::AL && Reg != X86::AX && Reg != X86::EAX && Reg != X86::RAX)
    return;

  // If so, rewrite the instruction.
  MCOperand Saved = Inst.getOperand(ImmOp);
  Inst = MCInst();
  Inst.setOpcode(Opcode);
  Inst.addOperand(Saved);
}

/// \brief If a movsx instruction has a shorter encoding for the used register
/// simplify the instruction to use it instead.
static void SimplifyMOVSX(MCInst &Inst) {
  unsigned NewOpcode = 0;
  unsigned Op0 = Inst.getOperand(0).getReg(), Op1 = Inst.getOperand(1).getReg();
  switch (Inst.getOpcode()) {
  default:
    llvm_unreachable("Unexpected instruction!");
  case X86::MOVSX16rr8:  // movsbw %al, %ax   --> cbtw
    if (Op0 == X86::AX && Op1 == X86::AL)
      NewOpcode = X86::CBW;
    break;
  case X86::MOVSX32rr16: // movswl %ax, %eax  --> cwtl
    if (Op0 == X86::EAX && Op1 == X86::AX)
      NewOpcode = X86::CWDE;
    break;
  case X86::MOVSX64rr32: // movslq %eax, %rax --> cltq
    if (Op0 == X86::RAX && Op1 == X86::EAX)
      NewOpcode = X86::CDQE;
    break;
  }

  if (NewOpcode != 0) {
    Inst = MCInst();
    Inst.setOpcode(NewOpcode);
  }
}

/// \brief Simplify things like MOV32rm to MOV32o32a.
static void SimplifyShortMoveForm(X86AsmPrinter &Printer, MCInst &Inst,
                                  unsigned Opcode) {
  // Don't make these simplifications in 64-bit mode; other assemblers don't
  // perform them because they make the code larger.
  if (Printer.getSubtarget().is64Bit())
    return;

  bool IsStore = Inst.getOperand(0).isReg() && Inst.getOperand(1).isReg();
  unsigned AddrBase = IsStore;
  unsigned RegOp = IsStore ? 0 : 5;
  unsigned AddrOp = AddrBase + 3;
  assert(Inst.getNumOperands() == 6 && Inst.getOperand(RegOp).isReg() &&
         Inst.getOperand(AddrBase + X86::AddrBaseReg).isReg() &&
         Inst.getOperand(AddrBase + X86::AddrScaleAmt).isImm() &&
         Inst.getOperand(AddrBase + X86::AddrIndexReg).isReg() &&
         Inst.getOperand(AddrBase + X86::AddrSegmentReg).isReg() &&
         (Inst.getOperand(AddrOp).isExpr() ||
          Inst.getOperand(AddrOp).isImm()) &&
         "Unexpected instruction!");

  // Check whether the destination register can be fixed.
  unsigned Reg = Inst.getOperand(RegOp).getReg();
  if (Reg != X86::AL && Reg != X86::AX && Reg != X86::EAX && Reg != X86::RAX)
    return;

  // Check whether this is an absolute address.
  // FIXME: We know TLVP symbol refs aren't, but there should be a better way
  // to do this here.
  bool Absolute = true;
  if (Inst.getOperand(AddrOp).isExpr()) {
    const MCExpr *MCE = Inst.getOperand(AddrOp).getExpr();
    if (const MCSymbolRefExpr *SRE = dyn_cast<MCSymbolRefExpr>(MCE))
      if (SRE->getKind() == MCSymbolRefExpr::VK_TLVP)
        Absolute = false;
  }

  if (Absolute &&
      (Inst.getOperand(AddrBase + X86::AddrBaseReg).getReg() != 0 ||
       Inst.getOperand(AddrBase + X86::AddrScaleAmt).getImm() != 1 ||
       Inst.getOperand(AddrBase + X86::AddrIndexReg).getReg() != 0))
    return;

  // If so, rewrite the instruction.
  MCOperand Saved = Inst.getOperand(AddrOp);
  MCOperand Seg = Inst.getOperand(AddrBase + X86::AddrSegmentReg);
  Inst = MCInst();
  Inst.setOpcode(Opcode);
  Inst.addOperand(Saved);
  Inst.addOperand(Seg);
}

static unsigned getRetOpcode(const X86Subtarget &Subtarget) {
  return Subtarget.is64Bit() ? X86::RETQ : X86::RETL;
}

void X86MCInstLower::Lower(const MachineInstr *MI, MCInst &OutMI) const {
  OutMI.setOpcode(MI->getOpcode());

  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = MI->getOperand(i);

    MCOperand MCOp;
    switch (MO.getType()) {
    default:
      MI->dump();
      llvm_unreachable("unknown operand type");
    case MachineOperand::MO_Register:
      // Ignore all implicit register operands.
      if (MO.isImplicit()) continue;
      MCOp = MCOperand::CreateReg(MO.getReg());
      break;
    case MachineOperand::MO_Immediate:
      MCOp = MCOperand::CreateImm(MO.getImm());
      break;
    case MachineOperand::MO_MachineBasicBlock:
    case MachineOperand::MO_GlobalAddress:
    case MachineOperand::MO_ExternalSymbol:
      MCOp = LowerSymbolOperand(MO, GetSymbolFromOperand(MO));
      break;
    case MachineOperand::MO_JumpTableIndex:
      MCOp = LowerSymbolOperand(MO, AsmPrinter.GetJTISymbol(MO.getIndex()));
      break;
    case MachineOperand::MO_ConstantPoolIndex:
      MCOp = LowerSymbolOperand(MO, AsmPrinter.GetCPISymbol(MO.getIndex()));
      break;
    case MachineOperand::MO_BlockAddress:
      MCOp = LowerSymbolOperand(MO,
                     AsmPrinter.GetBlockAddressSymbol(MO.getBlockAddress()));
      break;
    case MachineOperand::MO_RegisterMask:
      // Ignore call clobbers.
      continue;
    }

