aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Transforms/IPO/DeadArgumentElimination.cpp
blob: 911c14e7e31c374032cda2a1b475d6251b42479e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
//===-- DeadArgumentElimination.cpp - Eliminate dead arguments ------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass deletes dead arguments from internal functions.  Dead argument
// elimination removes arguments which are directly dead, as well as arguments
// only passed into function calls as dead arguments of other functions.  This
// pass also deletes dead return values in a similar way.
//
// This pass is often useful as a cleanup pass to run after aggressive
// interprocedural passes, which add possibly-dead arguments or return values.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "deadargelim"
#include "llvm/Transforms/IPO.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/DIBuilder.h"
#include "llvm/DebugInfo.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <map>
#include <set>
using namespace llvm;

STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
STATISTIC(NumRetValsEliminated  , "Number of unused return values removed");
STATISTIC(NumArgumentsReplacedWithUndef, 
          "Number of unread args replaced with undef");
namespace {
  /// DAE - The dead argument elimination pass.
  ///
  class DAE : public ModulePass {
  public:

    /// Struct that represents (part of) either a return value or a function
    /// argument.  Used so that arguments and return values can be used
    /// interchangeably.
    struct RetOrArg {
      RetOrArg(const Function *F, unsigned Idx, bool IsArg) : F(F), Idx(Idx),
               IsArg(IsArg) {}
      const Function *F;
      unsigned Idx;
      bool IsArg;

      /// Make RetOrArg comparable, so we can put it into a map.
      bool operator<(const RetOrArg &O) const {
        if (F != O.F)
          return F < O.F;
        else if (Idx != O.Idx)
          return Idx < O.Idx;
        else
          return IsArg < O.IsArg;
      }

      /// Make RetOrArg comparable, so we can easily iterate the multimap.
      bool operator==(const RetOrArg &O) const {
        return F == O.F && Idx == O.Idx && IsArg == O.IsArg;
      }

      std::string getDescription() const {
        return std::string((IsArg ? "Argument #" : "Return value #"))
               + utostr(Idx) + " of function " + F->getName().str();
      }
    };

    /// Liveness enum - During our initial pass over the program, we determine
    /// that things are either alive or maybe alive. We don't mark anything
    /// explicitly dead (even if we know they are), since anything not alive
    /// with no registered uses (in Uses) will never be marked alive and will
    /// thus become dead in the end.
    enum Liveness { Live, MaybeLive };

    /// Convenience wrapper
    RetOrArg CreateRet(const Function *F, unsigned Idx) {
      return RetOrArg(F, Idx, false);
    }
    /// Convenience wrapper
    RetOrArg CreateArg(const Function *F, unsigned Idx) {
      return RetOrArg(F, Idx, true);
    }

    typedef std::multimap<RetOrArg, RetOrArg> UseMap;
    /// This maps a return value or argument to any MaybeLive return values or
    /// arguments it uses. This allows the MaybeLive values to be marked live
    /// when any of its users is marked live.
    /// For example (indices are left out for clarity):
    ///  - Uses[ret F] = ret G
    ///    This means that F calls G, and F returns the value returned by G.
    ///  - Uses[arg F] = ret G
    ///    This means that some function calls G and passes its result as an
    ///    argument to F.
    ///  - Uses[ret F] = arg F
    ///    This means that F returns one of its own arguments.
    ///  - Uses[arg F] = arg G
    ///    This means that G calls F and passes one of its own (G's) arguments
    ///    directly to F.
    UseMap Uses;

    typedef std::set<RetOrArg> LiveSet;
    typedef std::set<const Function*> LiveFuncSet;

    /// This set contains all values that have been determined to be live.
    LiveSet LiveValues;
    /// This set contains all values that are cannot be changed in any way.
    LiveFuncSet LiveFunctions;

    typedef SmallVector<RetOrArg, 5> UseVector;

    // Map each LLVM function to corresponding metadata with debug info. If
    // the function is replaced with another one, we should patch the pointer
    // to LLVM function in metadata.
    // As the code generation for module is finished (and DIBuilder is
    // finalized) we assume that subprogram descriptors won't be changed, and
    // they are stored in map for short duration anyway.
    typedef DenseMap<Function*, DISubprogram> FunctionDIMap;
    FunctionDIMap FunctionDIs;

  protected:
    // DAH uses this to specify a different ID.
    explicit DAE(char &ID) : ModulePass(ID) {}

  public:
    static char ID; // Pass identification, replacement for typeid
    DAE() : ModulePass(ID) {
      initializeDAEPass(*PassRegistry::getPassRegistry());
    }

    bool runOnModule(Module &M);

    virtual bool ShouldHackArguments() const { return false; }

  private:
    Liveness MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses);
    Liveness SurveyUse(Value::const_use_iterator U, UseVector &MaybeLiveUses,
                       unsigned RetValNum = 0);
    Liveness SurveyUses(const Value *V, UseVector &MaybeLiveUses);

    void CollectFunctionDIs(Module &M);
    void SurveyFunction(const Function &F);
    void MarkValue(const RetOrArg &RA, Liveness L,
                   const UseVector &MaybeLiveUses);
    void MarkLive(const RetOrArg &RA);
    void MarkLive(const Function &F);
    void PropagateLiveness(const RetOrArg &RA);
    bool RemoveDeadStuffFromFunction(Function *F);
    bool DeleteDeadVarargs(Function &Fn);
    bool RemoveDeadArgumentsFromCallers(Function &Fn);
  };
}


