aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Transforms/IPO/MergeFunctions.cpp
blob: 596674d6816325089eab6e9e8dea68028ddb18bb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
//===- MergeFunctions.cpp - Merge identical functions ---------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass looks for equivalent functions that are mergable and folds them.
//
// Order relation is defined on set of functions. It was made through
// special function comparison procedure that returns
// 0 when functions are equal,
// -1 when Left function is less than right function, and
// 1 for opposite case. We need total-ordering, so we need to maintain
// four properties on the functions set:
// a <= a (reflexivity)
// if a <= b and b <= a then a = b (antisymmetry)
// if a <= b and b <= c then a <= c (transitivity).
// for all a and b: a <= b or b <= a (totality).
//
// Comparison iterates through each instruction in each basic block.
// Functions are kept on binary tree. For each new function F we perform
// lookup in binary tree.
// In practice it works the following way:
// -- We define Function* container class with custom "operator<" (FunctionPtr).
// -- "FunctionPtr" instances are stored in std::set collection, so every
//    std::set::insert operation will give you result in log(N) time.
//
// When a match is found the functions are folded. If both functions are
// overridable, we move the functionality into a new internal function and
// leave two overridable thunks to it.
//
//===----------------------------------------------------------------------===//
//
// Future work:
//
// * virtual functions.
//
// Many functions have their address taken by the virtual function table for
// the object they belong to. However, as long as it's only used for a lookup
// and call, this is irrelevant, and we'd like to fold such functions.
//
// * be smarter about bitcasts.
//
// In order to fold functions, we will sometimes add either bitcast instructions
// or bitcast constant expressions. Unfortunately, this can confound further
// analysis since the two functions differ where one has a bitcast and the
// other doesn't. We should learn to look through bitcasts.
//
// * Compare complex types with pointer types inside.
// * Compare cross-reference cases.
// * Compare complex expressions.
//
// All the three issues above could be described as ability to prove that
// fA == fB == fC == fE == fF == fG in example below:
//
//  void fA() {
//    fB();
//  }
//  void fB() {
//    fA();
//  }
//
//  void fE() {
//    fF();
//  }
//  void fF() {
//    fG();
//  }
//  void fG() {
//    fE();
//  }
//
// Simplest cross-reference case (fA <--> fB) was implemented in previous
// versions of MergeFunctions, though it presented only in two function pairs
// in test-suite (that counts >50k functions)
// Though possibility to detect complex cross-referencing (e.g.: A->B->C->D->A)
// could cover much more cases.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/IPO.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <vector>
using namespace llvm;

#define DEBUG_TYPE "mergefunc"

STATISTIC(NumFunctionsMerged, "Number of functions merged");
STATISTIC(NumThunksWritten, "Number of thunks generated");
STATISTIC(NumAliasesWritten, "Number of aliases generated");
STATISTIC(NumDoubleWeak, "Number of new functions created");

static cl::opt<unsigned> NumFunctionsForSanityCheck(
    "mergefunc-sanity",
    cl::desc("How many functions in module could be used for "
             "MergeFunctions pass sanity check. "
             "'0' disables this check. Works only with '-debug' key."),
    cl::init(0), cl::Hidden);

namespace {

/// FunctionComparator - Compares two functions to determine whether or not
/// they will generate machine code with the same behaviour. DataLayout is
/// used if available. The comparator always fails conservatively (erring on the
/// side of claiming that two functions are different).
class FunctionComparator {
public:
  FunctionComparator(const Function *F1, const Function *F2)
      : FnL(F1), FnR(F2) {}

  /// Test whether the two functions have equivalent behaviour.
  int compare();

private:
  /// Test whether two basic blocks have equivalent behaviour.
  int compare(const BasicBlock *BBL, const BasicBlock *BBR);

  /// Constants comparison.
  /// Its analog to lexicographical comparison between hypothetical numbers
  /// of next format:
  /// <bitcastability-trait><raw-bit-contents>
  ///
  /// 1. Bitcastability.
  /// Check whether L's type could be losslessly bitcasted to R's type.
  /// On this stage method, in case when lossless bitcast is not possible
  /// method returns -1 or 1, thus also defining which type is greater in
  /// context of bitcastability.
  /// Stage 0: If types are equal in terms of cmpTypes, then we can go straight
  ///          to the contents comparison.
  ///          If types differ, remember types comparison result and check
  ///          whether we still can bitcast types.
  /// Stage 1: Types that satisfies isFirstClassType conditions are always
  ///          greater then others.
  /// Stage 2: Vector is greater then non-vector.
  ///          If both types are vectors, then vector with greater bitwidth is
  ///          greater.
  ///          If both types are vectors with the same bitwidth, then types
  ///          are bitcastable, and we can skip other stages, and go to contents
  ///          comparison.
  /// Stage 3: Pointer types are greater than non-pointers. If both types are
  ///          pointers of the same address space - go to contents comparison.
  ///          Different address spaces: pointer with greater address space is
  ///          greater.
  /// Stage 4: Types are neither vectors, nor pointers. And they differ.
  ///          We don't know how to bitcast them. So, we better don't do it,
  ///          and return types comparison result (so it determines the
  ///          relationship among constants we don't know how to bitcast).
  ///
  /// Just for clearance, let's see how the set of constants could look
  /// on single dimension axis:
  ///
  /// [NFCT], [FCT, "others"], [FCT, pointers], [FCT, vectors]
  /// Where: NFCT - Not a FirstClassType
  ///        FCT - FirstClassTyp:
  ///
  /// 2. Compare raw contents.
  /// It ignores types on this stage and only compares bits from L and R.
  /// Returns 0, if L and R has equivalent contents.
  /// -1 or 1 if values are different.
  /// Pretty trivial:
  /// 2.1. If contents are numbers, compare numbers.
  ///    Ints with greater bitwidth are greater. Ints with same bitwidths
  ///    compared by their contents.
  /// 2.2. "And so on". Just to avoid discrepancies with comments
  /// perhaps it would be better to read the implementation itself.
  /// 3. And again about overall picture. Let's look back at how the ordered set
  /// of constants will look like:
  /// [NFCT], [FCT, "others"], [FCT, pointers], [FCT, vectors]
  ///
  /// Now look, what could be inside [FCT, "others"], for example:
  /// [FCT, "others"] =
  /// [
  ///   [double 0.1], [double 1.23],
  ///   [i32 1], [i32 2],
  ///   { double 1.0 },       ; StructTyID, NumElements = 1
  ///   { i32 1 },            ; StructTyID, NumElements = 1
  ///   { double 1, i32 1 },  ; StructTyID, NumElements = 2
  ///   { i32 1, double 1 }   ; StructTyID, NumElements = 2
  /// ]
  ///
  /// Let's explain the order. Float numbers will be less than integers, just
  /// because of cmpType terms: FloatTyID < IntegerTyID.
  /// Floats (with same fltSemantics) are sorted according to their value.
  /// Then you can see integers, and they are, like a floats,
  /// could be easy sorted among each others.
  /// The structures. Structures are grouped at the tail, again because of their
  /// TypeID: StructTyID > IntegerTyID > FloatTyID.
  /// Structures with greater number of elements are greater. Structures with
  /// greater elements going first are greater.
  /// The same logic with vectors, arrays and other possible complex types.
  ///
  /// Bitcastable constants.
  /// Let's assume, that some constant, belongs to some group of
  /// "so-called-equal" values with different types, and at the same time
  /// belongs to another group of constants with equal types
  /// and "really" equal values.
  ///
  /// Now, prove that this is impossible:
  ///
  /// If constant A with type TyA is bitcastable to B with type TyB, then:
  /// 1. All constants with equal types to TyA, are bitcastable to B. Since
  ///    those should be vectors (if TyA is vector), pointers
  ///    (if TyA is pointer), or else (if TyA equal to TyB), those types should
  ///    be equal to TyB.
  /// 2. All constants with non-equal, but bitcastable types to TyA, are
  ///    bitcastable to B.
  ///    Once again, just because we allow it to vectors and pointers only.
  ///    This statement could be expanded as below:
  /// 2.1. All vectors with equal bitwidth to vector A, has equal bitwidth to
  ///      vector B, and thus bitcastable to B as well.
  /// 2.2. All pointers of the same address space, no matter what they point to,
  ///      bitcastable. So if C is pointer, it could be bitcasted to A and to B.
  /// So any constant equal or bitcastable to A is equal or bitcastable to B.
  /// QED.
  ///
  /// In another words, for pointers and vectors, we ignore top-level type and
  /// look at their particular properties (bit-width for vectors, and
  /// address space for pointers).
  /// If these properties are equal - compare their contents.
  int cmpConstants(const Constant *L, const Constant *R);