    OutMI.addOperand(MCOp);
  }

  // Handle a few special cases to eliminate operand modifiers.
ReSimplify:
  switch (OutMI.getOpcode()) {
  case X86::LEA64_32r:
  case X86::LEA64r:
  case X86::LEA16r:
  case X86::LEA32r:
    // LEA should have a segment register, but it must be empty.
    assert(OutMI.getNumOperands() == 1+X86::AddrNumOperands &&
           "Unexpected # of LEA operands");
    assert(OutMI.getOperand(1+X86::AddrSegmentReg).getReg() == 0 &&
           "LEA has segment specified!");
    break;

  case X86::MOV32ri64:
    OutMI.setOpcode(X86::MOV32ri);
    break;

  // Commute operands to get a smaller encoding by using VEX.R instead of VEX.B
  // if one of the registers is extended, but other isn't.
  case X86::VMOVAPDrr:
  case X86::VMOVAPDYrr:
  case X86::VMOVAPSrr:
  case X86::VMOVAPSYrr:
  case X86::VMOVDQArr:
  case X86::VMOVDQAYrr:
  case X86::VMOVDQUrr:
  case X86::VMOVDQUYrr:
  case X86::VMOVUPDrr:
  case X86::VMOVUPDYrr:
  case X86::VMOVUPSrr:
  case X86::VMOVUPSYrr: {
    if (!X86II::isX86_64ExtendedReg(OutMI.getOperand(0).getReg()) &&
        X86II::isX86_64ExtendedReg(OutMI.getOperand(1).getReg())) {
      unsigned NewOpc;
      switch (OutMI.getOpcode()) {
      default: llvm_unreachable("Invalid opcode");
      case X86::VMOVAPDrr:  NewOpc = X86::VMOVAPDrr_REV;  break;
      case X86::VMOVAPDYrr: NewOpc = X86::VMOVAPDYrr_REV; break;
      case X86::VMOVAPSrr:  NewOpc = X86::VMOVAPSrr_REV;  break;
      case X86::VMOVAPSYrr: NewOpc = X86::VMOVAPSYrr_REV; break;
      case X86::VMOVDQArr:  NewOpc = X86::VMOVDQArr_REV;  break;
      case X86::VMOVDQAYrr: NewOpc = X86::VMOVDQAYrr_REV; break;
      case X86::VMOVDQUrr:  NewOpc = X86::VMOVDQUrr_REV;  break;
      case X86::VMOVDQUYrr: NewOpc = X86::VMOVDQUYrr_REV; break;
      case X86::VMOVUPDrr:  NewOpc = X86::VMOVUPDrr_REV;  break;
      case X86::VMOVUPDYrr: NewOpc = X86::VMOVUPDYrr_REV; break;
      case X86::VMOVUPSrr:  NewOpc = X86::VMOVUPSrr_REV;  break;
      case X86::VMOVUPSYrr: NewOpc = X86::VMOVUPSYrr_REV; break;
      }
      OutMI.setOpcode(NewOpc);
    }
    break;
  }
  case X86::VMOVSDrr:
  case X86::VMOVSSrr: {
    if (!X86II::isX86_64ExtendedReg(OutMI.getOperand(0).getReg()) &&
        X86II::isX86_64ExtendedReg(OutMI.getOperand(2).getReg())) {
      unsigned NewOpc;
      switch (OutMI.getOpcode()) {
      default: llvm_unreachable("Invalid opcode");
      case X86::VMOVSDrr:   NewOpc = X86::VMOVSDrr_REV;   break;
      case X86::VMOVSSrr:   NewOpc = X86::VMOVSSrr_REV;   break;
      }
      OutMI.setOpcode(NewOpc);
    }
    break;
  }

  // TAILJMPr64, CALL64r, CALL64pcrel32 - These instructions have register
  // inputs modeled as normal uses instead of implicit uses.  As such, truncate
  // off all but the first operand (the callee).  FIXME: Change isel.
  case X86::TAILJMPr64:
  case X86::TAILJMPr64_REX:
  case X86::CALL64r:
  case X86::CALL64pcrel32: {
    unsigned Opcode = OutMI.getOpcode();
    MCOperand Saved = OutMI.getOperand(0);
    OutMI = MCInst();
    OutMI.setOpcode(Opcode);
    OutMI.addOperand(Saved);
    break;
  }

  case X86::EH_RETURN:
  case X86::EH_RETURN64: {
    OutMI = MCInst();
    OutMI.setOpcode(getRetOpcode(AsmPrinter.getSubtarget()));
    break;
  }

  // TAILJMPd, TAILJMPd64 - Lower to the correct jump instructions.
  case X86::TAILJMPr:
  case X86::TAILJMPd:
  case X86::TAILJMPd64: {
    unsigned Opcode;
    switch (OutMI.getOpcode()) {
    default: llvm_unreachable("Invalid opcode");
    case X86::TAILJMPr: Opcode = X86::JMP32r; break;
    case X86::TAILJMPd:
    case X86::TAILJMPd64: Opcode = X86::JMP_1; break;
    }

    MCOperand Saved = OutMI.getOperand(0);
    OutMI = MCInst();
    OutMI.setOpcode(Opcode);
    OutMI.addOperand(Saved);
    break;
  }

  case X86::DEC16r:
  case X86::DEC32r:
  case X86::INC16r:
  case X86::INC32r:
    // If we aren't in 64-bit mode we can use the 1-byte inc/dec instructions.
    if (!AsmPrinter.getSubtarget().is64Bit()) {
      unsigned Opcode;
      switch (OutMI.getOpcode()) {
      default: llvm_unreachable("Invalid opcode");
      case X86::DEC16r: Opcode = X86::DEC16r_alt; break;
      case X86::DEC32r: Opcode = X86::DEC32r_alt; break;
      case X86::INC16r: Opcode = X86::INC16r_alt; break;
      case X86::INC32r: Opcode = X86::INC32r_alt; break;
      }
      OutMI.setOpcode(Opcode);
    }
    break;

