aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/X86/X86SchedSandyBridge.td
blob: 83f053425aa139f6fc24f3290b5cb1d01b065644 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
//=- X86SchedSandyBridge.td - X86 Sandy Bridge Scheduling ----*- tablegen -*-=//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the machine model for Sandy Bridge to support instruction
// scheduling and other instruction cost heuristics.
//
//===----------------------------------------------------------------------===//

def SandyBridgeModel : SchedMachineModel {
  // All x86 instructions are modeled as a single micro-op, and SB can decode 4
  // instructions per cycle.
  // FIXME: Identify instructions that aren't a single fused micro-op.
  let IssueWidth = 4;
  let MicroOpBufferSize = 168; // Based on the reorder buffer.
  let LoadLatency = 4;
  let MispredictPenalty = 16;

  // Based on the LSD (loop-stream detector) queue size.
  let LoopMicroOpBufferSize = 28;

  // FIXME: SSE4 and AVX are unimplemented. This flag is set to allow
  // the scheduler to assign a default model to unrecognized opcodes.
  let CompleteModel = 0;
}

let SchedModel = SandyBridgeModel in {

// Sandy Bridge can issue micro-ops to 6 different ports in one cycle.

// Ports 0, 1, and 5 handle all computation.
def SBPort0 : ProcResource<1>;
def SBPort1 : ProcResource<1>;
def SBPort5 : ProcResource<1>;

// Ports 2 and 3 are identical. They handle loads and the address half of
// stores.
def SBPort23 : ProcResource<2>;

// Port 4 gets the data half of stores. Store data can be available later than
// the store address, but since we don't model the latency of stores, we can
// ignore that.
def SBPort4 : ProcResource<1>;

// Many micro-ops are capable of issuing on multiple ports.
def SBPort05  : ProcResGroup<[SBPort0, SBPort5]>;
def SBPort15  : ProcResGroup<[SBPort1, SBPort5]>;
def SBPort015 : ProcResGroup<[SBPort0, SBPort1, SBPort5]>;

// 54 Entry Unified Scheduler
def SBPortAny : ProcResGroup<[SBPort0, SBPort1, SBPort23, SBPort4, SBPort5]> {
  let BufferSize=54;
}

// Integer division issued on port 0.
def SBDivider : ProcResource<1>;

// Loads are 4 cycles, so ReadAfterLd registers needn't be available until 4
// cycles after the memory operand.
def : ReadAdvance<ReadAfterLd, 4>;

// Many SchedWrites are defined in pairs with and without a folded load.
// Instructions with folded loads are usually micro-fused, so they only appear
// as two micro-ops when queued in the reservation station.
// This multiclass defines the resource usage for variants with and without
// folded loads.
multiclass SBWriteResPair<X86FoldableSchedWrite SchedRW,
                          ProcResourceKind ExePort,
                          int Lat> {
  // Register variant is using a single cycle on ExePort.
  def : WriteRes<SchedRW, [ExePort]> { let Latency = Lat; }

  // Memory variant also uses a cycle on port 2/3 and adds 4 cycles to the
  // latency.
  def : WriteRes<SchedRW.Folded, [SBPort23, ExePort]> {
     let Latency = !add(Lat, 4);
  }
}

// A folded store needs a cycle on port 4 for the store data, but it does not
// need an extra port 2/3 cycle to recompute the address.
def : WriteRes<WriteRMW, [SBPort4]>;

def : WriteRes<WriteStore, [SBPort23, SBPort4]>;
def : WriteRes<WriteLoad,  [SBPort23]> { let Latency = 4; }
def : WriteRes<WriteMove,  [SBPort015]>;
def : WriteRes<WriteZero,  []>;

defm : SBWriteResPair<WriteALU,   SBPort015, 1>;
defm : SBWriteResPair<WriteIMul,  SBPort1,   3>;
def  : WriteRes<WriteIMulH, []> { let Latency = 3; }
defm : SBWriteResPair<WriteShift, SBPort05,  1>;
defm : SBWriteResPair<WriteJump,  SBPort5,   1>;

// This is for simple LEAs with one or two input operands.
// The complex ones can only execute on port 1, and they require two cycles on
// the port to read all inputs. We don't model that.
def : WriteRes<WriteLEA, [SBPort15]>;

// This is quite rough, latency depends on the dividend.
def : WriteRes<WriteIDiv, [SBPort0, SBDivider]> {
  let Latency = 25;
  let ResourceCycles = [1, 10];
}
def : WriteRes<WriteIDivLd, [SBPort23, SBPort0, SBDivider]> {
  let Latency = 29;
  let ResourceCycles = [1, 1, 10];
}