  /// Assign or look up previously assigned numbers for the two values, and
  /// return whether the numbers are equal. Numbers are assigned in the order
  /// visited.
  /// Comparison order:
  /// Stage 0: Value that is function itself is always greater then others.
  ///          If left and right values are references to their functions, then
  ///          they are equal.
  /// Stage 1: Constants are greater than non-constants.
  ///          If both left and right are constants, then the result of
  ///          cmpConstants is used as cmpValues result.
  /// Stage 2: InlineAsm instances are greater than others. If both left and
  ///          right are InlineAsm instances, InlineAsm* pointers casted to
  ///          integers and compared as numbers.
  /// Stage 3: For all other cases we compare order we meet these values in
  ///          their functions. If right value was met first during scanning,
  ///          then left value is greater.
  ///          In another words, we compare serial numbers, for more details
  ///          see comments for sn_mapL and sn_mapR.
  int cmpValues(const Value *L, const Value *R);

  /// Compare two Instructions for equivalence, similar to
  /// Instruction::isSameOperationAs but with modifications to the type
  /// comparison.
  /// Stages are listed in "most significant stage first" order:
  /// On each stage below, we do comparison between some left and right
  /// operation parts. If parts are non-equal, we assign parts comparison
  /// result to the operation comparison result and exit from method.
  /// Otherwise we proceed to the next stage.
  /// Stages:
  /// 1. Operations opcodes. Compared as numbers.
  /// 2. Number of operands.
  /// 3. Operation types. Compared with cmpType method.
  /// 4. Compare operation subclass optional data as stream of bytes:
  /// just convert it to integers and call cmpNumbers.
  /// 5. Compare in operation operand types with cmpType in
  /// most significant operand first order.
  /// 6. Last stage. Check operations for some specific attributes.
  /// For example, for Load it would be:
  /// 6.1.Load: volatile (as boolean flag)
  /// 6.2.Load: alignment (as integer numbers)
  /// 6.3.Load: synch-scope (as integer numbers)
  /// 6.4.Load: range metadata (as integer numbers)
  /// On this stage its better to see the code, since its not more than 10-15
  /// strings for particular instruction, and could change sometimes.
  int cmpOperations(const Instruction *L, const Instruction *R) const;

  /// Compare two GEPs for equivalent pointer arithmetic.
  /// Parts to be compared for each comparison stage,
  /// most significant stage first:
  /// 1. Address space. As numbers.
  /// 2. Constant offset, (using GEPOperator::accumulateConstantOffset method).
  /// 3. Pointer operand type (using cmpType method).
  /// 4. Number of operands.
  /// 5. Compare operands, using cmpValues method.
  int cmpGEPs(const GEPOperator *GEPL, const GEPOperator *GEPR);
  int cmpGEPs(const GetElementPtrInst *GEPL, const GetElementPtrInst *GEPR) {
    return cmpGEPs(cast<GEPOperator>(GEPL), cast<GEPOperator>(GEPR));
  }

  /// cmpType - compares two types,
  /// defines total ordering among the types set.
  ///
  /// Return values:
  /// 0 if types are equal,
  /// -1 if Left is less than Right,
  /// +1 if Left is greater than Right.
  ///
  /// Description:
  /// Comparison is broken onto stages. Like in lexicographical comparison
  /// stage coming first has higher priority.
  /// On each explanation stage keep in mind total ordering properties.
  ///
  /// 0. Before comparison we coerce pointer types of 0 address space to
  /// integer.
  /// We also don't bother with same type at left and right, so
  /// just return 0 in this case.
  ///
  /// 1. If types are of different kind (different type IDs).
  ///    Return result of type IDs comparison, treating them as numbers.
  /// 2. If types are vectors or integers, compare Type* values as numbers.
  /// 3. Types has same ID, so check whether they belongs to the next group:
  /// * Void
  /// * Float
  /// * Double
  /// * X86_FP80
  /// * FP128
  /// * PPC_FP128
  /// * Label
  /// * Metadata
  /// If so - return 0, yes - we can treat these types as equal only because
  /// their IDs are same.
  /// 4. If Left and Right are pointers, return result of address space
  /// comparison (numbers comparison). We can treat pointer types of same
  /// address space as equal.
  /// 5. If types are complex.
  /// Then both Left and Right are to be expanded and their element types will
  /// be checked with the same way. If we get Res != 0 on some stage, return it.
  /// Otherwise return 0.
  /// 6. For all other cases put llvm_unreachable.
  int cmpTypes(Type *TyL, Type *TyR) const;

  int cmpNumbers(uint64_t L, uint64_t R) const;

  int cmpAPInts(const APInt &L, const APInt &R) const;
  int cmpAPFloats(const APFloat &L, const APFloat &R) const;
  int cmpStrings(StringRef L, StringRef R) const;
  int cmpAttrs(const AttributeSet L, const AttributeSet R) const;

  // The two functions undergoing comparison.
  const Function *FnL, *FnR;