char DAE::ID = 0;
INITIALIZE_PASS(DAE, "deadargelim", "Dead Argument Elimination", false, false)

namespace {
  /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but
  /// deletes arguments to functions which are external.  This is only for use
  /// by bugpoint.
  struct DAH : public DAE {
    static char ID;
    DAH() : DAE(ID) {}

    virtual bool ShouldHackArguments() const { return true; }
  };
}

char DAH::ID = 0;
INITIALIZE_PASS(DAH, "deadarghaX0r", 
                "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)",
                false, false)

/// createDeadArgEliminationPass - This pass removes arguments from functions
/// which are not used by the body of the function.
///
ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }

/// CollectFunctionDIs - Map each function in the module to its debug info
/// descriptor.
void DAE::CollectFunctionDIs(Module &M) {
  FunctionDIs.clear();

  for (Module::named_metadata_iterator I = M.named_metadata_begin(),
       E = M.named_metadata_end(); I != E; ++I) {
    NamedMDNode &NMD = *I;
    for (unsigned MDIndex = 0, MDNum = NMD.getNumOperands();
         MDIndex < MDNum; ++MDIndex) {
      MDNode *Node = NMD.getOperand(MDIndex);
      if (!DIDescriptor(Node).isCompileUnit())
        continue;
      DICompileUnit CU(Node);
      const DIArray &SPs = CU.getSubprograms();
      for (unsigned SPIndex = 0, SPNum = SPs.getNumElements();
           SPIndex < SPNum; ++SPIndex) {
        DISubprogram SP(SPs.getElement(SPIndex));
        assert((!SP || SP.isSubprogram()) &&
          "A MDNode in subprograms of a CU should be null or a DISubprogram.");
        if (!SP)
          continue;
        if (Function *F = SP.getFunction())
          FunctionDIs[F] = SP;
      }
    }
  }
}

/// DeleteDeadVarargs - If this is an function that takes a ... list, and if
/// llvm.vastart is never called, the varargs list is dead for the function.
bool DAE::DeleteDeadVarargs(Function &Fn) {
  assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!");
  if (Fn.isDeclaration() || !Fn.hasLocalLinkage()) return false;

  // Ensure that the function is only directly called.
  if (Fn.hasAddressTaken())
    return false;

  // Okay, we know we can transform this function if safe.  Scan its body
  // looking for calls to llvm.vastart.
  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
        if (II->getIntrinsicID() == Intrinsic::vastart)
          return false;
      }
    }
  }

  // If we get here, there are no calls to llvm.vastart in the function body,
  // remove the "..." and adjust all the calls.

  // Start by computing a new prototype for the function, which is the same as
  // the old function, but doesn't have isVarArg set.
  FunctionType *FTy = Fn.getFunctionType();

  std::vector<Type*> Params(FTy->param_begin(), FTy->param_end());
  FunctionType *NFTy = FunctionType::get(FTy->getReturnType(),
                                                Params, false);
  unsigned NumArgs = Params.size();

  // Create the new function body and insert it into the module...
  Function *NF = Function::Create(NFTy, Fn.getLinkage());
  NF->copyAttributesFrom(&Fn);
  Fn.getParent()->getFunctionList().insert(&Fn, NF);
  NF->takeName(&Fn);

  // Loop over all of the callers of the function, transforming the call sites
  // to pass in a smaller number of arguments into the new function.
  //
  std::vector<Value*> Args;
  for (Value::use_iterator I = Fn.use_begin(), E = Fn.use_end(); I != E; ) {
    CallSite CS(*I++);
    if (!CS)
      continue;
    Instruction *Call = CS.getInstruction();

    // Pass all the same arguments.
    Args.assign(CS.arg_begin(), CS.arg_begin() + NumArgs);

    // Drop any attributes that were on the vararg arguments.
    AttributeSet PAL = CS.getAttributes();
    if (!PAL.isEmpty() && PAL.getSlotIndex(PAL.getNumSlots() - 1) > NumArgs) {
      SmallVector<AttributeSet, 8> AttributesVec;
      for (unsigned i = 0; PAL.getSlotIndex(i) <= NumArgs; ++i)
        AttributesVec.push_back(PAL.getSlotAttributes(i));
      if (PAL.hasAttributes(AttributeSet::FunctionIndex))
        AttributesVec.push_back(AttributeSet::get(Fn.getContext(),
                                                  PAL.getFnAttributes()));
      PAL = AttributeSet::get(Fn.getContext(), AttributesVec);
    }

    Instruction *New;
    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
                               Args, "", Call);
      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
      cast<InvokeInst>(New)->setAttributes(PAL);
    } else {
      New = CallInst::Create(NF, Args, "", Call);
      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
      cast<CallInst>(New)->setAttributes(PAL);
      if (cast<CallInst>(Call)->isTailCall())
        cast<CallInst>(New)->setTailCall();
    }
    New->setDebugLoc(Call->getDebugLoc());

