aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Transforms/IPO/IPConstantPropagation.cpp
blob: d757e1fdb1daba03c9dd8abde0e8b395361738e1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
//===-- IPConstantPropagation.cpp - Propagate constants through calls -----===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass implements an _extremely_ simple interprocedural constant
// propagation pass.  It could certainly be improved in many different ways,
// like using a worklist.  This pass makes arguments dead, but does not remove
// them.  The existing dead argument elimination pass should be run after this
// to clean up the mess.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "ipconstprop"
#include "llvm/Transforms/IPO.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Support/CallSite.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/SmallVector.h"
using namespace llvm;

STATISTIC(NumArgumentsProped, "Number of args turned into constants");
STATISTIC(NumReturnValProped, "Number of return values turned into constants");

namespace {
  /// IPCP - The interprocedural constant propagation pass
  ///
  struct IPCP : public ModulePass {
    static char ID; // Pass identification, replacement for typeid
    IPCP() : ModulePass(ID) {
      initializeIPCPPass(*PassRegistry::getPassRegistry());
    }

    bool runOnModule(Module &M);
  private:
    bool PropagateConstantsIntoArguments(Function &F);
    bool PropagateConstantReturn(Function &F);
  };
}

char IPCP::ID = 0;
INITIALIZE_PASS(IPCP, "ipconstprop",
                "Interprocedural constant propagation", false, false)

ModulePass *llvm::createIPConstantPropagationPass() { return new IPCP(); }

bool IPCP::runOnModule(Module &M) {
  bool Changed = false;
  bool LocalChange = true;

  // FIXME: instead of using smart algorithms, we just iterate until we stop
  // making changes.
  while (LocalChange) {
    LocalChange = false;
    for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
      if (!I->isDeclaration()) {
        // Delete any klingons.
        I->removeDeadConstantUsers();
        if (I->hasLocalLinkage())
          LocalChange |= PropagateConstantsIntoArguments(*I);
        Changed |= PropagateConstantReturn(*I);
      }
    Changed |= LocalChange;
  }
  return Changed;
}

/// PropagateConstantsIntoArguments - Look at all uses of the specified
/// function.  If all uses are direct call sites, and all pass a particular
/// constant in for an argument, propagate that constant in as the argument.
///
bool IPCP::PropagateConstantsIntoArguments(Function &F) {
  if (F.arg_empty() || F.use_empty()) return false; // No arguments? Early exit.

  // For each argument, keep track of its constant value and whether it is a
  // constant or not.  The bool is driven to true when found to be non-constant.
  SmallVector<std::pair<Constant*, bool>, 16> ArgumentConstants;
  ArgumentConstants.resize(F.arg_size());

  unsigned NumNonconstant = 0;
  for (Value::use_iterator UI = F.use_begin(), E = F.use_end(); UI != E; ++UI) {
    User *U = *UI;
    // Ignore blockaddress uses.
    if (isa<BlockAddress>(U)) continue;
    
    // Used by a non-instruction, or not the callee of a function, do not
    // transform.
    if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
      return false;
    
    CallSite CS(cast<Instruction>(U));
    if (!CS.isCallee(UI))
      return false;

    // Check out all of the potentially constant arguments.  Note that we don't
    // inspect varargs here.
    CallSite::arg_iterator AI = CS.arg_begin();
    Function::arg_iterator Arg = F.arg_begin();
    for (unsigned i = 0, e = ArgumentConstants.size(); i != e;
         ++i, ++AI, ++Arg) {
      
      // If this argument is known non-constant, ignore it.
      if (ArgumentConstants[i].second)
        continue;
      
      Constant *C = dyn_cast<Constant>(*AI);
      if (C && ArgumentConstants[i].first == 0) {
        ArgumentConstants[i].first = C;   // First constant seen.
      } else if (C && ArgumentConstants[i].first == C) {
        // Still the constant value we think it is.
      } else if (*AI == &*Arg) {
        // Ignore recursive calls passing argument down.
      } else {
        // Argument became non-constant.  If all arguments are non-constant now,
        // give up on this function.
        if (++NumNonconstant == ArgumentConstants.size())
          return false;
        ArgumentConstants[i].second = true;
      }
    }
  }