  /// Assign serial numbers to values from left function, and values from
  /// right function.
  /// Explanation:
  /// Being comparing functions we need to compare values we meet at left and
  /// right sides.
  /// Its easy to sort things out for external values. It just should be
  /// the same value at left and right.
  /// But for local values (those were introduced inside function body)
  /// we have to ensure they were introduced at exactly the same place,
  /// and plays the same role.
  /// Let's assign serial number to each value when we meet it first time.
  /// Values that were met at same place will be with same serial numbers.
  /// In this case it would be good to explain few points about values assigned
  /// to BBs and other ways of implementation (see below).
  ///
  /// 1. Safety of BB reordering.
  /// It's safe to change the order of BasicBlocks in function.
  /// Relationship with other functions and serial numbering will not be
  /// changed in this case.
  /// As follows from FunctionComparator::compare(), we do CFG walk: we start
  /// from the entry, and then take each terminator. So it doesn't matter how in
  /// fact BBs are ordered in function. And since cmpValues are called during
  /// this walk, the numbering depends only on how BBs located inside the CFG.
  /// So the answer is - yes. We will get the same numbering.
  ///
  /// 2. Impossibility to use dominance properties of values.
  /// If we compare two instruction operands: first is usage of local
  /// variable AL from function FL, and second is usage of local variable AR
  /// from FR, we could compare their origins and check whether they are
  /// defined at the same place.
  /// But, we are still not able to compare operands of PHI nodes, since those
  /// could be operands from further BBs we didn't scan yet.
  /// So it's impossible to use dominance properties in general.
  DenseMap<const Value*, int> sn_mapL, sn_mapR;
};

class FunctionNode {
  AssertingVH<Function> F;

public:
  FunctionNode(Function *F) : F(F) {}
  Function *getFunc() const { return F; }
  void release() { F = 0; }
  bool operator<(const FunctionNode &RHS) const {
    return (FunctionComparator(F, RHS.getFunc()).compare()) == -1;
  }
};
}

int FunctionComparator::cmpNumbers(uint64_t L, uint64_t R) const {
  if (L < R) return -1;
  if (L > R) return 1;
  return 0;
}

int FunctionComparator::cmpAPInts(const APInt &L, const APInt &R) const {
  if (int Res = cmpNumbers(L.getBitWidth(), R.getBitWidth()))
    return Res;
  if (L.ugt(R)) return 1;
  if (R.ugt(L)) return -1;
  return 0;
}

int FunctionComparator::cmpAPFloats(const APFloat &L, const APFloat &R) const {
  if (int Res = cmpNumbers((uint64_t)&L.getSemantics(),
                           (uint64_t)&R.getSemantics()))
    return Res;
  return cmpAPInts(L.bitcastToAPInt(), R.bitcastToAPInt());
}

int FunctionComparator::cmpStrings(StringRef L, StringRef R) const {
  // Prevent heavy comparison, compare sizes first.
  if (int Res = cmpNumbers(L.size(), R.size()))
    return Res;

  // Compare strings lexicographically only when it is necessary: only when
  // strings are equal in size.
  return L.compare(R);
}

int FunctionComparator::cmpAttrs(const AttributeSet L,
                                 const AttributeSet R) const {
  if (int Res = cmpNumbers(L.getNumSlots(), R.getNumSlots()))
    return Res;

  for (unsigned i = 0, e = L.getNumSlots(); i != e; ++i) {
    AttributeSet::iterator LI = L.begin(i), LE = L.end(i), RI = R.begin(i),
                           RE = R.end(i);
    for (; LI != LE && RI != RE; ++LI, ++RI) {
      Attribute LA = *LI;
      Attribute RA = *RI;
      if (LA < RA)
        return -1;
      if (RA < LA)
        return 1;
    }
    if (LI != LE)
      return 1;
    if (RI != RE)
      return -1;
  }
  return 0;
}

/// Constants comparison:
/// 1. Check whether type of L constant could be losslessly bitcasted to R
/// type.
/// 2. Compare constant contents.
/// For more details see declaration comments.
int FunctionComparator::cmpConstants(const Constant *L, const Constant *R) {

  Type *TyL = L->getType();
  Type *TyR = R->getType();

  // Check whether types are bitcastable. This part is just re-factored
  // Type::canLosslesslyBitCastTo method, but instead of returning true/false,
  // we also pack into result which type is "less" for us.
  int TypesRes = cmpTypes(TyL, TyR);
  if (TypesRes != 0) {
    // Types are different, but check whether we can bitcast them.
    if (!TyL->isFirstClassType()) {
      if (TyR->isFirstClassType())
        return -1;
      // Neither TyL nor TyR are values of first class type. Return the result
      // of comparing the types
      return TypesRes;
    }
    if (!TyR->isFirstClassType()) {
      if (TyL->isFirstClassType())
        return 1;
      return TypesRes;
    }

    // Vector -> Vector conversions are always lossless if the two vector types
    // have the same size, otherwise not.
    unsigned TyLWidth = 0;
    unsigned TyRWidth = 0;

    if (const VectorType *VecTyL = dyn_cast<VectorType>(TyL))
      TyLWidth = VecTyL->getBitWidth();
    if (const VectorType *VecTyR = dyn_cast<VectorType>(TyR))
      TyRWidth = VecTyR->getBitWidth();

    if (TyLWidth != TyRWidth)
      return cmpNumbers(TyLWidth, TyRWidth);

    // Zero bit-width means neither TyL nor TyR are vectors.
    if (!TyLWidth) {
      PointerType *PTyL = dyn_cast<PointerType>(TyL);
      PointerType *PTyR = dyn_cast<PointerType>(TyR);
      if (PTyL && PTyR) {
        unsigned AddrSpaceL = PTyL->getAddressSpace();
        unsigned AddrSpaceR = PTyR->getAddressSpace();
        if (int Res = cmpNumbers(AddrSpaceL, AddrSpaceR))
          return Res;
      }
      if (PTyL)
        return 1;
      if (PTyR)
        return -1;

      // TyL and TyR aren't vectors, nor pointers. We don't know how to
      // bitcast them.
      return TypesRes;
    }
  }

  // OK, types are bitcastable, now check constant contents.

  if (L->isNullValue() && R->isNullValue())
    return TypesRes;
  if (L->isNullValue() && !R->isNullValue())
    return 1;
  if (!L->isNullValue() && R->isNullValue())
    return -1;

  if (int Res = cmpNumbers(L->getValueID(), R->getValueID()))
    return Res;