    Args.clear();

    if (!Call->use_empty())
      Call->replaceAllUsesWith(New);

    New->takeName(Call);

    // Finally, remove the old call from the program, reducing the use-count of
    // F.
    Call->eraseFromParent();
  }

  // Since we have now created the new function, splice the body of the old
  // function right into the new function, leaving the old rotting hulk of the
  // function empty.
  NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList());

  // Loop over the argument list, transferring uses of the old arguments over to
  // the new arguments, also transferring over the names as well.  While we're at
  // it, remove the dead arguments from the DeadArguments list.
  //
  for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(),
       I2 = NF->arg_begin(); I != E; ++I, ++I2) {
    // Move the name and users over to the new version.
    I->replaceAllUsesWith(I2);
    I2->takeName(I);
  }

  // Patch the pointer to LLVM function in debug info descriptor.
  FunctionDIMap::iterator DI = FunctionDIs.find(&Fn);
  if (DI != FunctionDIs.end())
    DI->second.replaceFunction(NF);

  // Fix up any BlockAddresses that refer to the function.
  Fn.replaceAllUsesWith(ConstantExpr::getBitCast(NF, Fn.getType()));
  // Delete the bitcast that we just created, so that NF does not
  // appear to be address-taken.
  NF->removeDeadConstantUsers();
  // Finally, nuke the old function.
  Fn.eraseFromParent();
  return true;
}

/// RemoveDeadArgumentsFromCallers - Checks if the given function has any 
/// arguments that are unused, and changes the caller parameters to be undefined
/// instead.
bool DAE::RemoveDeadArgumentsFromCallers(Function &Fn)
{
  if (Fn.isDeclaration() || Fn.mayBeOverridden())
    return false;

  // Functions with local linkage should already have been handled, except the
  // fragile (variadic) ones which we can improve here.
  if (Fn.hasLocalLinkage() && !Fn.getFunctionType()->isVarArg())
    return false;

  // If a function seen at compile time is not necessarily the one linked to
  // the binary being built, it is illegal to change the actual arguments
  // passed to it. These functions can be captured by isWeakForLinker().
  // *NOTE* that mayBeOverridden() is insufficient for this purpose as it
  // doesn't include linkage types like AvailableExternallyLinkage and
  // LinkOnceODRLinkage. Take link_odr* as an example, it indicates a set of
  // *EQUIVALENT* globals that can be merged at link-time. However, the
  // semantic of *EQUIVALENT*-functions includes parameters. Changing
  // parameters breaks this assumption.
  //
  if (Fn.isWeakForLinker())
    return false;

  if (Fn.use_empty())
    return false;

  SmallVector<unsigned, 8> UnusedArgs;
  for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(); 
       I != E; ++I) {
    Argument *Arg = I;

    if (Arg->use_empty() && !Arg->hasByValAttr())
      UnusedArgs.push_back(Arg->getArgNo());
  }

  if (UnusedArgs.empty())
    return false;

  bool Changed = false;

  for (Function::use_iterator I = Fn.use_begin(), E = Fn.use_end(); 
       I != E; ++I) {
    CallSite CS(*I);
    if (!CS || !CS.isCallee(I))
      continue;

    // Now go through all unused args and replace them with "undef".
    for (unsigned I = 0, E = UnusedArgs.size(); I != E; ++I) {
      unsigned ArgNo = UnusedArgs[I];

      Value *Arg = CS.getArgument(ArgNo);
      CS.setArgument(ArgNo, UndefValue::get(Arg->getType()));
      ++NumArgumentsReplacedWithUndef;
      Changed = true;
    }
  }

  return Changed;
}

/// Convenience function that returns the number of return values. It returns 0
/// for void functions and 1 for functions not returning a struct. It returns
/// the number of struct elements for functions returning a struct.
static unsigned NumRetVals(const Function *F) {
  if (F->getReturnType()->isVoidTy())
    return 0;
  else if (StructType *STy = dyn_cast<StructType>(F->getReturnType()))
    return STy->getNumElements();
  else
    return 1;
}

/// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not
/// live, it adds Use to the MaybeLiveUses argument. Returns the determined
/// liveness of Use.
DAE::Liveness DAE::MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses) {
  // We're live if our use or its Function is already marked as live.
  if (LiveFunctions.count(Use.F) || LiveValues.count(Use))
    return Live;

  // We're maybe live otherwise, but remember that we must become live if
  // Use becomes live.
  MaybeLiveUses.push_back(Use);
  return MaybeLive;
}


/// SurveyUse - This looks at a single use of an argument or return value
/// and determines if it should be alive or not. Adds this use to MaybeLiveUses
/// if it causes the used value to become MaybeLive.
///
/// RetValNum is the return value number to use when this use is used in a
/// return instruction. This is used in the recursion, you should always leave
/// it at 0.
DAE::Liveness DAE::SurveyUse(Value::const_use_iterator U,
                             UseVector &MaybeLiveUses, unsigned RetValNum) {
    const User *V = *U;
    if (const ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
      // The value is returned from a function. It's only live when the
      // function's return value is live. We use RetValNum here, for the case
      // that U is really a use of an insertvalue instruction that uses the
      // original Use.
      RetOrArg Use = CreateRet(RI->getParent()->getParent(), RetValNum);
      // We might be live, depending on the liveness of Use.
      return MarkIfNotLive(Use, MaybeLiveUses);
    }
    if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
      if (U.getOperandNo() != InsertValueInst::getAggregateOperandIndex()
          && IV->hasIndices())
        // The use we are examining is inserted into an aggregate. Our liveness
        // depends on all uses of that aggregate, but if it is used as a return
        // value, only index at which we were inserted counts.
        RetValNum = *IV->idx_begin();

      // Note that if we are used as the aggregate operand to the insertvalue,
      // we don't change RetValNum, but do survey all our uses.