  // These are pseudo-ops for OR to help with the OR->ADD transformation.  We do
  // this with an ugly goto in case the resultant OR uses EAX and needs the
  // short form.
  case X86::ADD16rr_DB:   OutMI.setOpcode(X86::OR16rr); goto ReSimplify;
  case X86::ADD32rr_DB:   OutMI.setOpcode(X86::OR32rr); goto ReSimplify;
  case X86::ADD64rr_DB:   OutMI.setOpcode(X86::OR64rr); goto ReSimplify;
  case X86::ADD16ri_DB:   OutMI.setOpcode(X86::OR16ri); goto ReSimplify;
  case X86::ADD32ri_DB:   OutMI.setOpcode(X86::OR32ri); goto ReSimplify;
  case X86::ADD64ri32_DB: OutMI.setOpcode(X86::OR64ri32); goto ReSimplify;
  case X86::ADD16ri8_DB:  OutMI.setOpcode(X86::OR16ri8); goto ReSimplify;
  case X86::ADD32ri8_DB:  OutMI.setOpcode(X86::OR32ri8); goto ReSimplify;
  case X86::ADD64ri8_DB:  OutMI.setOpcode(X86::OR64ri8); goto ReSimplify;

  // Atomic load and store require a separate pseudo-inst because Acquire
  // implies mayStore and Release implies mayLoad; fix these to regular MOV
  // instructions here
  case X86::ACQUIRE_MOV8rm:    OutMI.setOpcode(X86::MOV8rm); goto ReSimplify;
  case X86::ACQUIRE_MOV16rm:   OutMI.setOpcode(X86::MOV16rm); goto ReSimplify;
  case X86::ACQUIRE_MOV32rm:   OutMI.setOpcode(X86::MOV32rm); goto ReSimplify;
  case X86::ACQUIRE_MOV64rm:   OutMI.setOpcode(X86::MOV64rm); goto ReSimplify;
  case X86::RELEASE_MOV8mr:    OutMI.setOpcode(X86::MOV8mr); goto ReSimplify;
  case X86::RELEASE_MOV16mr:   OutMI.setOpcode(X86::MOV16mr); goto ReSimplify;
  case X86::RELEASE_MOV32mr:   OutMI.setOpcode(X86::MOV32mr); goto ReSimplify;
  case X86::RELEASE_MOV64mr:   OutMI.setOpcode(X86::MOV64mr); goto ReSimplify;
  case X86::RELEASE_MOV8mi:    OutMI.setOpcode(X86::MOV8mi); goto ReSimplify;
  case X86::RELEASE_MOV16mi:   OutMI.setOpcode(X86::MOV16mi); goto ReSimplify;
  case X86::RELEASE_MOV32mi:   OutMI.setOpcode(X86::MOV32mi); goto ReSimplify;
  case X86::RELEASE_MOV64mi32: OutMI.setOpcode(X86::MOV64mi32); goto ReSimplify;
  case X86::RELEASE_ADD8mi:    OutMI.setOpcode(X86::ADD8mi); goto ReSimplify;
  case X86::RELEASE_ADD32mi:   OutMI.setOpcode(X86::ADD32mi); goto ReSimplify;
  case X86::RELEASE_ADD64mi32: OutMI.setOpcode(X86::ADD64mi32); goto ReSimplify;
  case X86::RELEASE_AND8mi:    OutMI.setOpcode(X86::AND8mi); goto ReSimplify;
  case X86::RELEASE_AND32mi:   OutMI.setOpcode(X86::AND32mi); goto ReSimplify;
  case X86::RELEASE_AND64mi32: OutMI.setOpcode(X86::AND64mi32); goto ReSimplify;
  case X86::RELEASE_OR8mi:     OutMI.setOpcode(X86::OR8mi); goto ReSimplify;
  case X86::RELEASE_OR32mi:    OutMI.setOpcode(X86::OR32mi); goto ReSimplify;
  case X86::RELEASE_OR64mi32:  OutMI.setOpcode(X86::OR64mi32); goto ReSimplify;
  case X86::RELEASE_XOR8mi:    OutMI.setOpcode(X86::XOR8mi); goto ReSimplify;
  case X86::RELEASE_XOR32mi:   OutMI.setOpcode(X86::XOR32mi); goto ReSimplify;
  case X86::RELEASE_XOR64mi32: OutMI.setOpcode(X86::XOR64mi32); goto ReSimplify;
  case X86::RELEASE_INC8m:     OutMI.setOpcode(X86::INC8m); goto ReSimplify;
  case X86::RELEASE_INC16m:    OutMI.setOpcode(X86::INC16m); goto ReSimplify;
  case X86::RELEASE_INC32m:    OutMI.setOpcode(X86::INC32m); goto ReSimplify;
  case X86::RELEASE_INC64m:    OutMI.setOpcode(X86::INC64m); goto ReSimplify;
  case X86::RELEASE_DEC8m:     OutMI.setOpcode(X86::DEC8m); goto ReSimplify;
  case X86::RELEASE_DEC16m:    OutMI.setOpcode(X86::DEC16m); goto ReSimplify;
  case X86::RELEASE_DEC32m:    OutMI.setOpcode(X86::DEC32m); goto ReSimplify;
  case X86::RELEASE_DEC64m:    OutMI.setOpcode(X86::DEC64m); goto ReSimplify;