  switch (L->getValueID()) {
  case Value::UndefValueVal: return TypesRes;
  case Value::ConstantIntVal: {
    const APInt &LInt = cast<ConstantInt>(L)->getValue();
    const APInt &RInt = cast<ConstantInt>(R)->getValue();
    return cmpAPInts(LInt, RInt);
  }
  case Value::ConstantFPVal: {
    const APFloat &LAPF = cast<ConstantFP>(L)->getValueAPF();
    const APFloat &RAPF = cast<ConstantFP>(R)->getValueAPF();
    return cmpAPFloats(LAPF, RAPF);
  }
  case Value::ConstantArrayVal: {
    const ConstantArray *LA = cast<ConstantArray>(L);
    const ConstantArray *RA = cast<ConstantArray>(R);
    uint64_t NumElementsL = cast<ArrayType>(TyL)->getNumElements();
    uint64_t NumElementsR = cast<ArrayType>(TyR)->getNumElements();
    if (int Res = cmpNumbers(NumElementsL, NumElementsR))
      return Res;
    for (uint64_t i = 0; i < NumElementsL; ++i) {
      if (int Res = cmpConstants(cast<Constant>(LA->getOperand(i)),
                                 cast<Constant>(RA->getOperand(i))))
        return Res;
    }
    return 0;
  }
  case Value::ConstantStructVal: {
    const ConstantStruct *LS = cast<ConstantStruct>(L);
    const ConstantStruct *RS = cast<ConstantStruct>(R);
    unsigned NumElementsL = cast<StructType>(TyL)->getNumElements();
    unsigned NumElementsR = cast<StructType>(TyR)->getNumElements();
    if (int Res = cmpNumbers(NumElementsL, NumElementsR))
      return Res;
    for (unsigned i = 0; i != NumElementsL; ++i) {
      if (int Res = cmpConstants(cast<Constant>(LS->getOperand(i)),
                                 cast<Constant>(RS->getOperand(i))))
        return Res;
    }
    return 0;
  }
  case Value::ConstantVectorVal: {
    const ConstantVector *LV = cast<ConstantVector>(L);
    const ConstantVector *RV = cast<ConstantVector>(R);
    unsigned NumElementsL = cast<VectorType>(TyL)->getNumElements();
    unsigned NumElementsR = cast<VectorType>(TyR)->getNumElements();
    if (int Res = cmpNumbers(NumElementsL, NumElementsR))
      return Res;
    for (uint64_t i = 0; i < NumElementsL; ++i) {
      if (int Res = cmpConstants(cast<Constant>(LV->getOperand(i)),
                                 cast<Constant>(RV->getOperand(i))))
        return Res;
    }
    return 0;
  }
  case Value::ConstantExprVal: {
    const ConstantExpr *LE = cast<ConstantExpr>(L);
    const ConstantExpr *RE = cast<ConstantExpr>(R);
    unsigned NumOperandsL = LE->getNumOperands();
    unsigned NumOperandsR = RE->getNumOperands();
    if (int Res = cmpNumbers(NumOperandsL, NumOperandsR))
      return Res;
    for (unsigned i = 0; i < NumOperandsL; ++i) {
      if (int Res = cmpConstants(cast<Constant>(LE->getOperand(i)),
                                 cast<Constant>(RE->getOperand(i))))
        return Res;
    }
    return 0;
  }
  case Value::FunctionVal:
  case Value::GlobalVariableVal:
  case Value::GlobalAliasVal:
  default: // Unknown constant, cast L and R pointers to numbers and compare.
    return cmpNumbers((uint64_t)L, (uint64_t)R);
  }
}

/// cmpType - compares two types,
/// defines total ordering among the types set.
/// See method declaration comments for more details.
int FunctionComparator::cmpTypes(Type *TyL, Type *TyR) const {

  PointerType *PTyL = dyn_cast<PointerType>(TyL);
  PointerType *PTyR = dyn_cast<PointerType>(TyR);

  const DataLayout &DL = FnL->getParent()->getDataLayout();
  if (PTyL && PTyL->getAddressSpace() == 0)
    TyL = DL.getIntPtrType(TyL);
  if (PTyR && PTyR->getAddressSpace() == 0)
    TyR = DL.getIntPtrType(TyR);

  if (TyL == TyR)
    return 0;

  if (int Res = cmpNumbers(TyL->getTypeID(), TyR->getTypeID()))
    return Res;

  switch (TyL->getTypeID()) {
  default:
    llvm_unreachable("Unknown type!");
    // Fall through in Release mode.
  case Type::IntegerTyID:
  case Type::VectorTyID:
    // TyL == TyR would have returned true earlier.
    return cmpNumbers((uint64_t)TyL, (uint64_t)TyR);

  case Type::VoidTyID:
  case Type::FloatTyID:
  case Type::DoubleTyID:
  case Type::X86_FP80TyID:
  case Type::FP128TyID:
  case Type::PPC_FP128TyID:
  case Type::LabelTyID:
  case Type::MetadataTyID:
    return 0;

  case Type::PointerTyID: {
    assert(PTyL && PTyR && "Both types must be pointers here.");
    return cmpNumbers(PTyL->getAddressSpace(), PTyR->getAddressSpace());
  }

  case Type::StructTyID: {
    StructType *STyL = cast<StructType>(TyL);
    StructType *STyR = cast<StructType>(TyR);
    if (STyL->getNumElements() != STyR->getNumElements())
      return cmpNumbers(STyL->getNumElements(), STyR->getNumElements());

    if (STyL->isPacked() != STyR->isPacked())
      return cmpNumbers(STyL->isPacked(), STyR->isPacked());

    for (unsigned i = 0, e = STyL->getNumElements(); i != e; ++i) {
      if (int Res = cmpTypes(STyL->getElementType(i), STyR->getElementType(i)))
        return Res;
    }
    return 0;
  }

  case Type::FunctionTyID: {
    FunctionType *FTyL = cast<FunctionType>(TyL);
    FunctionType *FTyR = cast<FunctionType>(TyR);
    if (FTyL->getNumParams() != FTyR->getNumParams())
      return cmpNumbers(FTyL->getNumParams(), FTyR->getNumParams());

    if (FTyL->isVarArg() != FTyR->isVarArg())
      return cmpNumbers(FTyL->isVarArg(), FTyR->isVarArg());

    if (int Res = cmpTypes(FTyL->getReturnType(), FTyR->getReturnType()))
      return Res;

    for (unsigned i = 0, e = FTyL->getNumParams(); i != e; ++i) {
      if (int Res = cmpTypes(FTyL->getParamType(i), FTyR->getParamType(i)))
        return Res;
    }
    return 0;
  }

  case Type::ArrayTyID: {
    ArrayType *ATyL = cast<ArrayType>(TyL);
    ArrayType *ATyR = cast<ArrayType>(TyR);
    if (ATyL->getNumElements() != ATyR->getNumElements())
      return cmpNumbers(ATyL->getNumElements(), ATyR->getNumElements());
    return cmpTypes(ATyL->getElementType(), ATyR->getElementType());
  }
  }
}

// Determine whether the two operations are the same except that pointer-to-A
// and pointer-to-B are equivalent. This should be kept in sync with
// Instruction::isSameOperationAs.
// Read method declaration comments for more details.
int FunctionComparator::cmpOperations(const Instruction *L,
                                      const Instruction *R) const {
  // Differences from Instruction::isSameOperationAs:
  //  * replace type comparison with calls to isEquivalentType.
  //  * we test for I->hasSameSubclassOptionalData (nuw/nsw/tail) at the top
  //  * because of the above, we don't test for the tail bit on calls later on
  if (int Res = cmpNumbers(L->getOpcode(), R->getOpcode()))
    return Res;

  if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands()))
    return Res;

  if (int Res = cmpTypes(L->getType(), R->getType()))
    return Res;

  if (int Res = cmpNumbers(L->getRawSubclassOptionalData(),
                           R->getRawSubclassOptionalData()))
    return Res;