      Liveness Result = MaybeLive;
      for (Value::const_use_iterator I = IV->use_begin(),
           E = V->use_end(); I != E; ++I) {
        Result = SurveyUse(I, MaybeLiveUses, RetValNum);
        if (Result == Live)
          break;
      }
      return Result;
    }

    if (ImmutableCallSite CS = V) {
      const Function *F = CS.getCalledFunction();
      if (F) {
        // Used in a direct call.

        // Find the argument number. We know for sure that this use is an
        // argument, since if it was the function argument this would be an
        // indirect call and the we know can't be looking at a value of the
        // label type (for the invoke instruction).
        unsigned ArgNo = CS.getArgumentNo(U);

        if (ArgNo >= F->getFunctionType()->getNumParams())
          // The value is passed in through a vararg! Must be live.
          return Live;

        assert(CS.getArgument(ArgNo)
               == CS->getOperand(U.getOperandNo())
               && "Argument is not where we expected it");

        // Value passed to a normal call. It's only live when the corresponding
        // argument to the called function turns out live.
        RetOrArg Use = CreateArg(F, ArgNo);
        return MarkIfNotLive(Use, MaybeLiveUses);
      }
    }
    // Used in any other way? Value must be live.
    return Live;
}

/// SurveyUses - This looks at all the uses of the given value
/// Returns the Liveness deduced from the uses of this value.
///
/// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If
/// the result is Live, MaybeLiveUses might be modified but its content should
/// be ignored (since it might not be complete).
DAE::Liveness DAE::SurveyUses(const Value *V, UseVector &MaybeLiveUses) {
  // Assume it's dead (which will only hold if there are no uses at all..).
  Liveness Result = MaybeLive;
  // Check each use.
  for (Value::const_use_iterator I = V->use_begin(),
       E = V->use_end(); I != E; ++I) {
    Result = SurveyUse(I, MaybeLiveUses);
    if (Result == Live)
      break;
  }
  return Result;
}

// SurveyFunction - This performs the initial survey of the specified function,
// checking out whether or not it uses any of its incoming arguments or whether
// any callers use the return value.  This fills in the LiveValues set and Uses
// map.
//
// We consider arguments of non-internal functions to be intrinsically alive as
// well as arguments to functions which have their "address taken".
//
void DAE::SurveyFunction(const Function &F) {
  unsigned RetCount = NumRetVals(&F);
  // Assume all return values are dead
  typedef SmallVector<Liveness, 5> RetVals;
  RetVals RetValLiveness(RetCount, MaybeLive);

  typedef SmallVector<UseVector, 5> RetUses;
  // These vectors map each return value to the uses that make it MaybeLive, so
  // we can add those to the Uses map if the return value really turns out to be
  // MaybeLive. Initialized to a list of RetCount empty lists.
  RetUses MaybeLiveRetUses(RetCount);

  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
    if (const ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
      if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType()
          != F.getFunctionType()->getReturnType()) {
        // We don't support old style multiple return values.
        MarkLive(F);
        return;
      }

  if (!F.hasLocalLinkage() && (!ShouldHackArguments() || F.isIntrinsic())) {
    MarkLive(F);
    return;
  }

  DEBUG(dbgs() << "DAE - Inspecting callers for fn: " << F.getName() << "\n");
  // Keep track of the number of live retvals, so we can skip checks once all
  // of them turn out to be live.
  unsigned NumLiveRetVals = 0;
  Type *STy = dyn_cast<StructType>(F.getReturnType());
  // Loop all uses of the function.
  for (Value::const_use_iterator I = F.use_begin(), E = F.use_end();
       I != E; ++I) {
    // If the function is PASSED IN as an argument, its address has been
    // taken.
    ImmutableCallSite CS(*I);
    if (!CS || !CS.isCallee(I)) {
      MarkLive(F);
      return;
    }

    // If this use is anything other than a call site, the function is alive.
    const Instruction *TheCall = CS.getInstruction();
    if (!TheCall) {   // Not a direct call site?
      MarkLive(F);
      return;
    }

    // If we end up here, we are looking at a direct call to our function.