  // If we got to this point, there is a constant argument!
  assert(NumNonconstant != ArgumentConstants.size());
  bool MadeChange = false;
  Function::arg_iterator AI = F.arg_begin();
  for (unsigned i = 0, e = ArgumentConstants.size(); i != e; ++i, ++AI) {
    // Do we have a constant argument?
    if (ArgumentConstants[i].second || AI->use_empty() ||
        (AI->hasByValAttr() && !F.onlyReadsMemory()))
      continue;
  
    Value *V = ArgumentConstants[i].first;
    if (V == 0) V = UndefValue::get(AI->getType());
    AI->replaceAllUsesWith(V);
    ++NumArgumentsProped;
    MadeChange = true;
  }
  return MadeChange;
}


// Check to see if this function returns one or more constants. If so, replace
// all callers that use those return values with the constant value. This will
// leave in the actual return values and instructions, but deadargelim will
// clean that up.
//
// Additionally if a function always returns one of its arguments directly,
// callers will be updated to use the value they pass in directly instead of
// using the return value.
bool IPCP::PropagateConstantReturn(Function &F) {
  if (F.getReturnType()->isVoidTy())
    return false; // No return value.

  // If this function could be overridden later in the link stage, we can't
  // propagate information about its results into callers.
  if (F.mayBeOverridden())
    return false;
    
  // Check to see if this function returns a constant.
  SmallVector<Value *,4> RetVals;
  StructType *STy = dyn_cast<StructType>(F.getReturnType());
  if (STy)
    for (unsigned i = 0, e = STy->getNumElements(); i < e; ++i) 
      RetVals.push_back(UndefValue::get(STy->getElementType(i)));
  else
    RetVals.push_back(UndefValue::get(F.getReturnType()));

  unsigned NumNonConstant = 0;
  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
    if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
      for (unsigned i = 0, e = RetVals.size(); i != e; ++i) {
        // Already found conflicting return values?
        Value *RV = RetVals[i];
        if (!RV)
          continue;

        // Find the returned value
        Value *V;
        if (!STy)
          V = RI->getOperand(0);
        else
          V = FindInsertedValue(RI->getOperand(0), i);

        if (V) {
          // Ignore undefs, we can change them into anything
          if (isa<UndefValue>(V))
            continue;
          
          // Try to see if all the rets return the same constant or argument.
          if (isa<Constant>(V) || isa<Argument>(V)) {
            if (isa<UndefValue>(RV)) {
              // No value found yet? Try the current one.
              RetVals[i] = V;
              continue;
            }
            // Returning the same value? Good.
            if (RV == V)
              continue;
          }
        }
        // Different or no known return value? Don't propagate this return
        // value.
        RetVals[i] = 0;
        // All values non constant? Stop looking.
        if (++NumNonConstant == RetVals.size())
          return false;
      }
    }

  // If we got here, the function returns at least one constant value.  Loop
  // over all users, replacing any uses of the return value with the returned
  // constant.
  bool MadeChange = false;
  for (Value::use_iterator UI = F.use_begin(), E = F.use_end(); UI != E; ++UI) {
    CallSite CS(*UI);
    Instruction* Call = CS.getInstruction();

    // Not a call instruction or a call instruction that's not calling F
    // directly?
    if (!Call || !CS.isCallee(UI))
      continue;
    
    // Call result not used?
    if (Call->use_empty())
      continue;

    MadeChange = true;

    if (STy == 0) {
      Value* New = RetVals[0];
      if (Argument *A = dyn_cast<Argument>(New))
        // Was an argument returned? Then find the corresponding argument in
        // the call instruction and use that.
        New = CS.getArgument(A->getArgNo());
      Call->replaceAllUsesWith(New);
      continue;
    }
   
    for (Value::use_iterator I = Call->use_begin(), E = Call->use_end();
         I != E;) {
      Instruction *Ins = cast<Instruction>(*I);

      // Increment now, so we can remove the use
      ++I;

      // Find the index of the retval to replace with
      int index = -1;
      if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Ins))
        if (EV->hasIndices())
          index = *EV->idx_begin();

      // If this use uses a specific return value, and we have a replacement,
      // replace it.
      if (index != -1) {
        Value *New = RetVals[index];
        if (New) {
          if (Argument *A = dyn_cast<Argument>(New))
            // Was an argument returned? Then find the corresponding argument in
            // the call instruction and use that.
            New = CS.getArgument(A->getArgNo());
          Ins->replaceAllUsesWith(New);
          Ins->eraseFromParent();
        }
      }
    }
  }

  if (MadeChange) ++NumReturnValProped;
  return MadeChange;
}