1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
|
//===-- X86Schedule.td - X86 Scheduling Definitions --------*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// InstrSchedModel annotations for out-of-order CPUs.
//
// These annotations are independent of the itinerary classes defined below.
// Instructions with folded loads need to read the memory operand immediately,
// but other register operands don't have to be read until the load is ready.
// These operands are marked with ReadAfterLd.
def ReadAfterLd : SchedRead;
// Instructions with both a load and a store folded are modeled as a folded
// load + WriteRMW.
def WriteRMW : SchedWrite;
// Most instructions can fold loads, so almost every SchedWrite comes in two
// variants: With and without a folded load.
// An X86FoldableSchedWrite holds a reference to the corresponding SchedWrite
// with a folded load.
class X86FoldableSchedWrite : SchedWrite {
// The SchedWrite to use when a load is folded into the instruction.
SchedWrite Folded;
}
// Multiclass that produces a linked pair of SchedWrites.
multiclass X86SchedWritePair {
// Register-Memory operation.
def Ld : SchedWrite;
// Register-Register operation.
def NAME : X86FoldableSchedWrite {
let Folded = !cast<SchedWrite>(NAME#"Ld");
}
}
// Arithmetic.
defm WriteALU : X86SchedWritePair; // Simple integer ALU op.
defm WriteIMul : X86SchedWritePair; // Integer multiplication.
defm WriteIDiv : X86SchedWritePair; // Integer division.
def WriteLEA : SchedWrite; // LEA instructions can't fold loads.
// Integer shifts and rotates.
defm WriteShift : X86SchedWritePair;
// Loads, stores, and moves, not folded with other operations.
def WriteLoad : SchedWrite;
def WriteStore : SchedWrite;
def WriteMove : SchedWrite;
// Idioms that clear a register, like xorps %xmm0, %xmm0.
// These can often bypass execution ports completely.
def WriteZero : SchedWrite;
// Branches don't produce values, so they have no latency, but they still
// consume resources. Indirect branches can fold loads.
defm WriteJump : X86SchedWritePair;
// Floating point. This covers both scalar and vector operations.
defm WriteFAdd : X86SchedWritePair; // Floating point add/sub/compare.
defm WriteFMul : X86SchedWritePair; // Floating point multiplication.
defm WriteFDiv : X86SchedWritePair; // Floating point division.
defm WriteFSqrt : X86SchedWritePair; // Floating point square root.
defm WriteFRcp : X86SchedWritePair; // Floating point reciprocal.
defm WriteFMA : X86SchedWritePair; // Fused Multiply Add.
// FMA Scheduling helper class.
class FMASC { X86FoldableSchedWrite Sched = WriteFAdd; }
// Vector integer operations.
defm WriteVecALU : X86SchedWritePair; // Vector integer ALU op, no logicals.
defm WriteVecShift : X86SchedWritePair; // Vector integer shifts.
defm WriteVecIMul : X86SchedWritePair; // Vector integer multiply.
// Vector bitwise operations.
// These are often used on both floating point and integer vectors.
defm WriteVecLogic : X86SchedWritePair; // Vector and/or/xor.
defm WriteShuffle : X86SchedWritePair; // Vector shuffles and blends.
// Conversion between integer and float.
defm WriteCvtF2I : X86SchedWritePair; // Float -> Integer.
defm WriteCvtI2F : X86SchedWritePair; // Integer -> Float.
defm WriteCvtF2F : X86SchedWritePair; // Float -> Float size conversion.
// Catch-all for expensive system instructions.
def WriteSystem : SchedWrite;
// Old microcoded instructions that nobody use.