    // Now, check how our return value(s) is/are used in this caller. Don't
    // bother checking return values if all of them are live already.
    if (NumLiveRetVals != RetCount) {
      if (STy) {
        // Check all uses of the return value.
        for (Value::const_use_iterator I = TheCall->use_begin(),
             E = TheCall->use_end(); I != E; ++I) {
          const ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(*I);
          if (Ext && Ext->hasIndices()) {
            // This use uses a part of our return value, survey the uses of
            // that part and store the results for this index only.
            unsigned Idx = *Ext->idx_begin();
            if (RetValLiveness[Idx] != Live) {
              RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]);
              if (RetValLiveness[Idx] == Live)
                NumLiveRetVals++;
            }
          } else {
            // Used by something else than extractvalue. Mark all return
            // values as live.
            for (unsigned i = 0; i != RetCount; ++i )
              RetValLiveness[i] = Live;
            NumLiveRetVals = RetCount;
            break;
          }
        }
      } else {
        // Single return value
        RetValLiveness[0] = SurveyUses(TheCall, MaybeLiveRetUses[0]);
        if (RetValLiveness[0] == Live)
          NumLiveRetVals = RetCount;
      }
    }
  }

  // Now we've inspected all callers, record the liveness of our return values.
  for (unsigned i = 0; i != RetCount; ++i)
    MarkValue(CreateRet(&F, i), RetValLiveness[i], MaybeLiveRetUses[i]);

  DEBUG(dbgs() << "DAE - Inspecting args for fn: " << F.getName() << "\n");

  // Now, check all of our arguments.
  unsigned i = 0;
  UseVector MaybeLiveArgUses;
  for (Function::const_arg_iterator AI = F.arg_begin(),
       E = F.arg_end(); AI != E; ++AI, ++i) {
    Liveness Result;
    if (F.getFunctionType()->isVarArg()) {
      // Variadic functions will already have a va_arg function expanded inside
      // them, making them potentially very sensitive to ABI changes resulting
      // from removing arguments entirely, so don't. For example AArch64 handles
      // register and stack HFAs very differently, and this is reflected in the
      // IR which has already been generated.
      Result = Live;
    } else {
      // See what the effect of this use is (recording any uses that cause
      // MaybeLive in MaybeLiveArgUses). 
      Result = SurveyUses(AI, MaybeLiveArgUses);
    }

    // Mark the result.
    MarkValue(CreateArg(&F, i), Result, MaybeLiveArgUses);
    // Clear the vector again for the next iteration.
    MaybeLiveArgUses.clear();
  }
}

/// MarkValue - This function marks the liveness of RA depending on L. If L is
/// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses,
/// such that RA will be marked live if any use in MaybeLiveUses gets marked
/// live later on.
void DAE::MarkValue(const RetOrArg &RA, Liveness L,
                    const UseVector &MaybeLiveUses) {
  switch (L) {
    case Live: MarkLive(RA); break;
    case MaybeLive:
    {
      // Note any uses of this value, so this return value can be
      // marked live whenever one of the uses becomes live.
      for (UseVector::const_iterator UI = MaybeLiveUses.begin(),
           UE = MaybeLiveUses.end(); UI != UE; ++UI)
        Uses.insert(std::make_pair(*UI, RA));
      break;
    }
  }
}

/// MarkLive - Mark the given Function as alive, meaning that it cannot be
/// changed in any way. Additionally,
/// mark any values that are used as this function's parameters or by its return
/// values (according to Uses) live as well.
void DAE::MarkLive(const Function &F) {
  DEBUG(dbgs() << "DAE - Intrinsically live fn: " << F.getName() << "\n");
  // Mark the function as live.
  LiveFunctions.insert(&F);
  // Mark all arguments as live.
  for (unsigned i = 0, e = F.arg_size(); i != e; ++i)
    PropagateLiveness(CreateArg(&F, i));
  // Mark all return values as live.
  for (unsigned i = 0, e = NumRetVals(&F); i != e; ++i)
    PropagateLiveness(CreateRet(&F, i));
}

/// MarkLive - Mark the given return value or argument as live. Additionally,
/// mark any values that are used by this value (according to Uses) live as
/// well.
void DAE::MarkLive(const RetOrArg &RA) {
  if (LiveFunctions.count(RA.F))
    return; // Function was already marked Live.

  if (!LiveValues.insert(RA).second)
    return; // We were already marked Live.

  DEBUG(dbgs() << "DAE - Marking " << RA.getDescription() << " live\n");
  PropagateLiveness(RA);
}

/// PropagateLiveness - Given that RA is a live value, propagate it's liveness
/// to any other values it uses (according to Uses).
void DAE::PropagateLiveness(const RetOrArg &RA) {
  // We don't use upper_bound (or equal_range) here, because our recursive call
  // to ourselves is likely to cause the upper_bound (which is the first value
  // not belonging to RA) to become erased and the iterator invalidated.
  UseMap::iterator Begin = Uses.lower_bound(RA);
  UseMap::iterator E = Uses.end();
  UseMap::iterator I;
  for (I = Begin; I != E && I->first == RA; ++I)
    MarkLive(I->second);

  // Erase RA from the Uses map (from the lower bound to wherever we ended up
  // after the loop).
  Uses.erase(Begin, I);
}

// RemoveDeadStuffFromFunction - Remove any arguments and return values from F
// that are not in LiveValues. Transform the function and all of the callees of
// the function to not have these arguments and return values.
//
bool DAE::RemoveDeadStuffFromFunction(Function *F) {
  // Don't modify fully live functions
  if (LiveFunctions.count(F))
    return false;

  // Start by computing a new prototype for the function, which is the same as
  // the old function, but has fewer arguments and a different return type.
  FunctionType *FTy = F->getFunctionType();
  std::vector<Type*> Params;

