1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
|
//===- FunctionResolution.cpp - Resolve declarations to implementations ---===//
//
// Loop over the functions that are in the module and look for functions that
// have the same name. More often than not, there will be things like:
//
// declare void %foo(...)
// void %foo(int, int) { ... }
//
// because of the way things are declared in C. If this is the case, patch
// things up.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/IPO.h"
#include "llvm/Module.h"
#include "llvm/SymbolTable.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Pass.h"
#include "llvm/iOther.h"
#include "llvm/Constants.h"
#include "Support/Statistic.h"
#include <algorithm>
using std::vector;
using std::string;
using std::cerr;
namespace {
Statistic<>NumResolved("funcresolve", "Number of varargs functions resolved");
Statistic<> NumGlobals("funcresolve", "Number of global variables resolved");
struct FunctionResolvingPass : public Pass {
bool run(Module &M);
};
RegisterOpt<FunctionResolvingPass> X("funcresolve", "Resolve Functions");
}
Pass *createFunctionResolvingPass() {
return new FunctionResolvingPass();
}
// ConvertCallTo - Convert a call to a varargs function with no arg types
// specified to a concrete nonvarargs function.
//
static void ConvertCallTo(CallInst *CI, Function *Dest) {
const FunctionType::ParamTypes &ParamTys =
Dest->getFunctionType()->getParamTypes();
BasicBlock *BB = CI->getParent();
// Keep an iterator to where we want to insert cast instructions if the
// argument types don't agree.
//
BasicBlock::iterator BBI = CI;
assert(CI->getNumOperands()-1 == ParamTys.size() &&
"Function calls resolved funny somehow, incompatible number of args");
vector<Value*> Params;
// Convert all of the call arguments over... inserting cast instructions if
// the types are not compatible.
for (unsigned i = 1; i < CI->getNumOperands(); ++i) {
Value *V = CI->getOperand(i);
if (V->getType() != ParamTys[i-1]) // Must insert a cast...
V = new CastInst(V, ParamTys[i-1], "argcast", BBI);
Params.push_back(V);
}
// Replace the old call instruction with a new call instruction that calls
// the real function.
//
Instruction *NewCall = new CallInst(Dest, Params, "", BBI);
// Remove the old call instruction from the program...
BB->getInstList().remove(BBI);
// Transfer the name over...
if (NewCall->getType() != Type::VoidTy)
NewCall->setName(CI->getName());
// Replace uses of the old instruction with the appropriate values...
//
if (NewCall->getType() == CI->getType()) {
CI->replaceAllUsesWith(NewCall);
NewCall->setName(CI->getName());
} else if (NewCall->getType() == Type::VoidTy) {
// Resolved function does not return a value but the prototype does. This
// often occurs because undefined functions default to returning integers.
// Just replace uses of the call (which are broken anyway) with dummy
// values.
CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
} else if (CI->getType() == Type::VoidTy) {
// If we are gaining a new return value, we don't have to do anything
// special here, because it will automatically be ignored.
} else {
// Insert a cast instruction to convert the return value of the function
// into it's new type. Of course we only need to do this if the return
// value of the function is actually USED.
//
if (!CI->use_empty()) {
// Insert the new cast instruction...
CastInst *NewCast = new CastInst(NewCall, CI->getType(),
NewCall->getName(), BBI);
CI->replaceAllUsesWith(NewCast);
}
}
// The old instruction is no longer needed, destroy it!
delete CI;
}
static bool ResolveFunctions(Module &M, vector<GlobalValue*> &Globals,
Function *Concrete) {
bool Changed = false;
for (unsigned i = 0; i != Globals.size(); ++i)
if (Globals[i] != Concrete) {
Function *Old = cast<Function>(Globals[i]);
const FunctionType *OldMT = Old->getFunctionType();
const FunctionType *ConcreteMT = Concrete->getFunctionType();
assert(OldMT->getParamTypes().size() <=
ConcreteMT->getParamTypes().size() &&
"Concrete type must have more specified parameters!");
// Check to make sure that if there are specified types, that they
// match...