def WriteMicrocoded : SchedWrite;
//===----------------------------------------------------------------------===//
// Instruction Itinerary classes used for X86
def IIC_ALU_MEM : InstrItinClass;
def IIC_ALU_NONMEM : InstrItinClass;
def IIC_LEA : InstrItinClass;
def IIC_LEA_16 : InstrItinClass;
def IIC_MUL8 : InstrItinClass;
def IIC_MUL16_MEM : InstrItinClass;
def IIC_MUL16_REG : InstrItinClass;
def IIC_MUL32_MEM : InstrItinClass;
def IIC_MUL32_REG : InstrItinClass;
def IIC_MUL64 : InstrItinClass;
// imul by al, ax, eax, tax
def IIC_IMUL8 : InstrItinClass;
def IIC_IMUL16_MEM : InstrItinClass;
def IIC_IMUL16_REG : InstrItinClass;
def IIC_IMUL32_MEM : InstrItinClass;
def IIC_IMUL32_REG : InstrItinClass;
def IIC_IMUL64 : InstrItinClass;
// imul reg by reg|mem
def IIC_IMUL16_RM : InstrItinClass;
def IIC_IMUL16_RR : InstrItinClass;
def IIC_IMUL32_RM : InstrItinClass;
def IIC_IMUL32_RR : InstrItinClass;
def IIC_IMUL64_RM : InstrItinClass;
def IIC_IMUL64_RR : InstrItinClass;
// imul reg = reg/mem * imm
def IIC_IMUL16_RMI : InstrItinClass;
def IIC_IMUL16_RRI : InstrItinClass;
def IIC_IMUL32_RMI : InstrItinClass;
def IIC_IMUL32_RRI : InstrItinClass;
def IIC_IMUL64_RMI : InstrItinClass;
def IIC_IMUL64_RRI : InstrItinClass;
// div
def IIC_DIV8_MEM : InstrItinClass;
def IIC_DIV8_REG : InstrItinClass;
def IIC_DIV16 : InstrItinClass;
def IIC_DIV32 : InstrItinClass;
def IIC_DIV64 : InstrItinClass;
// idiv
def IIC_IDIV8 : InstrItinClass;
def IIC_IDIV16 : InstrItinClass;
def IIC_IDIV32 : InstrItinClass;
def IIC_IDIV64 : InstrItinClass;
// neg/not/inc/dec
def IIC_UNARY_REG : InstrItinClass;
def IIC_UNARY_MEM : InstrItinClass;
// add/sub/and/or/xor/adc/sbc/cmp/test
def IIC_BIN_MEM : InstrItinClass;
def IIC_BIN_NONMEM : InstrItinClass;
// shift/rotate
def IIC_SR : InstrItinClass;
// shift double
def IIC_SHD16_REG_IM : InstrItinClass;
def IIC_SHD16_REG_CL : InstrItinClass;
def IIC_SHD16_MEM_IM : InstrItinClass;
def IIC_SHD16_MEM_CL : InstrItinClass;
def IIC_SHD32_REG_IM : InstrItinClass;
def IIC_SHD32_REG_CL : InstrItinClass;
def IIC_SHD32_MEM_IM : InstrItinClass;
def IIC_SHD32_MEM_CL : InstrItinClass;
def IIC_SHD64_REG_IM : InstrItinClass;
def IIC_SHD64_REG_CL : InstrItinClass;
def IIC_SHD64_MEM_IM : InstrItinClass;
def IIC_SHD64_MEM_CL : InstrItinClass;
// cmov
def IIC_CMOV16_RM : InstrItinClass;
def IIC_CMOV16_RR : InstrItinClass;
def IIC_CMOV32_RM : InstrItinClass;
def IIC_CMOV32_RR : InstrItinClass;
def IIC_CMOV64_RM : InstrItinClass;
def IIC_CMOV64_RR : InstrItinClass;
// set
def IIC_SET_R : InstrItinClass;
def IIC_SET_M : InstrItinClass;
// jmp/jcc/jcxz
def IIC_Jcc : InstrItinClass;
def IIC_JCXZ : InstrItinClass;
