aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Target/XCore/XCoreISelDAGToDAG.cpp
blob: 86bc6f27ca539ee6be2835a7f83ce2d64dc79022 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
//===-- XCoreISelDAGToDAG.cpp - A dag to dag inst selector for XCore ------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines an instruction selector for the XCore target.
//
//===----------------------------------------------------------------------===//

#include "XCore.h"
#include "XCoreTargetMachine.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetLowering.h"
using namespace llvm;

/// XCoreDAGToDAGISel - XCore specific code to select XCore machine
/// instructions for SelectionDAG operations.
///
namespace {
  class XCoreDAGToDAGISel : public SelectionDAGISel {
    const XCoreSubtarget &Subtarget;

  public:
    XCoreDAGToDAGISel(XCoreTargetMachine &TM, CodeGenOpt::Level OptLevel)
      : SelectionDAGISel(TM, OptLevel),
        Subtarget(*TM.getSubtargetImpl()) { }

    SDNode *Select(SDNode *N) override;
    SDNode *SelectBRIND(SDNode *N);

    /// getI32Imm - Return a target constant with the specified value, of type
    /// i32.
    inline SDValue getI32Imm(unsigned Imm) {
      return CurDAG->getTargetConstant(Imm, MVT::i32);
    }

    inline bool immMskBitp(SDNode *inN) const {
      ConstantSDNode *N = cast<ConstantSDNode>(inN);
      uint32_t value = (uint32_t)N->getZExtValue();
      if (!isMask_32(value)) {
        return false;
      }
      int msksize = 32 - countLeadingZeros(value);
      return (msksize >= 1 && msksize <= 8) ||
              msksize == 16 || msksize == 24 || msksize == 32;
    }

    // Complex Pattern Selectors.
    bool SelectADDRspii(SDValue Addr, SDValue &Base, SDValue &Offset);

    bool SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
                                      std::vector<SDValue> &OutOps) override;

    const char *getPassName() const override {
      return "XCore DAG->DAG Pattern Instruction Selection";
    } 
    
    // Include the pieces autogenerated from the target description.
  #include "XCoreGenDAGISel.inc"
  };
}  // end anonymous namespace

/// createXCoreISelDag - This pass converts a legalized DAG into a 
/// XCore-specific DAG, ready for instruction scheduling.
///
FunctionPass *llvm::createXCoreISelDag(XCoreTargetMachine &TM,
                                       CodeGenOpt::Level OptLevel) {
  return new XCoreDAGToDAGISel(TM, OptLevel);
}

bool XCoreDAGToDAGISel::SelectADDRspii(SDValue Addr, SDValue &Base,
                                       SDValue &Offset) {
  FrameIndexSDNode *FIN = nullptr;
  if ((FIN = dyn_cast<FrameIndexSDNode>(Addr))) {
    Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32);
    Offset = CurDAG->getTargetConstant(0, MVT::i32);
    return true;
  }
  if (Addr.getOpcode() == ISD::ADD) {
    ConstantSDNode *CN = nullptr;
    if ((FIN = dyn_cast<FrameIndexSDNode>(Addr.getOperand(0)))
      && (CN = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))
      && (CN->getSExtValue() % 4 == 0 && CN->getSExtValue() >= 0)) {
      // Constant positive word offset from frame index
      Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32);
      Offset = CurDAG->getTargetConstant(CN->getSExtValue(), MVT::i32);
      return true;
    }
  }
  return false;
}

bool XCoreDAGToDAGISel::
SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
                             std::vector<SDValue> &OutOps) {
  SDValue Reg;
  switch (ConstraintCode) {
  default: return true;
  case 'm': // Memory.
    switch (Op.getOpcode()) {
    default: return true;
    case XCoreISD::CPRelativeWrapper:
      Reg = CurDAG->getRegister(XCore::CP, MVT::i32);
      break;
    case XCoreISD::DPRelativeWrapper:
      Reg = CurDAG->getRegister(XCore::DP, MVT::i32);
      break;
    }
  }
  OutOps.push_back(Reg);
  OutOps.push_back(Op.getOperand(0));
  return false;
}