  // We don't currently select the correct instruction form for instructions
  // which have a short %eax, etc. form. Handle this by custom lowering, for
  // now.
  //
  // Note, we are currently not handling the following instructions:
  // MOV64ao8, MOV64o8a
  // XCHG16ar, XCHG32ar, XCHG64ar
  case X86::MOV8mr_NOREX:
  case X86::MOV8mr:     SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV8o32a); break;
  case X86::MOV8rm_NOREX:
  case X86::MOV8rm:     SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV8ao32); break;
  case X86::MOV16mr:    SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV16o32a); break;
  case X86::MOV16rm:    SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV16ao32); break;
  case X86::MOV32mr:    SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV32o32a); break;
  case X86::MOV32rm:    SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV32ao32); break;

  case X86::ADC8ri:     SimplifyShortImmForm(OutMI, X86::ADC8i8);    break;
  case X86::ADC16ri:    SimplifyShortImmForm(OutMI, X86::ADC16i16);  break;
  case X86::ADC32ri:    SimplifyShortImmForm(OutMI, X86::ADC32i32);  break;
  case X86::ADC64ri32:  SimplifyShortImmForm(OutMI, X86::ADC64i32);  break;
  case X86::ADD8ri:     SimplifyShortImmForm(OutMI, X86::ADD8i8);    break;
  case X86::ADD16ri:    SimplifyShortImmForm(OutMI, X86::ADD16i16);  break;
  case X86::ADD32ri:    SimplifyShortImmForm(OutMI, X86::ADD32i32);  break;
  case X86::ADD64ri32:  SimplifyShortImmForm(OutMI, X86::ADD64i32);  break;
  case X86::AND8ri:     SimplifyShortImmForm(OutMI, X86::AND8i8);    break;
  case X86::AND16ri:    SimplifyShortImmForm(OutMI, X86::AND16i16);  break;
  case X86::AND32ri:    SimplifyShortImmForm(OutMI, X86::AND32i32);  break;
  case X86::AND64ri32:  SimplifyShortImmForm(OutMI, X86::AND64i32);  break;
  case X86::CMP8ri:     SimplifyShortImmForm(OutMI, X86::CMP8i8);    break;
  case X86::CMP16ri:    SimplifyShortImmForm(OutMI, X86::CMP16i16);  break;
  case X86::CMP32ri:    SimplifyShortImmForm(OutMI, X86::CMP32i32);  break;
  case X86::CMP64ri32:  SimplifyShortImmForm(OutMI, X86::CMP64i32);  break;
  case X86::OR8ri:      SimplifyShortImmForm(OutMI, X86::OR8i8);     break;
  case X86::OR16ri:     SimplifyShortImmForm(OutMI, X86::OR16i16);   break;
  case X86::OR32ri:     SimplifyShortImmForm(OutMI, X86::OR32i32);   break;
  case X86::OR64ri32:   SimplifyShortImmForm(OutMI, X86::OR64i32);   break;
  case X86::SBB8ri:     SimplifyShortImmForm(OutMI, X86::SBB8i8);    break;
  case X86::SBB16ri:    SimplifyShortImmForm(OutMI, X86::SBB16i16);  break;
  case X86::SBB32ri:    SimplifyShortImmForm(OutMI, X86::SBB32i32);  break;
  case X86::SBB64ri32:  SimplifyShortImmForm(OutMI, X86::SBB64i32);  break;
  case X86::SUB8ri:     SimplifyShortImmForm(OutMI, X86::SUB8i8);    break;
  case X86::SUB16ri:    SimplifyShortImmForm(OutMI, X86::SUB16i16);  break;
  case X86::SUB32ri:    SimplifyShortImmForm(OutMI, X86::SUB32i32);  break;
  case X86::SUB64ri32:  SimplifyShortImmForm(OutMI, X86::SUB64i32);  break;
  case X86::TEST8ri:    SimplifyShortImmForm(OutMI, X86::TEST8i8);   break;
  case X86::TEST16ri:   SimplifyShortImmForm(OutMI, X86::TEST16i16); break;
  case X86::TEST32ri:   SimplifyShortImmForm(OutMI, X86::TEST32i32); break;
  case X86::TEST64ri32: SimplifyShortImmForm(OutMI, X86::TEST64i32); break;
  case X86::XOR8ri:     SimplifyShortImmForm(OutMI, X86::XOR8i8);    break;
  case X86::XOR16ri:    SimplifyShortImmForm(OutMI, X86::XOR16i16);  break;
  case X86::XOR32ri:    SimplifyShortImmForm(OutMI, X86::XOR32i32);  break;
  case X86::XOR64ri32:  SimplifyShortImmForm(OutMI, X86::XOR64i32);  break;

  // Try to shrink some forms of movsx.
  case X86::MOVSX16rr8:
  case X86::MOVSX32rr16:
  case X86::MOVSX64rr32:
    SimplifyMOVSX(OutMI);
    break;
  }
}

void X86AsmPrinter::LowerTlsAddr(X86MCInstLower &MCInstLowering,
                                 const MachineInstr &MI) {

  bool is64Bits = MI.getOpcode() == X86::TLS_addr64 ||
                  MI.getOpcode() == X86::TLS_base_addr64;

  bool needsPadding = MI.getOpcode() == X86::TLS_addr64;

  MCContext &context = OutStreamer.getContext();

  if (needsPadding)
    EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX));

  MCSymbolRefExpr::VariantKind SRVK;
  switch (MI.getOpcode()) {
    case X86::TLS_addr32:
    case X86::TLS_addr64:
      SRVK = MCSymbolRefExpr::VK_TLSGD;
      break;
    case X86::TLS_base_addr32:
      SRVK = MCSymbolRefExpr::VK_TLSLDM;
      break;
    case X86::TLS_base_addr64:
      SRVK = MCSymbolRefExpr::VK_TLSLD;
      break;
    default:
      llvm_unreachable("unexpected opcode");
  }

  MCSymbol *sym = MCInstLowering.GetSymbolFromOperand(MI.getOperand(3));
  const MCSymbolRefExpr *symRef = MCSymbolRefExpr::Create(sym, SRVK, context);