// Scalar and vector floating point.
defm : SBWriteResPair<WriteFAdd,   SBPort1, 3>;
defm : SBWriteResPair<WriteFMul,   SBPort0, 5>;
defm : SBWriteResPair<WriteFDiv,   SBPort0, 12>; // 10-14 cycles.
defm : SBWriteResPair<WriteFRcp,   SBPort0, 5>;
defm : SBWriteResPair<WriteFSqrt,  SBPort0, 15>;
defm : SBWriteResPair<WriteCvtF2I, SBPort1, 3>;
defm : SBWriteResPair<WriteCvtI2F, SBPort1, 4>;
defm : SBWriteResPair<WriteCvtF2F, SBPort1, 3>;
defm : SBWriteResPair<WriteFShuffle,  SBPort5,  1>;
defm : SBWriteResPair<WriteFBlend,  SBPort05,  1>;
def : WriteRes<WriteFVarBlend, [SBPort0, SBPort5]> {
  let Latency = 2;
  let ResourceCycles = [1, 1];
}
def : WriteRes<WriteFVarBlendLd, [SBPort0, SBPort5, SBPort23]> {
  let Latency = 6;
  let ResourceCycles = [1, 1, 1];
}

// Vector integer operations.
defm : SBWriteResPair<WriteVecShift, SBPort05,  1>;
defm : SBWriteResPair<WriteVecLogic, SBPort015, 1>;
defm : SBWriteResPair<WriteVecALU,   SBPort15,  1>;
defm : SBWriteResPair<WriteVecIMul,  SBPort0,   5>;
defm : SBWriteResPair<WriteShuffle,  SBPort15,  1>;
defm : SBWriteResPair<WriteBlend,  SBPort15,  1>;
def : WriteRes<WriteVarBlend, [SBPort1, SBPort5]> {
  let Latency = 2;
  let ResourceCycles = [1, 1];
}
def : WriteRes<WriteVarBlendLd, [SBPort1, SBPort5, SBPort23]> {
  let Latency = 6;
  let ResourceCycles = [1, 1, 1];
}
def : WriteRes<WriteMPSAD, [SBPort0, SBPort1, SBPort5]> {
  let Latency = 6;
  let ResourceCycles = [1, 1, 1];
}
def : WriteRes<WriteMPSADLd, [SBPort0, SBPort1, SBPort5, SBPort23]> {
  let Latency = 6;
  let ResourceCycles = [1, 1, 1, 1];
}

// String instructions.
// Packed Compare Implicit Length Strings, Return Mask
def : WriteRes<WritePCmpIStrM, [SBPort015]> {
  let Latency = 11;
  let ResourceCycles = [3];
}
def : WriteRes<WritePCmpIStrMLd, [SBPort015, SBPort23]> {
  let Latency = 11;
  let ResourceCycles = [3, 1];
}

// Packed Compare Explicit Length Strings, Return Mask
def : WriteRes<WritePCmpEStrM, [SBPort015]> {
  let Latency = 11;
  let ResourceCycles = [8];
}
def : WriteRes<WritePCmpEStrMLd, [SBPort015, SBPort23]> {
  let Latency = 11;
  let ResourceCycles = [7, 1];
}

// Packed Compare Implicit Length Strings, Return Index
def : WriteRes<WritePCmpIStrI, [SBPort015]> {
  let Latency = 3;
  let ResourceCycles = [3];
}
def : WriteRes<WritePCmpIStrILd, [SBPort015, SBPort23]> {
  let Latency = 3;
  let ResourceCycles = [3, 1];
}

// Packed Compare Explicit Length Strings, Return Index
def : WriteRes<WritePCmpEStrI, [SBPort015]> {
  let Latency = 4;
  let ResourceCycles = [8];
}
def : WriteRes<WritePCmpEStrILd, [SBPort015, SBPort23]> {
  let Latency = 4;
  let ResourceCycles = [7, 1];
}

// AES Instructions.
def : WriteRes<WriteAESDecEnc, [SBPort015]> {
  let Latency = 8;
  let ResourceCycles = [2];
}
def : WriteRes<WriteAESDecEncLd, [SBPort015, SBPort23]> {
  let Latency = 8;
  let ResourceCycles = [2, 1];
}

def : WriteRes<WriteAESIMC, [SBPort015]> {
  let Latency = 8;
  let ResourceCycles = [2];
}
def : WriteRes<WriteAESIMCLd, [SBPort015, SBPort23]> {
  let Latency = 8;
  let ResourceCycles = [2, 1];
}

def : WriteRes<WriteAESKeyGen, [SBPort015]> {
  let Latency = 8;
  let ResourceCycles = [11];
}
def : WriteRes<WriteAESKeyGenLd, [SBPort015, SBPort23]> {
  let Latency = 8;
  let ResourceCycles = [10, 1];
}

// Carry-less multiplication instructions.
def : WriteRes<WriteCLMul, [SBPort015]> {
  let Latency = 14;
  let ResourceCycles = [18];
}
def : WriteRes<WriteCLMulLd, [SBPort015, SBPort23]> {
  let Latency = 14;
  let ResourceCycles = [17, 1];
}


def : WriteRes<WriteSystem,     [SBPort015]> { let Latency = 100; }
def : WriteRes<WriteMicrocoded, [SBPort015]> { let Latency = 100; }
def : WriteRes<WriteFence, [SBPort23, SBPort4]>;
def : WriteRes<WriteNop, []>;

// AVX2 is not supported on that architecture, but we should define the basic
// scheduling resources anyway.
defm : SBWriteResPair<WriteFShuffle256, SBPort0,  1>;
defm : SBWriteResPair<WriteShuffle256, SBPort0,  1>;
defm : SBWriteResPair<WriteVarVecShift, SBPort0,  1>;
} // SchedModel