//
for (unsigned i = 0; i < OldMT->getParamTypes().size(); ++i)
if (OldMT->getParamTypes()[i] != ConcreteMT->getParamTypes()[i]) {
cerr << "Parameter types conflict for: '" << OldMT
<< "' and '" << ConcreteMT << "'\n";
return Changed;
}
// Attempt to convert all of the uses of the old function to the
// concrete form of the function. If there is a use of the fn that
// we don't understand here we punt to avoid making a bad
// transformation.
//
// At this point, we know that the return values are the same for
// our two functions and that the Old function has no varargs fns
// specified. In otherwords it's just <retty> (...)
//
for (unsigned i = 0; i < Old->use_size(); ) {
User *U = *(Old->use_begin()+i);
if (CastInst *CI = dyn_cast<CastInst>(U)) {
// Convert casts directly
assert(CI->getOperand(0) == Old);
CI->setOperand(0, Concrete);
Changed = true;
++NumResolved;
} else if (CallInst *CI = dyn_cast<CallInst>(U)) {
// Can only fix up calls TO the argument, not args passed in.
if (CI->getCalledValue() == Old) {
ConvertCallTo(CI, Concrete);
Changed = true;
++NumResolved;
} else {
cerr << "Couldn't cleanup this function call, must be an"
<< " argument or something!" << CI;
++i;
}
} else {
cerr << "Cannot convert use of function: " << U << "\n";
++i;
}
}
}
return Changed;
}
static bool ResolveGlobalVariables(Module &M, vector<GlobalValue*> &Globals,
GlobalVariable *Concrete) {
bool Changed = false;
assert(isa<ArrayType>(Concrete->getType()->getElementType()) &&
"Concrete version should be an array type!");
// Get the type of the things that may be resolved to us...
const Type *AETy =
cast<ArrayType>(Concrete->getType()->getElementType())->getElementType();
std::vector<Constant*> Args;
Args.push_back(Constant::getNullValue(Type::LongTy));
Args.push_back(Constant::getNullValue(Type::LongTy));
ConstantExpr *Replacement =
ConstantExpr::getGetElementPtr(ConstantPointerRef::get(Concrete), Args);
for (unsigned i = 0; i != Globals.size(); ++i)
if (Globals[i] != Concrete) {
GlobalVariable *Old = cast<GlobalVariable>(Globals[i]);
if (Old->getType()->getElementType() != AETy) {
std::cerr << "WARNING: Two global variables exist with the same name "
<< "that cannot be resolved!\n";
return false;
}
// In this case, Old is a pointer to T, Concrete is a pointer to array of
// T. Because of this, replace all uses of Old with a constantexpr
// getelementptr that returns the address of the first element of the
// array.
//
Old->replaceAllUsesWith(Replacement);
// Since there are no uses of Old anymore, remove it from the module.
M.getGlobalList().erase(Old);
++NumGlobals;
Changed = true;
}
return Changed;
}
static bool ProcessGlobalsWithSameName(Module &M,
vector<GlobalValue*> &Globals) {
assert(!Globals.empty() && "Globals list shouldn't be empty here!");
bool isFunction = isa<Function>(Globals[0]); // Is this group all functions?
bool Changed = false;
GlobalValue *Concrete = 0; // The most concrete implementation to resolve to
assert((isFunction ^ isa<GlobalVariable>(Globals[0])) &&
"Should either be function or gvar!");
for (unsigned i = 0; i != Globals.size(); ) {
if (isa<Function>(Globals[i]) != isFunction) {
std::cerr << "WARNING: Found function and global variable with the "
<< "same name: '" << Globals[i]->getName() << "'.\n";
return false; // Don't know how to handle this, bail out!
}
if (isFunction) {
// For functions, we look to merge functions definitions of "int (...)"
// to 'int (int)' or 'int ()' or whatever else is not completely generic.
//
Function *F = cast<Function>(Globals[i]);
if (!F->isExternal()) {
if (Concrete && !Concrete->isExternal())
return false; // Found two different functions types. Can't choose!