def IIC_JMP_REL : InstrItinClass;
def IIC_JMP_REG : InstrItinClass;
def IIC_JMP_MEM : InstrItinClass;
def IIC_JMP_FAR_MEM : InstrItinClass;
def IIC_JMP_FAR_PTR : InstrItinClass;
// loop
def IIC_LOOP : InstrItinClass;
def IIC_LOOPE : InstrItinClass;
def IIC_LOOPNE : InstrItinClass;
// call
def IIC_CALL_RI : InstrItinClass;
def IIC_CALL_MEM : InstrItinClass;
def IIC_CALL_FAR_MEM : InstrItinClass;
def IIC_CALL_FAR_PTR : InstrItinClass;
// ret
def IIC_RET : InstrItinClass;
def IIC_RET_IMM : InstrItinClass;
//sign extension movs
def IIC_MOVSX : InstrItinClass;
def IIC_MOVSX_R16_R8 : InstrItinClass;
def IIC_MOVSX_R16_M8 : InstrItinClass;
def IIC_MOVSX_R16_R16 : InstrItinClass;
def IIC_MOVSX_R32_R32 : InstrItinClass;
//zero extension movs
def IIC_MOVZX : InstrItinClass;
def IIC_MOVZX_R16_R8 : InstrItinClass;
def IIC_MOVZX_R16_M8 : InstrItinClass;
def IIC_REP_MOVS : InstrItinClass;
def IIC_REP_STOS : InstrItinClass;
// SSE scalar/parallel binary operations
def IIC_SSE_ALU_F32S_RR : InstrItinClass;
def IIC_SSE_ALU_F32S_RM : InstrItinClass;
def IIC_SSE_ALU_F64S_RR : InstrItinClass;
def IIC_SSE_ALU_F64S_RM : InstrItinClass;
def IIC_SSE_MUL_F32S_RR : InstrItinClass;
def IIC_SSE_MUL_F32S_RM : InstrItinClass;
def IIC_SSE_MUL_F64S_RR : InstrItinClass;
def IIC_SSE_MUL_F64S_RM : InstrItinClass;
def IIC_SSE_DIV_F32S_RR : InstrItinClass;
def IIC_SSE_DIV_F32S_RM : InstrItinClass;
def IIC_SSE_DIV_F64S_RR : InstrItinClass;
def IIC_SSE_DIV_F64S_RM : InstrItinClass;
def IIC_SSE_ALU_F32P_RR : InstrItinClass;
def IIC_SSE_ALU_F32P_RM : InstrItinClass;
def IIC_SSE_ALU_F64P_RR : InstrItinClass;
def IIC_SSE_ALU_F64P_RM : InstrItinClass;
def IIC_SSE_MUL_F32P_RR : InstrItinClass;
def IIC_SSE_MUL_F32P_RM : InstrItinClass;
def IIC_SSE_MUL_F64P_RR : InstrItinClass;
def IIC_SSE_MUL_F64P_RM : InstrItinClass;
def IIC_SSE_DIV_F32P_RR : InstrItinClass;
def IIC_SSE_DIV_F32P_RM : InstrItinClass;
def IIC_SSE_DIV_F64P_RR : InstrItinClass;
def IIC_SSE_DIV_F64P_RM : InstrItinClass;
def IIC_SSE_COMIS_RR : InstrItinClass;
def IIC_SSE_COMIS_RM : InstrItinClass;
def IIC_SSE_HADDSUB_RR : InstrItinClass;
def IIC_SSE_HADDSUB_RM : InstrItinClass;
def IIC_SSE_BIT_P_RR : InstrItinClass;
def IIC_SSE_BIT_P_RM : InstrItinClass;
def IIC_SSE_INTALU_P_RR : InstrItinClass;
def IIC_SSE_INTALU_P_RM : InstrItinClass;
def IIC_SSE_INTALUQ_P_RR : InstrItinClass;
def IIC_SSE_INTALUQ_P_RM : InstrItinClass;
def IIC_SSE_INTMUL_P_RR : InstrItinClass;
def IIC_SSE_INTMUL_P_RM : InstrItinClass;
def IIC_SSE_INTSH_P_RR : InstrItinClass;
def IIC_SSE_INTSH_P_RM : InstrItinClass;
def IIC_SSE_INTSH_P_RI : InstrItinClass;
def IIC_SSE_CMPP_RR : InstrItinClass;
def IIC_SSE_CMPP_RM : InstrItinClass;