SDNode *XCoreDAGToDAGISel::Select(SDNode *N) {
  SDLoc dl(N);
  switch (N->getOpcode()) {
  default: break;
  case ISD::Constant: {
    uint64_t Val = cast<ConstantSDNode>(N)->getZExtValue();
    if (immMskBitp(N)) {
      // Transformation function: get the size of a mask
      // Look for the first non-zero bit
      SDValue MskSize = getI32Imm(32 - countLeadingZeros((uint32_t)Val));
      return CurDAG->getMachineNode(XCore::MKMSK_rus, dl,
                                    MVT::i32, MskSize);
    }
    else if (!isUInt<16>(Val)) {
      SDValue CPIdx =
        CurDAG->getTargetConstantPool(ConstantInt::get(
                              Type::getInt32Ty(*CurDAG->getContext()), Val),
                                      getTargetLowering()->getPointerTy());
      SDNode *node = CurDAG->getMachineNode(XCore::LDWCP_lru6, dl, MVT::i32,
                                            MVT::Other, CPIdx,
                                            CurDAG->getEntryNode());
      MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
      MemOp[0] = MF->getMachineMemOperand(
        MachinePointerInfo::getConstantPool(), MachineMemOperand::MOLoad, 4, 4);      
      cast<MachineSDNode>(node)->setMemRefs(MemOp, MemOp + 1);
      return node;
    }
    break;
  }
  case XCoreISD::LADD: {
    SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
                        N->getOperand(2) };
    return CurDAG->getMachineNode(XCore::LADD_l5r, dl, MVT::i32, MVT::i32,
                                  Ops);
  }
  case XCoreISD::LSUB: {
    SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
                        N->getOperand(2) };
    return CurDAG->getMachineNode(XCore::LSUB_l5r, dl, MVT::i32, MVT::i32,
                                  Ops);
  }
  case XCoreISD::MACCU: {
    SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
                      N->getOperand(2), N->getOperand(3) };
    return CurDAG->getMachineNode(XCore::MACCU_l4r, dl, MVT::i32, MVT::i32,
                                  Ops);
  }
  case XCoreISD::MACCS: {
    SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
                      N->getOperand(2), N->getOperand(3) };
    return CurDAG->getMachineNode(XCore::MACCS_l4r, dl, MVT::i32, MVT::i32,
                                  Ops);
  }
  case XCoreISD::LMUL: {
    SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
                      N->getOperand(2), N->getOperand(3) };
    return CurDAG->getMachineNode(XCore::LMUL_l6r, dl, MVT::i32, MVT::i32,
                                  Ops);
  }
  case XCoreISD::CRC8: {
    SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2) };
    return CurDAG->getMachineNode(XCore::CRC8_l4r, dl, MVT::i32, MVT::i32,
                                  Ops);
  }
  case ISD::BRIND:
    if (SDNode *ResNode = SelectBRIND(N))
      return ResNode;
    break;
  // Other cases are autogenerated.
  }
  return SelectCode(N);
}

/// Given a chain return a new chain where any appearance of Old is replaced
/// by New. There must be at most one instruction between Old and Chain and
/// this instruction must be a TokenFactor. Returns an empty SDValue if 
/// these conditions don't hold.
static SDValue
replaceInChain(SelectionDAG *CurDAG, SDValue Chain, SDValue Old, SDValue New)
{
  if (Chain == Old)
    return New;
  if (Chain->getOpcode() != ISD::TokenFactor)
    return SDValue();
  SmallVector<SDValue, 8> Ops;
  bool found = false;
  for (unsigned i = 0, e = Chain->getNumOperands(); i != e; ++i) {
    if (Chain->getOperand(i) == Old) {
      Ops.push_back(New);
      found = true;
    } else {
      Ops.push_back(Chain->getOperand(i));
    }
  }
  if (!found)
    return SDValue();
  return CurDAG->getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, Ops);
}

SDNode *XCoreDAGToDAGISel::SelectBRIND(SDNode *N) {
  SDLoc dl(N);
  // (brind (int_xcore_checkevent (addr)))
  SDValue Chain = N->getOperand(0);
  SDValue Addr = N->getOperand(1);
  if (Addr->getOpcode() != ISD::INTRINSIC_W_CHAIN)
    return nullptr;
  unsigned IntNo = cast<ConstantSDNode>(Addr->getOperand(1))->getZExtValue();
  if (IntNo != Intrinsic::xcore_checkevent)
    return nullptr;
  SDValue nextAddr = Addr->getOperand(2);
  SDValue CheckEventChainOut(Addr.getNode(), 1);
  if (!CheckEventChainOut.use_empty()) {
    // If the chain out of the checkevent intrinsic is an operand of the
    // indirect branch or used in a TokenFactor which is the operand of the
    // indirect branch then build a new chain which uses the chain coming into
    // the checkevent intrinsic instead.
    SDValue CheckEventChainIn = Addr->getOperand(0);
    SDValue NewChain = replaceInChain(CurDAG, Chain, CheckEventChainOut,
                                      CheckEventChainIn);
    if (!NewChain.getNode())
      return nullptr;
    Chain = NewChain;
  }
  // Enable events on the thread using setsr 1 and then disable them immediately
  // after with clrsr 1. If any resources owned by the thread are ready an event
  // will be taken. If no resource is ready we branch to the address which was
  // the operand to the checkevent intrinsic.
  SDValue constOne = getI32Imm(1);
  SDValue Glue =
    SDValue(CurDAG->getMachineNode(XCore::SETSR_branch_u6, dl, MVT::Glue,
                                   constOne, Chain), 0);
  Glue =
    SDValue(CurDAG->getMachineNode(XCore::CLRSR_branch_u6, dl, MVT::Glue,
                                   constOne, Glue), 0);
  if (nextAddr->getOpcode() == XCoreISD::PCRelativeWrapper &&
      nextAddr->getOperand(0)->getOpcode() == ISD::TargetBlockAddress) {
    return CurDAG->SelectNodeTo(N, XCore::BRFU_lu6, MVT::Other,
                                nextAddr->getOperand(0), Glue);
  }
  return CurDAG->SelectNodeTo(N, XCore::BAU_1r, MVT::Other, nextAddr, Glue);
}