Concrete = Globals[i];
} else if (Concrete) {
if (Concrete->isExternal()) // If we have multiple external symbols...x
if (F->getFunctionType()->getNumParams() >
cast<Function>(Concrete)->getFunctionType()->getNumParams())
Concrete = F; // We are more concrete than "Concrete"!
} else {
Concrete = F;
}
++i;
} else {
// For global variables, we have to merge C definitions int A[][4] with
// int[6][4]
GlobalVariable *GV = cast<GlobalVariable>(Globals[i]);
if (Concrete == 0) {
if (isa<ArrayType>(GV->getType()->getElementType()))
Concrete = GV;
} else { // Must have different types... one is an array of the other?
const ArrayType *AT =
dyn_cast<ArrayType>(GV->getType()->getElementType());
// If GV is an array of Concrete, then GV is the array.
if (AT && AT->getElementType() == Concrete->getType()->getElementType())
Concrete = GV;
else {
// Concrete must be an array type, check to see if the element type of
// concrete is already GV.
AT = cast<ArrayType>(Concrete->getType()->getElementType());
if (AT->getElementType() != GV->getType()->getElementType())
Concrete = 0; // Don't know how to handle it!
}
}
++i;
}
}
if (Globals.size() > 1) { // Found a multiply defined global...
// We should find exactly one concrete function definition, which is
// probably the implementation. Change all of the function definitions and
// uses to use it instead.
//
if (!Concrete) {
cerr << "WARNING: Found function types that are not compatible:\n";
for (unsigned i = 0; i < Globals.size(); ++i) {
cerr << "\t" << Globals[i]->getType()->getDescription() << " %"
<< Globals[i]->getName() << "\n";
}
cerr << " No linkage of globals named '" << Globals[0]->getName()
<< "' performed!\n";
return Changed;
}
if (isFunction)
return Changed | ResolveFunctions(M, Globals, cast<Function>(Concrete));
else
return Changed | ResolveGlobalVariables(M, Globals,
cast<GlobalVariable>(Concrete));
}
return Changed;
}
bool FunctionResolvingPass::run(Module &M) {
SymbolTable *ST = M.getSymbolTable();
if (!ST) return false;
std::map<string, vector<GlobalValue*> > Globals;
// Loop over the entries in the symbol table. If an entry is a func pointer,
// then add it to the Functions map. We do a two pass algorithm here to avoid
// problems with iterators getting invalidated if we did a one pass scheme.
//
for (SymbolTable::iterator I = ST->begin(), E = ST->end(); I != E; ++I)
if (const PointerType *PT = dyn_cast<PointerType>(I->first)) {
SymbolTable::VarMap &Plane = I->second;
for (SymbolTable::type_iterator PI = Plane.begin(), PE = Plane.end();
PI != PE; ++PI) {
GlobalValue *GV = cast<GlobalValue>(PI->second);
assert(PI->first == GV->getName() &&
"Global name and symbol table do not agree!");
if (GV->hasExternalLinkage()) // Only resolve decls to external fns
Globals[PI->first].push_back(GV);
}
}
bool Changed = false;
// Now we have a list of all functions with a particular name. If there is
// more than one entry in a list, merge the functions together.
//
for (std::map<string, vector<GlobalValue*> >::iterator I = Globals.begin(),
E = Globals.end(); I != E; ++I)
Changed |= ProcessGlobalsWithSameName(M, I->second);
// Now loop over all of the globals, checking to see if any are trivially
// dead. If so, remove them now.
for (Module::iterator I = M.begin(), E = M.end(); I != E; )
if (I->isExternal() && I->use_empty()) {
Function *F = I;
++I;
M.getFunctionList().erase(F);
++NumResolved;
Changed = true;
} else {
++I;
}
for (Module::giterator I = M.gbegin(), E = M.gend(); I != E; )
if (I->isExternal() && I->use_empty()) {
GlobalVariable *GV = I;
++I;
M.getGlobalList().erase(GV);
++NumGlobals;
Changed = true;
} else {
++I;
}
return Changed;
}
|