1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
|
//===- FunctionResolution.cpp - Resolve declarations to implementations ---===//
//
// Loop over the functions that are in the module and look for functions that
// have the same name. More often than not, there will be things like:
//
// declare void %foo(...)
// void %foo(int, int) { ... }
//
// because of the way things are declared in C. If this is the case, patch
// things up.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/IPO.h"
#include "llvm/Module.h"
#include "llvm/SymbolTable.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Pass.h"
#include "llvm/iOther.h"
#include "llvm/Constant.h"
#include "Support/StatisticReporter.h"
#include <iostream>
#include <algorithm>
using std::vector;
using std::string;
using std::cerr;
namespace {
Statistic<>NumResolved("funcresolve\t- Number of varargs functions resolved");
struct FunctionResolvingPass : public Pass {
bool run(Module &M);
};
RegisterOpt<FunctionResolvingPass> X("funcresolve", "Resolve Functions");
}
Pass *createFunctionResolvingPass() {
return new FunctionResolvingPass();
}
// ConvertCallTo - Convert a call to a varargs function with no arg types
// specified to a concrete nonvarargs function.
//
static void ConvertCallTo(CallInst *CI, Function *Dest) {
const FunctionType::ParamTypes &ParamTys =
Dest->getFunctionType()->getParamTypes();
BasicBlock *BB = CI->getParent();
// Keep an iterator to where we want to insert cast instructions if the
// argument types don't agree.
//
BasicBlock::iterator BBI = CI;
assert(CI->getNumOperands()-1 == ParamTys.size() &&
"Function calls resolved funny somehow, incompatible number of args");
vector<Value*> Params;
// Convert all of the call arguments over... inserting cast instructions if
// the types are not compatible.
for (unsigned i = 1; i < CI->getNumOperands(); ++i) {
Value *V = CI->getOperand(i);
if (V->getType() != ParamTys[i-1]) { // Must insert a cast...
Instruction *Cast = new CastInst(V, ParamTys[i-1]);
BBI = ++BB->getInstList().insert(BBI, Cast);
V = Cast;
}
Params.push_back(V);
}
Instruction *NewCall = new CallInst(Dest, Params);
// Replace the old call instruction with a new call instruction that calls
// the real function.
//
BBI = ++BB->getInstList().insert(BBI, NewCall);
// Remove the old call instruction from the program...
BB->getInstList().remove(BBI);
// Replace uses of the old instruction with the appropriate values...
//
if (NewCall->getType() == CI->getType()) {
CI->replaceAllUsesWith(NewCall);
NewCall->setName(CI->getName());
} else if (NewCall->getType() == Type::VoidTy) {
// Resolved function does not return a value but the prototype does. This
// often occurs because undefined functions default to returning integers.
// Just replace uses of the call (which are broken anyway) with dummy
// values.
CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
} else if (CI->getType() == Type::VoidTy) {
// If we are gaining a new return value, we don't have to do anything
// special.
} else {
assert(0 && "This should have been checked before!");
abort();
}
// The old instruction is no longer needed, destroy it!
delete CI;
}
bool FunctionResolvingPass::run(Module &M) {
SymbolTable *ST = M.getSymbolTable();
if (!ST) return false;
std::map<string, vector<Function*> > Functions;
// Loop over the entries in the symbol table. If an entry is a func pointer,
// then add it to the Functions map. We do a two pass algorithm here to avoid
// problems with iterators getting invalidated if we did a one pass scheme.
//
for (SymbolTable::iterator I = ST->begin(), E = ST->end(); I != E; ++I)
if (const PointerType *PT = dyn_cast<PointerType>(I->first))
if (isa<FunctionType>(PT->getElementType())) {
SymbolTable::VarMap &Plane = I->second;
for (SymbolTable::type_iterator PI = Plane.begin(), PE = Plane.end();
PI != PE; ++PI) {
Function *F = cast<Function>(PI->second);
assert(PI->first == F->getName() &&
"Function name and symbol table do not agree!");
if (F->hasExternalLinkage()) // Only resolve decls to external fns
Functions[PI->first].push_back(F);
}
}
bool Changed = false;
// Now we have a list of all functions with a particular name. If there is
// more than one entry in a list, merge the functions together.