  MCInst LEA;
  if (is64Bits) {
    LEA.setOpcode(X86::LEA64r);
    LEA.addOperand(MCOperand::CreateReg(X86::RDI)); // dest
    LEA.addOperand(MCOperand::CreateReg(X86::RIP)); // base
    LEA.addOperand(MCOperand::CreateImm(1));        // scale
    LEA.addOperand(MCOperand::CreateReg(0));        // index
    LEA.addOperand(MCOperand::CreateExpr(symRef));  // disp
    LEA.addOperand(MCOperand::CreateReg(0));        // seg
  } else if (SRVK == MCSymbolRefExpr::VK_TLSLDM) {
    LEA.setOpcode(X86::LEA32r);
    LEA.addOperand(MCOperand::CreateReg(X86::EAX)); // dest
    LEA.addOperand(MCOperand::CreateReg(X86::EBX)); // base
    LEA.addOperand(MCOperand::CreateImm(1));        // scale
    LEA.addOperand(MCOperand::CreateReg(0));        // index
    LEA.addOperand(MCOperand::CreateExpr(symRef));  // disp
    LEA.addOperand(MCOperand::CreateReg(0));        // seg
  } else {
    LEA.setOpcode(X86::LEA32r);
    LEA.addOperand(MCOperand::CreateReg(X86::EAX)); // dest
    LEA.addOperand(MCOperand::CreateReg(0));        // base
    LEA.addOperand(MCOperand::CreateImm(1));        // scale
    LEA.addOperand(MCOperand::CreateReg(X86::EBX)); // index
    LEA.addOperand(MCOperand::CreateExpr(symRef));  // disp
    LEA.addOperand(MCOperand::CreateReg(0));        // seg
  }
  EmitAndCountInstruction(LEA);

  if (needsPadding) {
    EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX));
    EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX));
    EmitAndCountInstruction(MCInstBuilder(X86::REX64_PREFIX));
  }

  StringRef name = is64Bits ? "__tls_get_addr" : "___tls_get_addr";
  MCSymbol *tlsGetAddr = context.GetOrCreateSymbol(name);
  const MCSymbolRefExpr *tlsRef =
    MCSymbolRefExpr::Create(tlsGetAddr,
                            MCSymbolRefExpr::VK_PLT,
                            context);

  EmitAndCountInstruction(MCInstBuilder(is64Bits ? X86::CALL64pcrel32
                                                 : X86::CALLpcrel32)
                            .addExpr(tlsRef));
}

/// \brief Emit the optimal amount of multi-byte nops on X86.
static void EmitNops(MCStreamer &OS, unsigned NumBytes, bool Is64Bit, const MCSubtargetInfo &STI) {
  // This works only for 64bit. For 32bit we have to do additional checking if
  // the CPU supports multi-byte nops.
  assert(Is64Bit && "EmitNops only supports X86-64");
  while (NumBytes) {
    unsigned Opc, BaseReg, ScaleVal, IndexReg, Displacement, SegmentReg;
    Opc = IndexReg = Displacement = SegmentReg = 0;
    BaseReg = X86::RAX; ScaleVal = 1;
    switch (NumBytes) {
    case  0: llvm_unreachable("Zero nops?"); break;
    case  1: NumBytes -=  1; Opc = X86::NOOP; break;
    case  2: NumBytes -=  2; Opc = X86::XCHG16ar; break;
    case  3: NumBytes -=  3; Opc = X86::NOOPL; break;
    case  4: NumBytes -=  4; Opc = X86::NOOPL; Displacement = 8; break;
    case  5: NumBytes -=  5; Opc = X86::NOOPL; Displacement = 8;
             IndexReg = X86::RAX; break;
    case  6: NumBytes -=  6; Opc = X86::NOOPW; Displacement = 8;
             IndexReg = X86::RAX; break;
    case  7: NumBytes -=  7; Opc = X86::NOOPL; Displacement = 512; break;
    case  8: NumBytes -=  8; Opc = X86::NOOPL; Displacement = 512;
             IndexReg = X86::RAX; break;
    case  9: NumBytes -=  9; Opc = X86::NOOPW; Displacement = 512;
             IndexReg = X86::RAX; break;
    default: NumBytes -= 10; Opc = X86::NOOPW; Displacement = 512;
             IndexReg = X86::RAX; SegmentReg = X86::CS; break;
    }

    unsigned NumPrefixes = std::min(NumBytes, 5U);
    NumBytes -= NumPrefixes;
    for (unsigned i = 0; i != NumPrefixes; ++i)
      OS.EmitBytes("\x66");

    switch (Opc) {
    default: llvm_unreachable("Unexpected opcode"); break;
    case X86::NOOP:
      OS.EmitInstruction(MCInstBuilder(Opc), STI);
      break;
    case X86::XCHG16ar:
      OS.EmitInstruction(MCInstBuilder(Opc).addReg(X86::AX), STI);
      break;
    case X86::NOOPL:
    case X86::NOOPW:
      OS.EmitInstruction(MCInstBuilder(Opc).addReg(BaseReg)
                         .addImm(ScaleVal).addReg(IndexReg)
                         .addImm(Displacement).addReg(SegmentReg), STI);
      break;
    }
  } // while (NumBytes)
}

static void LowerSTATEPOINT(MCStreamer &OS, StackMaps &SM,
                            const MachineInstr &MI, bool Is64Bit,
                            const TargetMachine& TM,
                            const MCSubtargetInfo& STI,
                            X86MCInstLower &MCInstLowering) {
  assert(Is64Bit && "Statepoint currently only supports X86-64");

  // Lower call target and choose correct opcode
  const MachineOperand &call_target = StatepointOpers(&MI).getCallTarget();
  MCOperand call_target_mcop;
  unsigned call_opcode;
  switch (call_target.getType()) {
  case MachineOperand::MO_GlobalAddress:
  case MachineOperand::MO_ExternalSymbol:
    call_target_mcop = MCInstLowering.LowerSymbolOperand(
      call_target,
      MCInstLowering.GetSymbolFromOperand(call_target));
    call_opcode = X86::CALL64pcrel32;
    // Currently, we only support relative addressing with statepoints.
    // Otherwise, we'll need a scratch register to hold the target
    // address.  You'll fail asserts during load & relocation if this
    // symbol is to far away. (TODO: support non-relative addressing)
    break;
  case MachineOperand::MO_Immediate:
    call_target_mcop = MCOperand::CreateImm(call_target.getImm());
    call_opcode = X86::CALL64pcrel32;
    // Currently, we only support relative addressing with statepoints.
    // Otherwise, we'll need a scratch register to hold the target
    // immediate.  You'll fail asserts during load & relocation if this
    // address is to far away. (TODO: support non-relative addressing)
    break;
  case MachineOperand::MO_Register:
    call_target_mcop = MCOperand::CreateReg(call_target.getReg());
    call_opcode = X86::CALL64r;
    break;
  default:
    llvm_unreachable("Unsupported operand type in statepoint call target");
    break;
  }