  // We have two instructions of identical opcode and #operands.  Check to see
  // if all operands are the same type
  for (unsigned i = 0, e = L->getNumOperands(); i != e; ++i) {
    if (int Res =
            cmpTypes(L->getOperand(i)->getType(), R->getOperand(i)->getType()))
      return Res;
  }

  // Check special state that is a part of some instructions.
  if (const LoadInst *LI = dyn_cast<LoadInst>(L)) {
    if (int Res = cmpNumbers(LI->isVolatile(), cast<LoadInst>(R)->isVolatile()))
      return Res;
    if (int Res =
            cmpNumbers(LI->getAlignment(), cast<LoadInst>(R)->getAlignment()))
      return Res;
    if (int Res =
            cmpNumbers(LI->getOrdering(), cast<LoadInst>(R)->getOrdering()))
      return Res;
    if (int Res =
            cmpNumbers(LI->getSynchScope(), cast<LoadInst>(R)->getSynchScope()))
      return Res;
    return cmpNumbers((uint64_t)LI->getMetadata(LLVMContext::MD_range),
                      (uint64_t)cast<LoadInst>(R)->getMetadata(LLVMContext::MD_range));
  }
  if (const StoreInst *SI = dyn_cast<StoreInst>(L)) {
    if (int Res =
            cmpNumbers(SI->isVolatile(), cast<StoreInst>(R)->isVolatile()))
      return Res;
    if (int Res =
            cmpNumbers(SI->getAlignment(), cast<StoreInst>(R)->getAlignment()))
      return Res;
    if (int Res =
            cmpNumbers(SI->getOrdering(), cast<StoreInst>(R)->getOrdering()))
      return Res;
    return cmpNumbers(SI->getSynchScope(), cast<StoreInst>(R)->getSynchScope());
  }
  if (const CmpInst *CI = dyn_cast<CmpInst>(L))
    return cmpNumbers(CI->getPredicate(), cast<CmpInst>(R)->getPredicate());
  if (const CallInst *CI = dyn_cast<CallInst>(L)) {
    if (int Res = cmpNumbers(CI->getCallingConv(),
                             cast<CallInst>(R)->getCallingConv()))
      return Res;
    if (int Res =
            cmpAttrs(CI->getAttributes(), cast<CallInst>(R)->getAttributes()))
      return Res;
    return cmpNumbers(
        (uint64_t)CI->getMetadata(LLVMContext::MD_range),
        (uint64_t)cast<CallInst>(R)->getMetadata(LLVMContext::MD_range));
  }
  if (const InvokeInst *CI = dyn_cast<InvokeInst>(L)) {
    if (int Res = cmpNumbers(CI->getCallingConv(),
                             cast<InvokeInst>(R)->getCallingConv()))
      return Res;
    if (int Res =
            cmpAttrs(CI->getAttributes(), cast<InvokeInst>(R)->getAttributes()))
      return Res;
    return cmpNumbers(
        (uint64_t)CI->getMetadata(LLVMContext::MD_range),
        (uint64_t)cast<InvokeInst>(R)->getMetadata(LLVMContext::MD_range));
  }
  if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(L)) {
    ArrayRef<unsigned> LIndices = IVI->getIndices();
    ArrayRef<unsigned> RIndices = cast<InsertValueInst>(R)->getIndices();
    if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
      return Res;
    for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
      if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
        return Res;
    }
  }
  if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(L)) {
    ArrayRef<unsigned> LIndices = EVI->getIndices();
    ArrayRef<unsigned> RIndices = cast<ExtractValueInst>(R)->getIndices();
    if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
      return Res;
    for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
      if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
        return Res;
    }
  }
  if (const FenceInst *FI = dyn_cast<FenceInst>(L)) {
    if (int Res =
            cmpNumbers(FI->getOrdering(), cast<FenceInst>(R)->getOrdering()))
      return Res;
    return cmpNumbers(FI->getSynchScope(), cast<FenceInst>(R)->getSynchScope());
  }

  if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(L)) {
    if (int Res = cmpNumbers(CXI->isVolatile(),
                             cast<AtomicCmpXchgInst>(R)->isVolatile()))
      return Res;
    if (int Res = cmpNumbers(CXI->isWeak(),
                             cast<AtomicCmpXchgInst>(R)->isWeak()))
      return Res;
    if (int Res = cmpNumbers(CXI->getSuccessOrdering(),
                             cast<AtomicCmpXchgInst>(R)->getSuccessOrdering()))
      return Res;
    if (int Res = cmpNumbers(CXI->getFailureOrdering(),
                             cast<AtomicCmpXchgInst>(R)->getFailureOrdering()))
      return Res;
    return cmpNumbers(CXI->getSynchScope(),
                      cast<AtomicCmpXchgInst>(R)->getSynchScope());
  }
  if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(L)) {
    if (int Res = cmpNumbers(RMWI->getOperation(),
                             cast<AtomicRMWInst>(R)->getOperation()))
      return Res;
    if (int Res = cmpNumbers(RMWI->isVolatile(),
                             cast<AtomicRMWInst>(R)->isVolatile()))
      return Res;
    if (int Res = cmpNumbers(RMWI->getOrdering(),
                             cast<AtomicRMWInst>(R)->getOrdering()))
      return Res;
    return cmpNumbers(RMWI->getSynchScope(),
                      cast<AtomicRMWInst>(R)->getSynchScope());
  }
  return 0;
}

// Determine whether two GEP operations perform the same underlying arithmetic.
// Read method declaration comments for more details.
int FunctionComparator::cmpGEPs(const GEPOperator *GEPL,
                               const GEPOperator *GEPR) {

  unsigned int ASL = GEPL->getPointerAddressSpace();
  unsigned int ASR = GEPR->getPointerAddressSpace();

  if (int Res = cmpNumbers(ASL, ASR))
    return Res;

  // When we have target data, we can reduce the GEP down to the value in bytes
  // added to the address.
  const DataLayout &DL = FnL->getParent()->getDataLayout();
  unsigned BitWidth = DL.getPointerSizeInBits(ASL);
  APInt OffsetL(BitWidth, 0), OffsetR(BitWidth, 0);
  if (GEPL->accumulateConstantOffset(DL, OffsetL) &&
      GEPR->accumulateConstantOffset(DL, OffsetR))
    return cmpAPInts(OffsetL, OffsetR);

  if (int Res = cmpNumbers((uint64_t)GEPL->getPointerOperand()->getType(),
                           (uint64_t)GEPR->getPointerOperand()->getType()))
    return Res;

  if (int Res = cmpNumbers(GEPL->getNumOperands(), GEPR->getNumOperands()))
    return Res;

  for (unsigned i = 0, e = GEPL->getNumOperands(); i != e; ++i) {
    if (int Res = cmpValues(GEPL->getOperand(i), GEPR->getOperand(i)))
      return Res;
  }