//
for (std::map<string, vector<Function*> >::iterator I = Functions.begin(),
E = Functions.end(); I != E; ++I) {
vector<Function*> &Functions = I->second;
Function *Implementation = 0; // Find the implementation
Function *Concrete = 0;
for (unsigned i = 0; i < Functions.size(); ) {
if (!Functions[i]->isExternal()) { // Found an implementation
if (Implementation != 0)
assert(Implementation == 0 && "Multiple definitions of the same"
" function. Case not handled yet!");
Implementation = Functions[i];
} else {
// Ignore functions that are never used so they don't cause spurious
// warnings... here we will actually DCE the function so that it isn't
// used later.
//
if (Functions[i]->use_empty()) {
M.getFunctionList().erase(Functions[i]);
Functions.erase(Functions.begin()+i);
Changed = true;
++NumResolved;
continue;
}
}
if (Functions[i] && (!Functions[i]->getFunctionType()->isVarArg())) {
if (Concrete) { // Found two different functions types. Can't choose
Concrete = 0;
break;
}
Concrete = Functions[i];
}
++i;
}
if (Functions.size() > 1) { // Found a multiply defined function...
// We should find exactly one non-vararg function definition, which is
// probably the implementation. Change all of the function definitions
// and uses to use it instead.
//
if (!Concrete) {
cerr << "Warning: Found functions types that are not compatible:\n";
for (unsigned i = 0; i < Functions.size(); ++i) {
cerr << "\t" << Functions[i]->getType()->getDescription() << " %"
<< Functions[i]->getName() << "\n";
}
cerr << " No linkage of functions named '" << Functions[0]->getName()
<< "' performed!\n";
} else {
for (unsigned i = 0; i < Functions.size(); ++i)
if (Functions[i] != Concrete) {
Function *Old = Functions[i];
const FunctionType *OldMT = Old->getFunctionType();
const FunctionType *ConcreteMT = Concrete->getFunctionType();
bool Broken = false;
assert((Old->getReturnType() == Concrete->getReturnType() ||
Concrete->getReturnType() == Type::VoidTy ||
Old->getReturnType() == Type::VoidTy) &&
"Differing return types not handled yet!");
assert(OldMT->getParamTypes().size() <=
ConcreteMT->getParamTypes().size() &&
"Concrete type must have more specified parameters!");
// Check to make sure that if there are specified types, that they
// match...
//
for (unsigned i = 0; i < OldMT->getParamTypes().size(); ++i)
if (OldMT->getParamTypes()[i] != ConcreteMT->getParamTypes()[i]) {
cerr << "Parameter types conflict for" << OldMT
<< " and " << ConcreteMT;
Broken = true;
}
if (Broken) break; // Can't process this one!
// Attempt to convert all of the uses of the old function to the
// concrete form of the function. If there is a use of the fn that
// we don't understand here we punt to avoid making a bad
// transformation.
//
// At this point, we know that the return values are the same for
// our two functions and that the Old function has no varargs fns
// specified. In otherwords it's just <retty> (...)
//
for (unsigned i = 0; i < Old->use_size(); ) {
User *U = *(Old->use_begin()+i);
if (CastInst *CI = dyn_cast<CastInst>(U)) {
// Convert casts directly
assert(CI->getOperand(0) == Old);
CI->setOperand(0, Concrete);
Changed = true;
++NumResolved;
} else if (CallInst *CI = dyn_cast<CallInst>(U)) {
// Can only fix up calls TO the argument, not args passed in.
if (CI->getCalledValue() == Old) {
ConvertCallTo(CI, Concrete);
Changed = true;
++NumResolved;
} else {
cerr << "Couldn't cleanup this function call, must be an"
<< " argument or something!" << CI;
++i;
}
} else {
cerr << "Cannot convert use of function: " << U << "\n";
++i;
}
}
}
}
}
}
return Changed;
}
|