def IIC_SSE_SHUFP : InstrItinClass;
def IIC_SSE_PSHUF : InstrItinClass;
def IIC_SSE_UNPCK : InstrItinClass;
def IIC_SSE_MOVMSK : InstrItinClass;
def IIC_SSE_MASKMOV : InstrItinClass;
def IIC_SSE_PEXTRW : InstrItinClass;
def IIC_SSE_PINSRW : InstrItinClass;
def IIC_SSE_PABS_RR : InstrItinClass;
def IIC_SSE_PABS_RM : InstrItinClass;
def IIC_SSE_SQRTPS_RR : InstrItinClass;
def IIC_SSE_SQRTPS_RM : InstrItinClass;
def IIC_SSE_SQRTSS_RR : InstrItinClass;
def IIC_SSE_SQRTSS_RM : InstrItinClass;
def IIC_SSE_SQRTPD_RR : InstrItinClass;
def IIC_SSE_SQRTPD_RM : InstrItinClass;
def IIC_SSE_SQRTSD_RR : InstrItinClass;
def IIC_SSE_SQRTSD_RM : InstrItinClass;
def IIC_SSE_RCPP_RR : InstrItinClass;
def IIC_SSE_RCPP_RM : InstrItinClass;
def IIC_SSE_RCPS_RR : InstrItinClass;
def IIC_SSE_RCPS_RM : InstrItinClass;
def IIC_SSE_MOV_S_RR : InstrItinClass;
def IIC_SSE_MOV_S_RM : InstrItinClass;
def IIC_SSE_MOV_S_MR : InstrItinClass;
def IIC_SSE_MOVA_P_RR : InstrItinClass;
def IIC_SSE_MOVA_P_RM : InstrItinClass;
def IIC_SSE_MOVA_P_MR : InstrItinClass;
def IIC_SSE_MOVU_P_RR : InstrItinClass;
def IIC_SSE_MOVU_P_RM : InstrItinClass;
def IIC_SSE_MOVU_P_MR : InstrItinClass;
def IIC_SSE_MOVDQ : InstrItinClass;
def IIC_SSE_MOVD_ToGP : InstrItinClass;
def IIC_SSE_MOVQ_RR : InstrItinClass;
def IIC_SSE_MOV_LH : InstrItinClass;
def IIC_SSE_LDDQU : InstrItinClass;
def IIC_SSE_MOVNT : InstrItinClass;
def IIC_SSE_PHADDSUBD_RR : InstrItinClass;
def IIC_SSE_PHADDSUBD_RM : InstrItinClass;
def IIC_SSE_PHADDSUBSW_RR : InstrItinClass;
def IIC_SSE_PHADDSUBSW_RM : InstrItinClass;
def IIC_SSE_PHADDSUBW_RR : InstrItinClass;
def IIC_SSE_PHADDSUBW_RM : InstrItinClass;
def IIC_SSE_PSHUFB_RR : InstrItinClass;
def IIC_SSE_PSHUFB_RM : InstrItinClass;
def IIC_SSE_PSIGN_RR : InstrItinClass;
def IIC_SSE_PSIGN_RM : InstrItinClass;
def IIC_SSE_PMADD : InstrItinClass;
def IIC_SSE_PMULHRSW : InstrItinClass;
def IIC_SSE_PALIGNR : InstrItinClass;
def IIC_SSE_MWAIT : InstrItinClass;
def IIC_SSE_MONITOR : InstrItinClass;
def IIC_SSE_PREFETCH : InstrItinClass;
def IIC_SSE_PAUSE : InstrItinClass;
def IIC_SSE_LFENCE : InstrItinClass;
def IIC_SSE_MFENCE : InstrItinClass;
def IIC_SSE_SFENCE : InstrItinClass;
def IIC_SSE_LDMXCSR : InstrItinClass;
def IIC_SSE_STMXCSR : InstrItinClass;
def IIC_SSE_CVT_PD_RR : InstrItinClass;
def IIC_SSE_CVT_PD_RM : InstrItinClass;
def IIC_SSE_CVT_PS_RR : InstrItinClass;
def IIC_SSE_CVT_PS_RM : InstrItinClass;
def IIC_SSE_CVT_PI2PS_RR : InstrItinClass;
def IIC_SSE_CVT_PI2PS_RM : InstrItinClass;
def IIC_SSE_CVT_Scalar_RR : InstrItinClass;
def IIC_SSE_CVT_Scalar_RM : InstrItinClass;
def IIC_SSE_CVT_SS2SI32_RM : InstrItinClass;