  return 0;
}

/// Compare two values used by the two functions under pair-wise comparison. If
/// this is the first time the values are seen, they're added to the mapping so
/// that we will detect mismatches on next use.
/// See comments in declaration for more details.
int FunctionComparator::cmpValues(const Value *L, const Value *R) {
  // Catch self-reference case.
  if (L == FnL) {
    if (R == FnR)
      return 0;
    return -1;
  }
  if (R == FnR) {
    if (L == FnL)
      return 0;
    return 1;
  }

  const Constant *ConstL = dyn_cast<Constant>(L);
  const Constant *ConstR = dyn_cast<Constant>(R);
  if (ConstL && ConstR) {
    if (L == R)
      return 0;
    return cmpConstants(ConstL, ConstR);
  }

  if (ConstL)
    return 1;
  if (ConstR)
    return -1;

  const InlineAsm *InlineAsmL = dyn_cast<InlineAsm>(L);
  const InlineAsm *InlineAsmR = dyn_cast<InlineAsm>(R);

  if (InlineAsmL && InlineAsmR)
    return cmpNumbers((uint64_t)L, (uint64_t)R);
  if (InlineAsmL)
    return 1;
  if (InlineAsmR)
    return -1;

  auto LeftSN = sn_mapL.insert(std::make_pair(L, sn_mapL.size())),
       RightSN = sn_mapR.insert(std::make_pair(R, sn_mapR.size()));

  return cmpNumbers(LeftSN.first->second, RightSN.first->second);
}
// Test whether two basic blocks have equivalent behaviour.
int FunctionComparator::compare(const BasicBlock *BBL, const BasicBlock *BBR) {
  BasicBlock::const_iterator InstL = BBL->begin(), InstLE = BBL->end();
  BasicBlock::const_iterator InstR = BBR->begin(), InstRE = BBR->end();

  do {
    if (int Res = cmpValues(InstL, InstR))
      return Res;

    const GetElementPtrInst *GEPL = dyn_cast<GetElementPtrInst>(InstL);
    const GetElementPtrInst *GEPR = dyn_cast<GetElementPtrInst>(InstR);

    if (GEPL && !GEPR)
      return 1;
    if (GEPR && !GEPL)
      return -1;

    if (GEPL && GEPR) {
      if (int Res =
              cmpValues(GEPL->getPointerOperand(), GEPR->getPointerOperand()))
        return Res;
      if (int Res = cmpGEPs(GEPL, GEPR))
        return Res;
    } else {
      if (int Res = cmpOperations(InstL, InstR))
        return Res;
      assert(InstL->getNumOperands() == InstR->getNumOperands());

      for (unsigned i = 0, e = InstL->getNumOperands(); i != e; ++i) {
        Value *OpL = InstL->getOperand(i);
        Value *OpR = InstR->getOperand(i);
        if (int Res = cmpValues(OpL, OpR))
          return Res;
        if (int Res = cmpNumbers(OpL->getValueID(), OpR->getValueID()))
          return Res;
        // TODO: Already checked in cmpOperation
        if (int Res = cmpTypes(OpL->getType(), OpR->getType()))
          return Res;
      }
    }

    ++InstL, ++InstR;
  } while (InstL != InstLE && InstR != InstRE);

  if (InstL != InstLE && InstR == InstRE)
    return 1;
  if (InstL == InstLE && InstR != InstRE)
    return -1;
  return 0;
}

// Test whether the two functions have equivalent behaviour.
int FunctionComparator::compare() {

  sn_mapL.clear();
  sn_mapR.clear();

  if (int Res = cmpAttrs(FnL->getAttributes(), FnR->getAttributes()))
    return Res;

  if (int Res = cmpNumbers(FnL->hasGC(), FnR->hasGC()))
    return Res;

  if (FnL->hasGC()) {
    if (int Res = cmpNumbers((uint64_t)FnL->getGC(), (uint64_t)FnR->getGC()))
      return Res;
  }

  if (int Res = cmpNumbers(FnL->hasSection(), FnR->hasSection()))
    return Res;

  if (FnL->hasSection()) {
    if (int Res = cmpStrings(FnL->getSection(), FnR->getSection()))
      return Res;
  }

  if (int Res = cmpNumbers(FnL->isVarArg(), FnR->isVarArg()))
    return Res;

  // TODO: if it's internal and only used in direct calls, we could handle this
  // case too.
  if (int Res = cmpNumbers(FnL->getCallingConv(), FnR->getCallingConv()))
    return Res;

  if (int Res = cmpTypes(FnL->getFunctionType(), FnR->getFunctionType()))
    return Res;

  assert(FnL->arg_size() == FnR->arg_size() &&
         "Identically typed functions have different numbers of args!");

  // Visit the arguments so that they get enumerated in the order they're
  // passed in.
  for (Function::const_arg_iterator ArgLI = FnL->arg_begin(),
                                    ArgRI = FnR->arg_begin(),
                                    ArgLE = FnL->arg_end();
       ArgLI != ArgLE; ++ArgLI, ++ArgRI) {
    if (cmpValues(ArgLI, ArgRI) != 0)
      llvm_unreachable("Arguments repeat!");
  }

  // We do a CFG-ordered walk since the actual ordering of the blocks in the
  // linked list is immaterial. Our walk starts at the entry block for both
  // functions, then takes each block from each terminator in order. As an
  // artifact, this also means that unreachable blocks are ignored.
  SmallVector<const BasicBlock *, 8> FnLBBs, FnRBBs;
  SmallSet<const BasicBlock *, 128> VisitedBBs; // in terms of F1.

  FnLBBs.push_back(&FnL->getEntryBlock());
  FnRBBs.push_back(&FnR->getEntryBlock());

  VisitedBBs.insert(FnLBBs[0]);
  while (!FnLBBs.empty()) {
    const BasicBlock *BBL = FnLBBs.pop_back_val();
    const BasicBlock *BBR = FnRBBs.pop_back_val();

    if (int Res = cmpValues(BBL, BBR))
      return Res;

    if (int Res = compare(BBL, BBR))
      return Res;

    const TerminatorInst *TermL = BBL->getTerminator();
    const TerminatorInst *TermR = BBR->getTerminator();

    assert(TermL->getNumSuccessors() == TermR->getNumSuccessors());
    for (unsigned i = 0, e = TermL->getNumSuccessors(); i != e; ++i) {
      if (!VisitedBBs.insert(TermL->getSuccessor(i)).second)
        continue;

      FnLBBs.push_back(TermL->getSuccessor(i));
      FnRBBs.push_back(TermR->getSuccessor(i));
    }
  }
  return 0;
}

namespace {

/// MergeFunctions finds functions which will generate identical machine code,
/// by considering all pointer types to be equivalent. Once identified,
/// MergeFunctions will fold them by replacing a call to one to a call to a
/// bitcast of the other.
///
class MergeFunctions : public ModulePass {
public:
  static char ID;
  MergeFunctions()
    : ModulePass(ID), HasGlobalAliases(false) {
    initializeMergeFunctionsPass(*PassRegistry::getPassRegistry());
  }

  bool runOnModule(Module &M) override;

private:
  typedef std::set<FunctionNode> FnTreeType;