  // Emit call
  MCInst call_inst;
  call_inst.setOpcode(call_opcode);
  call_inst.addOperand(call_target_mcop);
  OS.EmitInstruction(call_inst, STI);

  // Record our statepoint node in the same section used by STACKMAP
  // and PATCHPOINT
  SM.recordStatepoint(MI);
}


// Lower a stackmap of the form:
// <id>, <shadowBytes>, ...
void X86AsmPrinter::LowerSTACKMAP(const MachineInstr &MI) {
  SMShadowTracker.emitShadowPadding(OutStreamer, getSubtargetInfo());
  SM.recordStackMap(MI);
  unsigned NumShadowBytes = MI.getOperand(1).getImm();
  SMShadowTracker.reset(NumShadowBytes);
}

// Lower a patchpoint of the form:
// [<def>], <id>, <numBytes>, <target>, <numArgs>, <cc>, ...
void X86AsmPrinter::LowerPATCHPOINT(const MachineInstr &MI) {
  assert(Subtarget->is64Bit() && "Patchpoint currently only supports X86-64");

  SMShadowTracker.emitShadowPadding(OutStreamer, getSubtargetInfo());

  SM.recordPatchPoint(MI);

  PatchPointOpers opers(&MI);
  unsigned ScratchIdx = opers.getNextScratchIdx();
  unsigned EncodedBytes = 0;
  int64_t CallTarget = opers.getMetaOper(PatchPointOpers::TargetPos).getImm();
  if (CallTarget) {
    // Emit MOV to materialize the target address and the CALL to target.
    // This is encoded with 12-13 bytes, depending on which register is used.
    unsigned ScratchReg = MI.getOperand(ScratchIdx).getReg();
    if (X86II::isX86_64ExtendedReg(ScratchReg))
      EncodedBytes = 13;
    else
      EncodedBytes = 12;
    EmitAndCountInstruction(MCInstBuilder(X86::MOV64ri).addReg(ScratchReg)
                                                       .addImm(CallTarget));
    EmitAndCountInstruction(MCInstBuilder(X86::CALL64r).addReg(ScratchReg));
  }
  // Emit padding.
  unsigned NumBytes = opers.getMetaOper(PatchPointOpers::NBytesPos).getImm();
  assert(NumBytes >= EncodedBytes &&
         "Patchpoint can't request size less than the length of a call.");

  EmitNops(OutStreamer, NumBytes - EncodedBytes, Subtarget->is64Bit(),
           getSubtargetInfo());
}

// Returns instruction preceding MBBI in MachineFunction.
// If MBBI is the first instruction of the first basic block, returns null.
static MachineBasicBlock::const_iterator
PrevCrossBBInst(MachineBasicBlock::const_iterator MBBI) {
  const MachineBasicBlock *MBB = MBBI->getParent();
  while (MBBI == MBB->begin()) {
    if (MBB == MBB->getParent()->begin())
      return nullptr;
    MBB = MBB->getPrevNode();
    MBBI = MBB->end();
  }
  return --MBBI;
}

static const Constant *getConstantFromPool(const MachineInstr &MI,
                                           const MachineOperand &Op) {
  if (!Op.isCPI())
    return nullptr;

  ArrayRef<MachineConstantPoolEntry> Constants =
      MI.getParent()->getParent()->getConstantPool()->getConstants();
  const MachineConstantPoolEntry &ConstantEntry =
      Constants[Op.getIndex()];

  // Bail if this is a machine constant pool entry, we won't be able to dig out
  // anything useful.
  if (ConstantEntry.isMachineConstantPoolEntry())
    return nullptr;

  auto *C = dyn_cast<Constant>(ConstantEntry.Val.ConstVal);
  assert((!C || ConstantEntry.getType() == C->getType()) &&
         "Expected a constant of the same type!");
  return C;
}

static std::string getShuffleComment(const MachineOperand &DstOp,
                                     const MachineOperand &SrcOp,
                                     ArrayRef<int> Mask) {
  std::string Comment;

  // Compute the name for a register. This is really goofy because we have
  // multiple instruction printers that could (in theory) use different
  // names. Fortunately most people use the ATT style (outside of Windows)
  // and they actually agree on register naming here. Ultimately, this is
  // a comment, and so its OK if it isn't perfect.
  auto GetRegisterName = [](unsigned RegNum) -> StringRef {
    return X86ATTInstPrinter::getRegisterName(RegNum);
  };

  StringRef DstName = DstOp.isReg() ? GetRegisterName(DstOp.getReg()) : "mem";
  StringRef SrcName = SrcOp.isReg() ? GetRegisterName(SrcOp.getReg()) : "mem";

  raw_string_ostream CS(Comment);
  CS << DstName << " = ";
  bool NeedComma = false;
  bool InSrc = false;
  for (int M : Mask) {
    // Wrap up any prior entry...
    if (M == SM_SentinelZero && InSrc) {
      InSrc = false;
      CS << "]";
    }
    if (NeedComma)
      CS << ",";
    else
      NeedComma = true;