def IIC_SSE_CVT_SS2SI32_RR : InstrItinClass;
def IIC_SSE_CVT_SS2SI64_RM : InstrItinClass;
def IIC_SSE_CVT_SS2SI64_RR : InstrItinClass;
def IIC_SSE_CVT_SD2SI_RM : InstrItinClass;
def IIC_SSE_CVT_SD2SI_RR : InstrItinClass;
// MMX
def IIC_MMX_MOV_MM_RM : InstrItinClass;
def IIC_MMX_MOV_REG_MM : InstrItinClass;
def IIC_MMX_MOVQ_RM : InstrItinClass;
def IIC_MMX_MOVQ_RR : InstrItinClass;
def IIC_MMX_ALU_RM : InstrItinClass;
def IIC_MMX_ALU_RR : InstrItinClass;
def IIC_MMX_ALUQ_RM : InstrItinClass;
def IIC_MMX_ALUQ_RR : InstrItinClass;
def IIC_MMX_PHADDSUBW_RM : InstrItinClass;
def IIC_MMX_PHADDSUBW_RR : InstrItinClass;
def IIC_MMX_PHADDSUBD_RM : InstrItinClass;
def IIC_MMX_PHADDSUBD_RR : InstrItinClass;
def IIC_MMX_PMUL : InstrItinClass;
def IIC_MMX_MISC_FUNC_MEM : InstrItinClass;
def IIC_MMX_MISC_FUNC_REG : InstrItinClass;
def IIC_MMX_PSADBW : InstrItinClass;
def IIC_MMX_SHIFT_RI : InstrItinClass;
def IIC_MMX_SHIFT_RM : InstrItinClass;
def IIC_MMX_SHIFT_RR : InstrItinClass;
def IIC_MMX_UNPCK_H_RM : InstrItinClass;
def IIC_MMX_UNPCK_H_RR : InstrItinClass;
def IIC_MMX_UNPCK_L : InstrItinClass;
def IIC_MMX_PCK_RM : InstrItinClass;
def IIC_MMX_PCK_RR : InstrItinClass;
def IIC_MMX_PSHUF : InstrItinClass;
def IIC_MMX_PEXTR : InstrItinClass;
def IIC_MMX_PINSRW : InstrItinClass;
def IIC_MMX_MASKMOV : InstrItinClass;
def IIC_MMX_CVT_PD_RR : InstrItinClass;
def IIC_MMX_CVT_PD_RM : InstrItinClass;
def IIC_MMX_CVT_PS_RR : InstrItinClass;
def IIC_MMX_CVT_PS_RM : InstrItinClass;
def IIC_CMPX_LOCK : InstrItinClass;
def IIC_CMPX_LOCK_8 : InstrItinClass;
def IIC_CMPX_LOCK_8B : InstrItinClass;
def IIC_CMPX_LOCK_16B : InstrItinClass;
def IIC_XADD_LOCK_MEM : InstrItinClass;
def IIC_XADD_LOCK_MEM8 : InstrItinClass;
def IIC_FILD : InstrItinClass;
def IIC_FLD : InstrItinClass;
def IIC_FLD80 : InstrItinClass;
def IIC_FST : InstrItinClass;
def IIC_FST80 : InstrItinClass;
def IIC_FIST : InstrItinClass;
def IIC_FLDZ : InstrItinClass;
def IIC_FUCOM : InstrItinClass;
def IIC_FUCOMI : InstrItinClass;
def IIC_FCOMI : InstrItinClass;
def IIC_FNSTSW : InstrItinClass;
def IIC_FNSTCW : InstrItinClass;
def IIC_FLDCW : InstrItinClass;
def IIC_FNINIT : InstrItinClass;
def IIC_FFREE : InstrItinClass;
def IIC_FNCLEX : InstrItinClass;
def IIC_WAIT : InstrItinClass;
def IIC_FXAM : InstrItinClass;
def IIC_FNOP : InstrItinClass;
def IIC_FLDL : InstrItinClass;
def IIC_F2XM1 : InstrItinClass;
def IIC_FYL2X : InstrItinClass;
def IIC_FPTAN : InstrItinClass;
def IIC_FPATAN : InstrItinClass;
def IIC_FXTRACT : InstrItinClass;
def IIC_FPREM1 : InstrItinClass;
def IIC_FPSTP : InstrItinClass;
def IIC_FPREM : InstrItinClass;
def IIC_FYL2XP1 : InstrItinClass;