  /// A work queue of functions that may have been modified and should be
  /// analyzed again.
  std::vector<WeakVH> Deferred;

  /// Checks the rules of order relation introduced among functions set.
  /// Returns true, if sanity check has been passed, and false if failed.
  bool doSanityCheck(std::vector<WeakVH> &Worklist);

  /// Insert a ComparableFunction into the FnTree, or merge it away if it's
  /// equal to one that's already present.
  bool insert(Function *NewFunction);

  /// Remove a Function from the FnTree and queue it up for a second sweep of
  /// analysis.
  void remove(Function *F);

  /// Find the functions that use this Value and remove them from FnTree and
  /// queue the functions.
  void removeUsers(Value *V);

  /// Replace all direct calls of Old with calls of New. Will bitcast New if
  /// necessary to make types match.
  void replaceDirectCallers(Function *Old, Function *New);

  /// Merge two equivalent functions. Upon completion, G may be deleted, or may
  /// be converted into a thunk. In either case, it should never be visited
  /// again.
  void mergeTwoFunctions(Function *F, Function *G);

  /// Replace G with a thunk or an alias to F. Deletes G.
  void writeThunkOrAlias(Function *F, Function *G);

  /// Replace G with a simple tail call to bitcast(F). Also replace direct uses
  /// of G with bitcast(F). Deletes G.
  void writeThunk(Function *F, Function *G);

  /// Replace G with an alias to F. Deletes G.
  void writeAlias(Function *F, Function *G);

  /// The set of all distinct functions. Use the insert() and remove() methods
  /// to modify it.
  FnTreeType FnTree;

  /// Whether or not the target supports global aliases.
  bool HasGlobalAliases;
};

}  // end anonymous namespace

char MergeFunctions::ID = 0;
INITIALIZE_PASS(MergeFunctions, "mergefunc", "Merge Functions", false, false)

ModulePass *llvm::createMergeFunctionsPass() {
  return new MergeFunctions();
}

bool MergeFunctions::doSanityCheck(std::vector<WeakVH> &Worklist) {
  if (const unsigned Max = NumFunctionsForSanityCheck) {
    unsigned TripleNumber = 0;
    bool Valid = true;

    dbgs() << "MERGEFUNC-SANITY: Started for first " << Max << " functions.\n";

    unsigned i = 0;
    for (std::vector<WeakVH>::iterator I = Worklist.begin(), E = Worklist.end();
         I != E && i < Max; ++I, ++i) {
      unsigned j = i;
      for (std::vector<WeakVH>::iterator J = I; J != E && j < Max; ++J, ++j) {
        Function *F1 = cast<Function>(*I);
        Function *F2 = cast<Function>(*J);
        int Res1 = FunctionComparator(F1, F2).compare();
        int Res2 = FunctionComparator(F2, F1).compare();

        // If F1 <= F2, then F2 >= F1, otherwise report failure.
        if (Res1 != -Res2) {
          dbgs() << "MERGEFUNC-SANITY: Non-symmetric; triple: " << TripleNumber
                 << "\n";
          F1->dump();
          F2->dump();
          Valid = false;
        }

        if (Res1 == 0)
          continue;

        unsigned k = j;
        for (std::vector<WeakVH>::iterator K = J; K != E && k < Max;
             ++k, ++K, ++TripleNumber) {
          if (K == J)
            continue;

          Function *F3 = cast<Function>(*K);
          int Res3 = FunctionComparator(F1, F3).compare();
          int Res4 = FunctionComparator(F2, F3).compare();

          bool Transitive = true;

          if (Res1 != 0 && Res1 == Res4) {
            // F1 > F2, F2 > F3 => F1 > F3
            Transitive = Res3 == Res1;
          } else if (Res3 != 0 && Res3 == -Res4) {
            // F1 > F3, F3 > F2 => F1 > F2
            Transitive = Res3 == Res1;
          } else if (Res4 != 0 && -Res3 == Res4) {
            // F2 > F3, F3 > F1 => F2 > F1
            Transitive = Res4 == -Res1;
          }

          if (!Transitive) {
            dbgs() << "MERGEFUNC-SANITY: Non-transitive; triple: "
                   << TripleNumber << "\n";
            dbgs() << "Res1, Res3, Res4: " << Res1 << ", " << Res3 << ", "
                   << Res4 << "\n";
            F1->dump();
            F2->dump();
            F3->dump();
            Valid = false;
          }
        }
      }
    }

    dbgs() << "MERGEFUNC-SANITY: " << (Valid ? "Passed." : "Failed.") << "\n";
    return Valid;
  }
  return true;
}

bool MergeFunctions::runOnModule(Module &M) {
  bool Changed = false;

  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
    if (!I->isDeclaration() && !I->hasAvailableExternallyLinkage())
      Deferred.push_back(WeakVH(I));
  }

  do {
    std::vector<WeakVH> Worklist;
    Deferred.swap(Worklist);

    DEBUG(doSanityCheck(Worklist));

    DEBUG(dbgs() << "size of module: " << M.size() << '\n');
    DEBUG(dbgs() << "size of worklist: " << Worklist.size() << '\n');

    // Insert only strong functions and merge them. Strong function merging
    // always deletes one of them.
    for (std::vector<WeakVH>::iterator I = Worklist.begin(),
           E = Worklist.end(); I != E; ++I) {
      if (!*I) continue;
      Function *F = cast<Function>(*I);
      if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
          !F->mayBeOverridden()) {
        Changed |= insert(F);
      }
    }

    // Insert only weak functions and merge them. By doing these second we
    // create thunks to the strong function when possible. When two weak
    // functions are identical, we create a new strong function with two weak
    // weak thunks to it which are identical but not mergable.
    for (std::vector<WeakVH>::iterator I = Worklist.begin(),
           E = Worklist.end(); I != E; ++I) {
      if (!*I) continue;
      Function *F = cast<Function>(*I);
      if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
          F->mayBeOverridden()) {
        Changed |= insert(F);
      }
    }
    DEBUG(dbgs() << "size of FnTree: " << FnTree.size() << '\n');
  } while (!Deferred.empty());

  FnTree.clear();

  return Changed;
}

// Replace direct callers of Old with New.
void MergeFunctions::replaceDirectCallers(Function *Old, Function *New) {
  Constant *BitcastNew = ConstantExpr::getBitCast(New, Old->getType());
  for (auto UI = Old->use_begin(), UE = Old->use_end(); UI != UE;) {
    Use *U = &*UI;
    ++UI;
    CallSite CS(U->getUser());
    if (CS && CS.isCallee(U)) {
      remove(CS.getInstruction()->getParent()->getParent());
      U->set(BitcastNew);
    }
  }
}

