aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/X86/X86TargetObjectFile.cpp
blob: 1d1c32eb2cb8f76c4a18739205bc06a827cfaf0a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
//===-- X86TargetObjectFile.cpp - X86 Object Info -------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include "X86TargetObjectFile.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/IR/Mangler.h"
#include "llvm/IR/Operator.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCSectionCOFF.h"
#include "llvm/MC/MCSectionELF.h"
#include "llvm/Support/Dwarf.h"
#include "llvm/Target/TargetLowering.h"

using namespace llvm;
using namespace dwarf;

X86_64MachoTargetObjectFile::X86_64MachoTargetObjectFile()
  : TargetLoweringObjectFileMachO() {
  SupportIndirectSymViaGOTPCRel = true;
}

const MCExpr *X86_64MachoTargetObjectFile::getTTypeGlobalReference(
    const GlobalValue *GV, unsigned Encoding, Mangler &Mang,
    const TargetMachine &TM, MachineModuleInfo *MMI,
    MCStreamer &Streamer) const {

  // On Darwin/X86-64, we can reference dwarf symbols with foo@GOTPCREL+4, which
  // is an indirect pc-relative reference.
  if ((Encoding & DW_EH_PE_indirect) && (Encoding & DW_EH_PE_pcrel)) {
    const MCSymbol *Sym = TM.getSymbol(GV, Mang);
    const MCExpr *Res =
      MCSymbolRefExpr::Create(Sym, MCSymbolRefExpr::VK_GOTPCREL, getContext());
    const MCExpr *Four = MCConstantExpr::Create(4, getContext());
    return MCBinaryExpr::CreateAdd(Res, Four, getContext());
  }

  return TargetLoweringObjectFileMachO::getTTypeGlobalReference(
      GV, Encoding, Mang, TM, MMI, Streamer);
}

MCSymbol *X86_64MachoTargetObjectFile::getCFIPersonalitySymbol(
    const GlobalValue *GV, Mangler &Mang, const TargetMachine &TM,
    MachineModuleInfo *MMI) const {
  return TM.getSymbol(GV, Mang);
}

const MCExpr *X86_64MachoTargetObjectFile::getIndirectSymViaGOTPCRel(
    const MCSymbol *Sym, int64_t Offset) const {
  // On Darwin/X86-64, we need to use foo@GOTPCREL+4 to access the got entry
  // from a data section. In case there's an additional offset, then use
  // foo@GOTPCREL+4+<offset>.
  const MCExpr *Res =
    MCSymbolRefExpr::Create(Sym, MCSymbolRefExpr::VK_GOTPCREL, getContext());
  const MCExpr *Off = MCConstantExpr::Create(Offset+4, getContext());
  return MCBinaryExpr::CreateAdd(Res, Off, getContext());
}

void
X86LinuxTargetObjectFile::Initialize(MCContext &Ctx, const TargetMachine &TM) {
  TargetLoweringObjectFileELF::Initialize(Ctx, TM);
  InitializeELF(TM.Options.UseInitArray);
}

const MCExpr *
X86LinuxTargetObjectFile::getDebugThreadLocalSymbol(
    const MCSymbol *Sym) const {
  return MCSymbolRefExpr::Create(Sym, MCSymbolRefExpr::VK_DTPOFF, getContext());
}

const MCExpr *X86WindowsTargetObjectFile::getExecutableRelativeSymbol(
    const ConstantExpr *CE, Mangler &Mang, const TargetMachine &TM) const {
  // We are looking for the difference of two symbols, need a subtraction
  // operation.
  const SubOperator *Sub = dyn_cast<SubOperator>(CE);
  if (!Sub)
    return nullptr;

  // Symbols must first be numbers before we can subtract them, we need to see a
  // ptrtoint on both subtraction operands.
  const PtrToIntOperator *SubLHS =
      dyn_cast<PtrToIntOperator>(Sub->getOperand(0));
  const PtrToIntOperator *SubRHS =
      dyn_cast<PtrToIntOperator>(Sub->getOperand(1));
  if (!SubLHS || !SubRHS)
    return nullptr;