def IIC_FSINCOS : InstrItinClass;
def IIC_FRNDINT : InstrItinClass;
def IIC_FSCALE : InstrItinClass;
def IIC_FCOMPP : InstrItinClass;
def IIC_FXSAVE : InstrItinClass;
def IIC_FXRSTOR : InstrItinClass;
def IIC_FXCH : InstrItinClass;
// System instructions
def IIC_CPUID : InstrItinClass;
def IIC_INT : InstrItinClass;
def IIC_INT3 : InstrItinClass;
def IIC_INVD : InstrItinClass;
def IIC_INVLPG : InstrItinClass;
def IIC_IRET : InstrItinClass;
def IIC_HLT : InstrItinClass;
def IIC_LXS : InstrItinClass;
def IIC_LTR : InstrItinClass;
def IIC_RDTSC : InstrItinClass;
def IIC_RSM : InstrItinClass;
def IIC_SIDT : InstrItinClass;
def IIC_SGDT : InstrItinClass;
def IIC_SLDT : InstrItinClass;
def IIC_STR : InstrItinClass;
def IIC_SWAPGS : InstrItinClass;
def IIC_SYSCALL : InstrItinClass;
def IIC_SYS_ENTER_EXIT : InstrItinClass;
def IIC_IN_RR : InstrItinClass;
def IIC_IN_RI : InstrItinClass;
def IIC_OUT_RR : InstrItinClass;
def IIC_OUT_IR : InstrItinClass;
def IIC_INS : InstrItinClass;
def IIC_MOV_REG_DR : InstrItinClass;
def IIC_MOV_DR_REG : InstrItinClass;
def IIC_MOV_REG_CR : InstrItinClass;
def IIC_MOV_CR_REG : InstrItinClass;
def IIC_MOV_REG_SR : InstrItinClass;
def IIC_MOV_MEM_SR : InstrItinClass;
def IIC_MOV_SR_REG : InstrItinClass;
def IIC_MOV_SR_MEM : InstrItinClass;
def IIC_LAR_RM : InstrItinClass;
def IIC_LAR_RR : InstrItinClass;
def IIC_LSL_RM : InstrItinClass;
def IIC_LSL_RR : InstrItinClass;
def IIC_LGDT : InstrItinClass;
def IIC_LIDT : InstrItinClass;
def IIC_LLDT_REG : InstrItinClass;
def IIC_LLDT_MEM : InstrItinClass;
def IIC_PUSH_CS : InstrItinClass;
def IIC_PUSH_SR : InstrItinClass;
def IIC_POP_SR : InstrItinClass;
def IIC_POP_SR_SS : InstrItinClass;
def IIC_VERR : InstrItinClass;
def IIC_VERW_REG : InstrItinClass;
def IIC_VERW_MEM : InstrItinClass;
def IIC_WRMSR : InstrItinClass;
def IIC_RDMSR : InstrItinClass;
def IIC_RDPMC : InstrItinClass;
def IIC_SMSW : InstrItinClass;
def IIC_LMSW_REG : InstrItinClass;
def IIC_LMSW_MEM : InstrItinClass;
def IIC_ENTER : InstrItinClass;
def IIC_LEAVE : InstrItinClass;
def IIC_POP_MEM : InstrItinClass;
def IIC_POP_REG16 : InstrItinClass;
def IIC_POP_REG : InstrItinClass;
def IIC_POP_F : InstrItinClass;
def IIC_POP_FD : InstrItinClass;
def IIC_POP_A : InstrItinClass;
def IIC_PUSH_IMM : InstrItinClass;
def IIC_PUSH_MEM : InstrItinClass;
def IIC_PUSH_REG : InstrItinClass;
def IIC_PUSH_F : InstrItinClass;
def IIC_PUSH_A : InstrItinClass;
def IIC_BSWAP : InstrItinClass;
def IIC_BSF : InstrItinClass;
def IIC_BSR : InstrItinClass;
def IIC_MOVS : InstrItinClass;
def IIC_STOS : InstrItinClass;
def IIC_SCAS : InstrItinClass;
def IIC_CMPS : InstrItinClass;
def IIC_MOV : InstrItinClass;