  // Keep track of if we have a live 'returned' argument
  bool HasLiveReturnedArg = false;

  // Set up to build a new list of parameter attributes.
  SmallVector<AttributeSet, 8> AttributesVec;
  const AttributeSet &PAL = F->getAttributes();

  // Remember which arguments are still alive.
  SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
  // Construct the new parameter list from non-dead arguments. Also construct
  // a new set of parameter attributes to correspond. Skip the first parameter
  // attribute, since that belongs to the return value.
  unsigned i = 0;
  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
       I != E; ++I, ++i) {
    RetOrArg Arg = CreateArg(F, i);
    if (LiveValues.erase(Arg)) {
      Params.push_back(I->getType());
      ArgAlive[i] = true;

      // Get the original parameter attributes (skipping the first one, that is
      // for the return value.
      if (PAL.hasAttributes(i + 1)) {
        AttrBuilder B(PAL, i + 1);
        if (B.contains(Attribute::Returned))
          HasLiveReturnedArg = true;
        AttributesVec.
          push_back(AttributeSet::get(F->getContext(), Params.size(), B));
      }
    } else {
      ++NumArgumentsEliminated;
      DEBUG(dbgs() << "DAE - Removing argument " << i << " (" << I->getName()
            << ") from " << F->getName() << "\n");
    }
  }

  // Find out the new return value.
  Type *RetTy = FTy->getReturnType();
  Type *NRetTy = NULL;
  unsigned RetCount = NumRetVals(F);

  // -1 means unused, other numbers are the new index
  SmallVector<int, 5> NewRetIdxs(RetCount, -1);
  std::vector<Type*> RetTypes;

  // If there is a function with a live 'returned' argument but a dead return
  // value, then there are two possible actions:
  // 1) Eliminate the return value and take off the 'returned' attribute on the
  //    argument.
  // 2) Retain the 'returned' attribute and treat the return value (but not the
  //    entire function) as live so that it is not eliminated.
  // 
  // It's not clear in the general case which option is more profitable because,
  // even in the absence of explicit uses of the return value, code generation
  // is free to use the 'returned' attribute to do things like eliding
  // save/restores of registers across calls. Whether or not this happens is
  // target and ABI-specific as well as depending on the amount of register
  // pressure, so there's no good way for an IR-level pass to figure this out.
  //
  // Fortunately, the only places where 'returned' is currently generated by
  // the FE are places where 'returned' is basically free and almost always a
  // performance win, so the second option can just be used always for now.
  //
  // This should be revisited if 'returned' is ever applied more liberally.
  if (RetTy->isVoidTy() || HasLiveReturnedArg) {
    NRetTy = RetTy;
  } else {
    StructType *STy = dyn_cast<StructType>(RetTy);
    if (STy)
      // Look at each of the original return values individually.
      for (unsigned i = 0; i != RetCount; ++i) {
        RetOrArg Ret = CreateRet(F, i);
        if (LiveValues.erase(Ret)) {
          RetTypes.push_back(STy->getElementType(i));
          NewRetIdxs[i] = RetTypes.size() - 1;
        } else {
          ++NumRetValsEliminated;
          DEBUG(dbgs() << "DAE - Removing return value " << i << " from "
                << F->getName() << "\n");
        }
      }
    else
      // We used to return a single value.
      if (LiveValues.erase(CreateRet(F, 0))) {
        RetTypes.push_back(RetTy);
        NewRetIdxs[0] = 0;
      } else {
        DEBUG(dbgs() << "DAE - Removing return value from " << F->getName()
              << "\n");
        ++NumRetValsEliminated;
      }
    if (RetTypes.size() > 1)
      // More than one return type? Return a struct with them. Also, if we used
      // to return a struct and didn't change the number of return values,
      // return a struct again. This prevents changing {something} into
      // something and {} into void.
      // Make the new struct packed if we used to return a packed struct
      // already.
      NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked());
    else if (RetTypes.size() == 1)
      // One return type? Just a simple value then, but only if we didn't use to
      // return a struct with that simple value before.
      NRetTy = RetTypes.front();
    else if (RetTypes.size() == 0)
      // No return types? Make it void, but only if we didn't use to return {}.
      NRetTy = Type::getVoidTy(F->getContext());
  }

  assert(NRetTy && "No new return type found?");

  // The existing function return attributes.
  AttributeSet RAttrs = PAL.getRetAttributes();

  // Remove any incompatible attributes, but only if we removed all return
  // values. Otherwise, ensure that we don't have any conflicting attributes
  // here. Currently, this should not be possible, but special handling might be
  // required when new return value attributes are added.
  if (NRetTy->isVoidTy())
    RAttrs =
      AttributeSet::get(NRetTy->getContext(), AttributeSet::ReturnIndex,
                        AttrBuilder(RAttrs, AttributeSet::ReturnIndex).
         removeAttributes(AttributeFuncs::
                          typeIncompatible(NRetTy, AttributeSet::ReturnIndex),
                          AttributeSet::ReturnIndex));
  else
    assert(!AttrBuilder(RAttrs, AttributeSet::ReturnIndex).
             hasAttributes(AttributeFuncs::
                           typeIncompatible(NRetTy, AttributeSet::ReturnIndex),
                           AttributeSet::ReturnIndex) &&
           "Return attributes no longer compatible?");

  if (RAttrs.hasAttributes(AttributeSet::ReturnIndex))
    AttributesVec.push_back(AttributeSet::get(NRetTy->getContext(), RAttrs));

  if (PAL.hasAttributes(AttributeSet::FunctionIndex))
    AttributesVec.push_back(AttributeSet::get(F->getContext(),
                                              PAL.getFnAttributes()));