// Replace G with an alias to F if possible, or else a thunk to F. Deletes G.
void MergeFunctions::writeThunkOrAlias(Function *F, Function *G) {
  if (HasGlobalAliases && G->hasUnnamedAddr()) {
    if (G->hasExternalLinkage() || G->hasLocalLinkage() ||
        G->hasWeakLinkage()) {
      writeAlias(F, G);
      return;
    }
  }

  writeThunk(F, G);
}

// Helper for writeThunk,
// Selects proper bitcast operation,
// but a bit simpler then CastInst::getCastOpcode.
static Value *createCast(IRBuilder<false> &Builder, Value *V, Type *DestTy) {
  Type *SrcTy = V->getType();
  if (SrcTy->isStructTy()) {
    assert(DestTy->isStructTy());
    assert(SrcTy->getStructNumElements() == DestTy->getStructNumElements());
    Value *Result = UndefValue::get(DestTy);
    for (unsigned int I = 0, E = SrcTy->getStructNumElements(); I < E; ++I) {
      Value *Element = createCast(
          Builder, Builder.CreateExtractValue(V, makeArrayRef(I)),
          DestTy->getStructElementType(I));

      Result =
          Builder.CreateInsertValue(Result, Element, makeArrayRef(I));
    }
    return Result;
  }
  assert(!DestTy->isStructTy());
  if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
    return Builder.CreateIntToPtr(V, DestTy);
  else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
    return Builder.CreatePtrToInt(V, DestTy);
  else
    return Builder.CreateBitCast(V, DestTy);
}

// Replace G with a simple tail call to bitcast(F). Also replace direct uses
// of G with bitcast(F). Deletes G.
void MergeFunctions::writeThunk(Function *F, Function *G) {
  if (!G->mayBeOverridden()) {
    // Redirect direct callers of G to F.
    replaceDirectCallers(G, F);
  }

  // If G was internal then we may have replaced all uses of G with F. If so,
  // stop here and delete G. There's no need for a thunk.
  if (G->hasLocalLinkage() && G->use_empty()) {
    G->eraseFromParent();
    return;
  }

  Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "",
                                    G->getParent());
  BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG);
  IRBuilder<false> Builder(BB);

  SmallVector<Value *, 16> Args;
  unsigned i = 0;
  FunctionType *FFTy = F->getFunctionType();
  for (Function::arg_iterator AI = NewG->arg_begin(), AE = NewG->arg_end();
       AI != AE; ++AI) {
    Args.push_back(createCast(Builder, (Value*)AI, FFTy->getParamType(i)));
    ++i;
  }

  CallInst *CI = Builder.CreateCall(F, Args);
  CI->setTailCall();
  CI->setCallingConv(F->getCallingConv());
  if (NewG->getReturnType()->isVoidTy()) {
    Builder.CreateRetVoid();
  } else {
    Builder.CreateRet(createCast(Builder, CI, NewG->getReturnType()));
  }

  NewG->copyAttributesFrom(G);
  NewG->takeName(G);
  removeUsers(G);
  G->replaceAllUsesWith(NewG);
  G->eraseFromParent();

  DEBUG(dbgs() << "writeThunk: " << NewG->getName() << '\n');
  ++NumThunksWritten;
}

// Replace G with an alias to F and delete G.
void MergeFunctions::writeAlias(Function *F, Function *G) {
  PointerType *PTy = G->getType();
  auto *GA = GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(),
                                 G->getLinkage(), "", F);
  F->setAlignment(std::max(F->getAlignment(), G->getAlignment()));
  GA->takeName(G);
  GA->setVisibility(G->getVisibility());
  removeUsers(G);
  G->replaceAllUsesWith(GA);
  G->eraseFromParent();

  DEBUG(dbgs() << "writeAlias: " << GA->getName() << '\n');
  ++NumAliasesWritten;
}

// Merge two equivalent functions. Upon completion, Function G is deleted.
void MergeFunctions::mergeTwoFunctions(Function *F, Function *G) {
  if (F->mayBeOverridden()) {
    assert(G->mayBeOverridden());

    if (HasGlobalAliases) {
      // Make them both thunks to the same internal function.
      Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "",
                                     F->getParent());
      H->copyAttributesFrom(F);
      H->takeName(F);
      removeUsers(F);
      F->replaceAllUsesWith(H);

      unsigned MaxAlignment = std::max(G->getAlignment(), H->getAlignment());

      writeAlias(F, G);
      writeAlias(F, H);

      F->setAlignment(MaxAlignment);
      F->setLinkage(GlobalValue::PrivateLinkage);
    } else {
      // We can't merge them. Instead, pick one and update all direct callers
      // to call it and hope that we improve the instruction cache hit rate.
      replaceDirectCallers(G, F);
    }

    ++NumDoubleWeak;
  } else {
    writeThunkOrAlias(F, G);
  }

  ++NumFunctionsMerged;
}

// Insert a ComparableFunction into the FnTree, or merge it away if equal to one
// that was already inserted.
bool MergeFunctions::insert(Function *NewFunction) {
  std::pair<FnTreeType::iterator, bool> Result =
      FnTree.insert(FunctionNode(NewFunction));

  if (Result.second) {
    DEBUG(dbgs() << "Inserting as unique: " << NewFunction->getName() << '\n');
    return false;
  }

  const FunctionNode &OldF = *Result.first;

  // Don't merge tiny functions, since it can just end up making the function
  // larger.
  // FIXME: Should still merge them if they are unnamed_addr and produce an
  // alias.
  if (NewFunction->size() == 1) {
    if (NewFunction->front().size() <= 2) {
      DEBUG(dbgs() << NewFunction->getName()
                   << " is to small to bother merging\n");
      return false;
    }
  }

  // Never thunk a strong function to a weak function.
  assert(!OldF.getFunc()->mayBeOverridden() || NewFunction->mayBeOverridden());

  DEBUG(dbgs() << "  " << OldF.getFunc()->getName()
               << " == " << NewFunction->getName() << '\n');

  Function *DeleteF = NewFunction;
  mergeTwoFunctions(OldF.getFunc(), DeleteF);
  return true;
}

// Remove a function from FnTree. If it was already in FnTree, add
// it to Deferred so that we'll look at it in the next round.
void MergeFunctions::remove(Function *F) {
  // We need to make sure we remove F, not a function "equal" to F per the
  // function equality comparator.
  FnTreeType::iterator found = FnTree.find(FunctionNode(F));
  size_t Erased = 0;
  if (found != FnTree.end() && found->getFunc() == F) {
    Erased = 1;
    FnTree.erase(found);
  }

  if (Erased) {
    DEBUG(dbgs() << "Removed " << F->getName()
                 << " from set and deferred it.\n");
    Deferred.push_back(F);
  }
}

// For each instruction used by the value, remove() the function that contains
// the instruction. This should happen right before a call to RAUW.
void MergeFunctions::removeUsers(Value *V) {
  std::vector<Value *> Worklist;
  Worklist.push_back(V);
  while (!Worklist.empty()) {
    Value *V = Worklist.back();
    Worklist.pop_back();

    for (User *U : V->users()) {
      if (Instruction *I = dyn_cast<Instruction>(U)) {
        remove(I->getParent()->getParent());
      } else if (isa<GlobalValue>(U)) {
        // do nothing
      } else if (Constant *C = dyn_cast<Constant>(U)) {
        for (User *UU : C->users())
          Worklist.push_back(UU);
      }
    }
  }
}