def IIC_MOV_MEM : InstrItinClass;
def IIC_AHF : InstrItinClass;
def IIC_BT_MI : InstrItinClass;
def IIC_BT_MR : InstrItinClass;
def IIC_BT_RI : InstrItinClass;
def IIC_BT_RR : InstrItinClass;
def IIC_BTX_MI : InstrItinClass;
def IIC_BTX_MR : InstrItinClass;
def IIC_BTX_RI : InstrItinClass;
def IIC_BTX_RR : InstrItinClass;
def IIC_XCHG_REG : InstrItinClass;
def IIC_XCHG_MEM : InstrItinClass;
def IIC_XADD_REG : InstrItinClass;
def IIC_XADD_MEM : InstrItinClass;
def IIC_CMPXCHG_MEM : InstrItinClass;
def IIC_CMPXCHG_REG : InstrItinClass;
def IIC_CMPXCHG_MEM8 : InstrItinClass;
def IIC_CMPXCHG_REG8 : InstrItinClass;
def IIC_CMPXCHG_8B : InstrItinClass;
def IIC_CMPXCHG_16B : InstrItinClass;
def IIC_LODS : InstrItinClass;
def IIC_OUTS : InstrItinClass;
def IIC_CLC : InstrItinClass;
def IIC_CLD : InstrItinClass;
def IIC_CLI : InstrItinClass;
def IIC_CMC : InstrItinClass;
def IIC_CLTS : InstrItinClass;
def IIC_STC : InstrItinClass;
def IIC_STI : InstrItinClass;
def IIC_STD : InstrItinClass;
def IIC_XLAT : InstrItinClass;
def IIC_AAA : InstrItinClass;
def IIC_AAD : InstrItinClass;
def IIC_AAM : InstrItinClass;
def IIC_AAS : InstrItinClass;
def IIC_DAA : InstrItinClass;
def IIC_DAS : InstrItinClass;
def IIC_BOUND : InstrItinClass;
def IIC_ARPL_REG : InstrItinClass;
def IIC_ARPL_MEM : InstrItinClass;
def IIC_MOVBE : InstrItinClass;
def IIC_NOP : InstrItinClass;
//===----------------------------------------------------------------------===//
// Processor instruction itineraries.
// IssueWidth is analagous to the number of decode units. Core and its
// descendents, including Nehalem and SandyBridge have 4 decoders.
// Resources beyond the decoder operate on micro-ops and are bufferred
// so adjacent micro-ops don't directly compete.
//
// MinLatency=0 indicates that RAW dependencies can be decoded in the
// same cycle.
//
// HighLatency=10 is optimistic. X86InstrInfo::isHighLatencyDef
// indicates high latency opcodes. Alternatively, InstrItinData
// entries may be included here to define specific operand
// latencies. Since these latencies are not used for pipeline hazards,
// they do not need to be exact.
//
// ILPWindow=10 is an arbitrary threshold that approximates cycles of
// latency hidden by instruction buffers. The actual value is not very
// important but should be zero for inorder and nonzero for OOO processors.
//
// The GenericModel contains no instruciton itineraries.
def GenericModel : SchedMachineModel {
let IssueWidth = 4;
let MinLatency = 0;
let LoadLatency = 4;
let HighLatency = 10;
let ILPWindow = 10;
}
include "X86ScheduleAtom.td"
include "X86SchedSandyBridge.td"
include "X86SchedHaswell.td"
|