  // Reconstruct the AttributesList based on the vector we constructed.
  AttributeSet NewPAL = AttributeSet::get(F->getContext(), AttributesVec);

  // Create the new function type based on the recomputed parameters.
  FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg());

  // No change?
  if (NFTy == FTy)
    return false;

  // Create the new function body and insert it into the module...
  Function *NF = Function::Create(NFTy, F->getLinkage());
  NF->copyAttributesFrom(F);
  NF->setAttributes(NewPAL);
  // Insert the new function before the old function, so we won't be processing
  // it again.
  F->getParent()->getFunctionList().insert(F, NF);
  NF->takeName(F);

  // Loop over all of the callers of the function, transforming the call sites
  // to pass in a smaller number of arguments into the new function.
  //
  std::vector<Value*> Args;
  while (!F->use_empty()) {
    CallSite CS(F->use_back());
    Instruction *Call = CS.getInstruction();

    AttributesVec.clear();
    const AttributeSet &CallPAL = CS.getAttributes();

    // The call return attributes.
    AttributeSet RAttrs = CallPAL.getRetAttributes();

    // Adjust in case the function was changed to return void.
    RAttrs =
      AttributeSet::get(NF->getContext(), AttributeSet::ReturnIndex,
                        AttrBuilder(RAttrs, AttributeSet::ReturnIndex).
        removeAttributes(AttributeFuncs::
                         typeIncompatible(NF->getReturnType(),
                                          AttributeSet::ReturnIndex),
                         AttributeSet::ReturnIndex));
    if (RAttrs.hasAttributes(AttributeSet::ReturnIndex))
      AttributesVec.push_back(AttributeSet::get(NF->getContext(), RAttrs));

    // Declare these outside of the loops, so we can reuse them for the second
    // loop, which loops the varargs.
    CallSite::arg_iterator I = CS.arg_begin();
    unsigned i = 0;
    // Loop over those operands, corresponding to the normal arguments to the
    // original function, and add those that are still alive.
    for (unsigned e = FTy->getNumParams(); i != e; ++I, ++i)
      if (ArgAlive[i]) {
        Args.push_back(*I);
        // Get original parameter attributes, but skip return attributes.
        if (CallPAL.hasAttributes(i + 1)) {
          AttrBuilder B(CallPAL, i + 1);
          // If the return type has changed, then get rid of 'returned' on the
          // call site. The alternative is to make all 'returned' attributes on
          // call sites keep the return value alive just like 'returned'
          // attributes on function declaration but it's less clearly a win
          // and this is not an expected case anyway
          if (NRetTy != RetTy && B.contains(Attribute::Returned))
            B.removeAttribute(Attribute::Returned);
          AttributesVec.
            push_back(AttributeSet::get(F->getContext(), Args.size(), B));
        }
      }

    // Push any varargs arguments on the list. Don't forget their attributes.
    for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) {
      Args.push_back(*I);
      if (CallPAL.hasAttributes(i + 1)) {
        AttrBuilder B(CallPAL, i + 1);
        AttributesVec.
          push_back(AttributeSet::get(F->getContext(), Args.size(), B));
      }
    }

    if (CallPAL.hasAttributes(AttributeSet::FunctionIndex))
      AttributesVec.push_back(AttributeSet::get(Call->getContext(),
                                                CallPAL.getFnAttributes()));

    // Reconstruct the AttributesList based on the vector we constructed.
    AttributeSet NewCallPAL = AttributeSet::get(F->getContext(), AttributesVec);

    Instruction *New;
    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
                               Args, "", Call);
      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
      cast<InvokeInst>(New)->setAttributes(NewCallPAL);
    } else {
      New = CallInst::Create(NF, Args, "", Call);
      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
      cast<CallInst>(New)->setAttributes(NewCallPAL);
      if (cast<CallInst>(Call)->isTailCall())
        cast<CallInst>(New)->setTailCall();
    }
    New->setDebugLoc(Call->getDebugLoc());

    Args.clear();

    if (!Call->use_empty()) {
      if (New->getType() == Call->getType()) {
        // Return type not changed? Just replace users then.
        Call->replaceAllUsesWith(New);
        New->takeName(Call);
      } else if (New->getType()->isVoidTy()) {
        // Our return value has uses, but they will get removed later on.
        // Replace by null for now.
        if (!Call->getType()->isX86_MMXTy())
          Call->replaceAllUsesWith(Constant::getNullValue(Call->getType()));
      } else {
        assert(RetTy->isStructTy() &&
               "Return type changed, but not into a void. The old return type"
               " must have been a struct!");
        Instruction *InsertPt = Call;
        if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
          BasicBlock::iterator IP = II->getNormalDest()->begin();
          while (isa<PHINode>(IP)) ++IP;
          InsertPt = IP;
        }