    // Print this shuffle...
    if (M == SM_SentinelZero) {
      CS << "zero";
    } else {
      if (!InSrc) {
        InSrc = true;
        CS << SrcName << "[";
      }
      if (M == SM_SentinelUndef)
        CS << "u";
      else
        CS << M;
    }
  }
  if (InSrc)
    CS << "]";
  CS.flush();

  return Comment;
}

void X86AsmPrinter::EmitInstruction(const MachineInstr *MI) {
  X86MCInstLower MCInstLowering(*MF, *this);
  const X86RegisterInfo *RI = MF->getSubtarget<X86Subtarget>().getRegisterInfo();

  switch (MI->getOpcode()) {
  case TargetOpcode::DBG_VALUE:
    llvm_unreachable("Should be handled target independently");

  // Emit nothing here but a comment if we can.
  case X86::Int_MemBarrier:
    OutStreamer.emitRawComment("MEMBARRIER");
    return;


  case X86::EH_RETURN:
  case X86::EH_RETURN64: {
    // Lower these as normal, but add some comments.
    unsigned Reg = MI->getOperand(0).getReg();
    OutStreamer.AddComment(StringRef("eh_return, addr: %") +
                           X86ATTInstPrinter::getRegisterName(Reg));
    break;
  }
  case X86::TAILJMPr:
  case X86::TAILJMPm:
  case X86::TAILJMPd:
  case X86::TAILJMPr64:
  case X86::TAILJMPm64:
  case X86::TAILJMPd64:
  case X86::TAILJMPr64_REX:
  case X86::TAILJMPm64_REX:
  case X86::TAILJMPd64_REX:
    // Lower these as normal, but add some comments.
    OutStreamer.AddComment("TAILCALL");
    break;

  case X86::TLS_addr32:
  case X86::TLS_addr64:
  case X86::TLS_base_addr32:
  case X86::TLS_base_addr64:
    return LowerTlsAddr(MCInstLowering, *MI);

  case X86::MOVPC32r: {
    // This is a pseudo op for a two instruction sequence with a label, which
    // looks like:
    //     call "L1$pb"
    // "L1$pb":
    //     popl %esi

    // Emit the call.
    MCSymbol *PICBase = MF->getPICBaseSymbol();
    // FIXME: We would like an efficient form for this, so we don't have to do a
    // lot of extra uniquing.
    EmitAndCountInstruction(MCInstBuilder(X86::CALLpcrel32)
      .addExpr(MCSymbolRefExpr::Create(PICBase, OutContext)));

    // Emit the label.
    OutStreamer.EmitLabel(PICBase);

    // popl $reg
    EmitAndCountInstruction(MCInstBuilder(X86::POP32r)
                            .addReg(MI->getOperand(0).getReg()));
    return;
  }

  case X86::ADD32ri: {
    // Lower the MO_GOT_ABSOLUTE_ADDRESS form of ADD32ri.
    if (MI->getOperand(2).getTargetFlags() != X86II::MO_GOT_ABSOLUTE_ADDRESS)
      break;

    // Okay, we have something like:
    //  EAX = ADD32ri EAX, MO_GOT_ABSOLUTE_ADDRESS(@MYGLOBAL)

    // For this, we want to print something like:
    //   MYGLOBAL + (. - PICBASE)
    // However, we can't generate a ".", so just emit a new label here and refer
    // to it.
    MCSymbol *DotSym = OutContext.CreateTempSymbol();
    OutStreamer.EmitLabel(DotSym);

    // Now that we have emitted the label, lower the complex operand expression.
    MCSymbol *OpSym = MCInstLowering.GetSymbolFromOperand(MI->getOperand(2));

    const MCExpr *DotExpr = MCSymbolRefExpr::Create(DotSym, OutContext);
    const MCExpr *PICBase =
      MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), OutContext);
    DotExpr = MCBinaryExpr::CreateSub(DotExpr, PICBase, OutContext);

    DotExpr = MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(OpSym,OutContext),
                                      DotExpr, OutContext);

    EmitAndCountInstruction(MCInstBuilder(X86::ADD32ri)
      .addReg(MI->getOperand(0).getReg())
      .addReg(MI->getOperand(1).getReg())
      .addExpr(DotExpr));
    return;
  }
  case TargetOpcode::STATEPOINT:
    return LowerSTATEPOINT(OutStreamer, SM, *MI, Subtarget->is64Bit(), TM,
                           getSubtargetInfo(), MCInstLowering);

  case TargetOpcode::STACKMAP:
    return LowerSTACKMAP(*MI);

  case TargetOpcode::PATCHPOINT:
    return LowerPATCHPOINT(*MI);

  case X86::MORESTACK_RET:
    EmitAndCountInstruction(MCInstBuilder(getRetOpcode(*Subtarget)));
    return;

  case X86::MORESTACK_RET_RESTORE_R10:
    // Return, then restore R10.
    EmitAndCountInstruction(MCInstBuilder(getRetOpcode(*Subtarget)));
    EmitAndCountInstruction(MCInstBuilder(X86::MOV64rr)
                            .addReg(X86::R10)
                            .addReg(X86::RAX));
    return;

  case X86::SEH_PushReg:
    OutStreamer.EmitWinCFIPushReg(RI->getSEHRegNum(MI->getOperand(0).getImm()));
    return;

  case X86::SEH_SaveReg:
    OutStreamer.EmitWinCFISaveReg(RI->getSEHRegNum(MI->getOperand(0).getImm()),
                                  MI->getOperand(1).getImm());
    return;

  case X86::SEH_SaveXMM:
    OutStreamer.EmitWinCFISaveXMM(RI->getSEHRegNum(MI->getOperand(0).getImm()),
                                  MI->getOperand(1).getImm());
    return;

  case X86::SEH_StackAlloc:
    OutStreamer.EmitWinCFIAllocStack(MI->getOperand(0).getImm());
    return;

  case X86::SEH_SetFrame:
    OutStreamer.EmitWinCFISetFrame(RI->getSEHRegNum(MI->getOperand(0).getImm()),
                                   MI->getOperand(1).getImm());
    return;

  case X86::SEH_PushFrame:
    OutStreamer.EmitWinCFIPushFrame(MI->getOperand(0).getImm());
    return;

  case X86::SEH_EndPrologue:
    OutStreamer.EmitWinCFIEndProlog();
    return;

  case X86::SEH_Epilogue: {
    MachineBasicBlock::const_iterator MBBI(MI);
    // Check if preceded by a call and emit nop if so.
    for (MBBI = PrevCrossBBInst(MBBI); MBBI; MBBI = PrevCrossBBInst(MBBI)) {
      // Conservatively assume that pseudo instructions don't emit code and keep
      // looking for a call. We may emit an unnecessary nop in some cases.
      if (!MBBI->isPseudo()) {
        if (MBBI->isCall())
          EmitAndCountInstruction(MCInstBuilder(X86::NOOP));
        break;
      }
    }
    return;
  }