  // Our symbols should exist in address space zero, cowardly no-op if
  // otherwise.
  if (SubLHS->getPointerAddressSpace() != 0 ||
      SubRHS->getPointerAddressSpace() != 0)
    return nullptr;

  // Both ptrtoint instructions must wrap global variables:
  // - Only global variables are eligible for image relative relocations.
  // - The subtrahend refers to the special symbol __ImageBase, a global.
  const GlobalVariable *GVLHS =
      dyn_cast<GlobalVariable>(SubLHS->getPointerOperand());
  const GlobalVariable *GVRHS =
      dyn_cast<GlobalVariable>(SubRHS->getPointerOperand());
  if (!GVLHS || !GVRHS)
    return nullptr;

  // We expect __ImageBase to be a global variable without a section, externally
  // defined.
  //
  // It should look something like this: @__ImageBase = external constant i8
  if (GVRHS->isThreadLocal() || GVRHS->getName() != "__ImageBase" ||
      !GVRHS->hasExternalLinkage() || GVRHS->hasInitializer() ||
      GVRHS->hasSection())
    return nullptr;

  // An image-relative, thread-local, symbol makes no sense.
  if (GVLHS->isThreadLocal())
    return nullptr;

  return MCSymbolRefExpr::Create(TM.getSymbol(GVLHS, Mang),
                                 MCSymbolRefExpr::VK_COFF_IMGREL32,
                                 getContext());
}

static std::string APIntToHexString(const APInt &AI) {
  unsigned Width = (AI.getBitWidth() / 8) * 2;
  std::string HexString = utohexstr(AI.getLimitedValue(), /*LowerCase=*/true);
  unsigned Size = HexString.size();
  assert(Width >= Size && "hex string is too large!");
  HexString.insert(HexString.begin(), Width - Size, '0');

  return HexString;
}


static std::string scalarConstantToHexString(const Constant *C) {
  Type *Ty = C->getType();
  APInt AI;
  if (isa<UndefValue>(C)) {
    AI = APInt(Ty->getPrimitiveSizeInBits(), /*val=*/0);
  } else if (Ty->isFloatTy() || Ty->isDoubleTy()) {
    const auto *CFP = cast<ConstantFP>(C);
    AI = CFP->getValueAPF().bitcastToAPInt();
  } else if (Ty->isIntegerTy()) {
    const auto *CI = cast<ConstantInt>(C);
    AI = CI->getValue();
  } else {
    llvm_unreachable("unexpected constant pool element type!");
  }
  return APIntToHexString(AI);
}

const MCSection *
X86WindowsTargetObjectFile::getSectionForConstant(SectionKind Kind,
                                                  const Constant *C) const {
  if (Kind.isReadOnly()) {
    if (C) {
      Type *Ty = C->getType();
      SmallString<32> COMDATSymName;
      if (Ty->isFloatTy() || Ty->isDoubleTy()) {
        COMDATSymName = "__real@";
        COMDATSymName += scalarConstantToHexString(C);
      } else if (const auto *VTy = dyn_cast<VectorType>(Ty)) {
        uint64_t NumBits = VTy->getBitWidth();
        if (NumBits == 128 || NumBits == 256) {
          COMDATSymName = NumBits == 128 ? "__xmm@" : "__ymm@";
          for (int I = VTy->getNumElements() - 1, E = -1; I != E; --I)
            COMDATSymName +=
                scalarConstantToHexString(C->getAggregateElement(I));
        }
      }
      if (!COMDATSymName.empty()) {
        unsigned Characteristics = COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
                                   COFF::IMAGE_SCN_MEM_READ |
                                   COFF::IMAGE_SCN_LNK_COMDAT;
        return getContext().getCOFFSection(".rdata", Characteristics, Kind,
                                           COMDATSymName,
                                           COFF::IMAGE_COMDAT_SELECT_ANY);
      }
    }
  }

  return TargetLoweringObjectFile::getSectionForConstant(Kind, C);
}