        // We used to return a struct. Instead of doing smart stuff with all the
        // uses of this struct, we will just rebuild it using
        // extract/insertvalue chaining and let instcombine clean that up.
        //
        // Start out building up our return value from undef
        Value *RetVal = UndefValue::get(RetTy);
        for (unsigned i = 0; i != RetCount; ++i)
          if (NewRetIdxs[i] != -1) {
            Value *V;
            if (RetTypes.size() > 1)
              // We are still returning a struct, so extract the value from our
              // return value
              V = ExtractValueInst::Create(New, NewRetIdxs[i], "newret",
                                           InsertPt);
            else
              // We are now returning a single element, so just insert that
              V = New;
            // Insert the value at the old position
            RetVal = InsertValueInst::Create(RetVal, V, i, "oldret", InsertPt);
          }
        // Now, replace all uses of the old call instruction with the return
        // struct we built
        Call->replaceAllUsesWith(RetVal);
        New->takeName(Call);
      }
    }

    // Finally, remove the old call from the program, reducing the use-count of
    // F.
    Call->eraseFromParent();
  }

  // Since we have now created the new function, splice the body of the old
  // function right into the new function, leaving the old rotting hulk of the
  // function empty.
  NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());

  // Loop over the argument list, transferring uses of the old arguments over to
  // the new arguments, also transferring over the names as well.
  i = 0;
  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
       I2 = NF->arg_begin(); I != E; ++I, ++i)
    if (ArgAlive[i]) {
      // If this is a live argument, move the name and users over to the new
      // version.
      I->replaceAllUsesWith(I2);
      I2->takeName(I);
      ++I2;
    } else {
      // If this argument is dead, replace any uses of it with null constants
      // (these are guaranteed to become unused later on).
      if (!I->getType()->isX86_MMXTy())
        I->replaceAllUsesWith(Constant::getNullValue(I->getType()));
    }

  // If we change the return value of the function we must rewrite any return
  // instructions.  Check this now.
  if (F->getReturnType() != NF->getReturnType())
    for (Function::iterator BB = NF->begin(), E = NF->end(); BB != E; ++BB)
      if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
        Value *RetVal;

        if (NFTy->getReturnType()->isVoidTy()) {
          RetVal = 0;
        } else {
          assert (RetTy->isStructTy());
          // The original return value was a struct, insert
          // extractvalue/insertvalue chains to extract only the values we need
          // to return and insert them into our new result.
          // This does generate messy code, but we'll let it to instcombine to
          // clean that up.
          Value *OldRet = RI->getOperand(0);
          // Start out building up our return value from undef
          RetVal = UndefValue::get(NRetTy);
          for (unsigned i = 0; i != RetCount; ++i)
            if (NewRetIdxs[i] != -1) {
              ExtractValueInst *EV = ExtractValueInst::Create(OldRet, i,
                                                              "oldret", RI);
              if (RetTypes.size() > 1) {
                // We're still returning a struct, so reinsert the value into
                // our new return value at the new index

                RetVal = InsertValueInst::Create(RetVal, EV, NewRetIdxs[i],
                                                 "newret", RI);
              } else {
                // We are now only returning a simple value, so just return the
                // extracted value.
                RetVal = EV;
              }
            }
        }
        // Replace the return instruction with one returning the new return
        // value (possibly 0 if we became void).
        ReturnInst::Create(F->getContext(), RetVal, RI);
        BB->getInstList().erase(RI);
      }

  // Patch the pointer to LLVM function in debug info descriptor.
  FunctionDIMap::iterator DI = FunctionDIs.find(F);
  if (DI != FunctionDIs.end())
    DI->second.replaceFunction(NF);

  // Now that the old function is dead, delete it.
  F->eraseFromParent();

  return true;
}

bool DAE::runOnModule(Module &M) {
  bool Changed = false;

  // Collect debug info descriptors for functions.
  CollectFunctionDIs(M);

  // First pass: Do a simple check to see if any functions can have their "..."
  // removed.  We can do this if they never call va_start.  This loop cannot be
  // fused with the next loop, because deleting a function invalidates
  // information computed while surveying other functions.
  DEBUG(dbgs() << "DAE - Deleting dead varargs\n");
  for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
    Function &F = *I++;
    if (F.getFunctionType()->isVarArg())
      Changed |= DeleteDeadVarargs(F);
  }

  // Second phase:loop through the module, determining which arguments are live.
  // We assume all arguments are dead unless proven otherwise (allowing us to
  // determine that dead arguments passed into recursive functions are dead).
  //
  DEBUG(dbgs() << "DAE - Determining liveness\n");
  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
    SurveyFunction(*I);

  // Now, remove all dead arguments and return values from each function in
  // turn.
  for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
    // Increment now, because the function will probably get removed (ie.
    // replaced by a new one).
    Function *F = I++;
    Changed |= RemoveDeadStuffFromFunction(F);
  }

  // Finally, look for any unused parameters in functions with non-local
  // linkage and replace the passed in parameters with undef.
  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
    Function& F = *I;

    Changed |= RemoveDeadArgumentsFromCallers(F);
  }

  return Changed;
}