    // Lower PSHUFB and VPERMILP normally but add a comment if we can find
    // a constant shuffle mask. We won't be able to do this at the MC layer
    // because the mask isn't an immediate.
  case X86::PSHUFBrm:
  case X86::VPSHUFBrm:
  case X86::VPSHUFBYrm: {
    if (!OutStreamer.isVerboseAsm())
      break;
    assert(MI->getNumOperands() > 5 &&
           "We should always have at least 5 operands!");
    const MachineOperand &DstOp = MI->getOperand(0);
    const MachineOperand &SrcOp = MI->getOperand(1);
    const MachineOperand &MaskOp = MI->getOperand(5);

    if (auto *C = getConstantFromPool(*MI, MaskOp)) {
      SmallVector<int, 16> Mask;
      DecodePSHUFBMask(C, Mask);
      if (!Mask.empty())
        OutStreamer.AddComment(getShuffleComment(DstOp, SrcOp, Mask));
    }
    break;
  }
  case X86::VPERMILPSrm:
  case X86::VPERMILPDrm:
  case X86::VPERMILPSYrm:
  case X86::VPERMILPDYrm: {
    if (!OutStreamer.isVerboseAsm())
      break;
    assert(MI->getNumOperands() > 5 &&
           "We should always have at least 5 operands!");
    const MachineOperand &DstOp = MI->getOperand(0);
    const MachineOperand &SrcOp = MI->getOperand(1);
    const MachineOperand &MaskOp = MI->getOperand(5);

    if (auto *C = getConstantFromPool(*MI, MaskOp)) {
      SmallVector<int, 16> Mask;
      DecodeVPERMILPMask(C, Mask);
      if (!Mask.empty())
        OutStreamer.AddComment(getShuffleComment(DstOp, SrcOp, Mask));
    }
    break;
  }

    // For loads from a constant pool to a vector register, print the constant
    // loaded.
  case X86::MOVAPDrm:
  case X86::VMOVAPDrm:
  case X86::VMOVAPDYrm:
  case X86::MOVUPDrm:
  case X86::VMOVUPDrm:
  case X86::VMOVUPDYrm:
  case X86::MOVAPSrm:
  case X86::VMOVAPSrm:
  case X86::VMOVAPSYrm:
  case X86::MOVUPSrm:
  case X86::VMOVUPSrm:
  case X86::VMOVUPSYrm:
  case X86::MOVDQArm:
  case X86::VMOVDQArm:
  case X86::VMOVDQAYrm:
  case X86::MOVDQUrm:
  case X86::VMOVDQUrm:
  case X86::VMOVDQUYrm:
    if (!OutStreamer.isVerboseAsm())
      break;
    if (MI->getNumOperands() > 4)
    if (auto *C = getConstantFromPool(*MI, MI->getOperand(4))) {
      std::string Comment;
      raw_string_ostream CS(Comment);
      const MachineOperand &DstOp = MI->getOperand(0);
      CS << X86ATTInstPrinter::getRegisterName(DstOp.getReg()) << " = ";
      if (auto *CDS = dyn_cast<ConstantDataSequential>(C)) {
        CS << "[";
        for (int i = 0, NumElements = CDS->getNumElements(); i < NumElements; ++i) {
          if (i != 0)
            CS << ",";
          if (CDS->getElementType()->isIntegerTy())
            CS << CDS->getElementAsInteger(i);
          else if (CDS->getElementType()->isFloatTy())
            CS << CDS->getElementAsFloat(i);
          else if (CDS->getElementType()->isDoubleTy())
            CS << CDS->getElementAsDouble(i);
          else
            CS << "?";
        }
        CS << "]";
        OutStreamer.AddComment(CS.str());
      } else if (auto *CV = dyn_cast<ConstantVector>(C)) {
        CS << "<";
        for (int i = 0, NumOperands = CV->getNumOperands(); i < NumOperands; ++i) {
          if (i != 0)
            CS << ",";
          Constant *COp = CV->getOperand(i);
          if (isa<UndefValue>(COp)) {
            CS << "u";
          } else if (auto *CI = dyn_cast<ConstantInt>(COp)) {
            CS << CI->getZExtValue();
          } else if (auto *CF = dyn_cast<ConstantFP>(COp)) {
            SmallString<32> Str;
            CF->getValueAPF().toString(Str);
            CS << Str;
          } else {
            CS << "?";
          }
        }
        CS << ">";
        OutStreamer.AddComment(CS.str());
      }
    }
    break;
  }

  MCInst TmpInst;
  MCInstLowering.Lower(MI, TmpInst);

  // Stackmap shadows cannot include branch targets, so we can count the bytes
  // in a call towards the shadow, but must ensure that the no thread returns
  // in to the stackmap shadow.  The only way to achieve this is if the call
  // is at the end of the shadow.
  if (MI->isCall()) {
    // Count then size of the call towards the shadow
    SMShadowTracker.count(TmpInst, getSubtargetInfo());
    // Then flush the shadow so that we fill with nops before the call, not
    // after it.
    SMShadowTracker.emitShadowPadding(OutStreamer, getSubtargetInfo());
    // Then emit the call
    OutStreamer.EmitInstruction(TmpInst, getSubtargetInfo());
    return;
  }

  EmitAndCountInstruction(TmpInst);
}