aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Transforms/IPO/PartialSpecialization.cpp
blob: 0e1fdb9915ac969969251c78da1e9d71551485bf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
//===-- PartialSpecialization.cpp - Specialize for common constants--------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass finds function arguments that are often a common constant and 
// specializes a version of the called function for that constant.
//
// This pass simply does the cloning for functions it specializes.  It depends
// on IPSCCP and DAE to clean up the results.
//
// The initial heuristic favors constant arguments that are used in control 
// flow.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "partialspecialization"
#include "llvm/Transforms/IPO.h"
#include "llvm/Constant.h"
#include "llvm/Instructions.h"
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/Compiler.h"
#include "llvm/ADT/DenseSet.h"
#include <map>
using namespace llvm;

STATISTIC(numSpecialized, "Number of specialized functions created");

// Call must be used at least occasionally
static const int CallsMin = 5;

// Must have 10% of calls having the same constant to specialize on
static const double ConstValPercent = .1;

namespace {
  class VISIBILITY_HIDDEN PartSpec : public ModulePass {
    void scanForInterest(Function&, SmallVector<int, 6>&);
    int scanDistribution(Function&, int, std::map<Constant*, int>&);
  public :
    static char ID; // Pass identification, replacement for typeid
    PartSpec() : ModulePass(&ID) {}
    bool runOnModule(Module &M);
  };
}

char PartSpec::ID = 0;
static RegisterPass<PartSpec>
X("partialspecialization", "Partial Specialization");

// Specialize F by replacing the arguments (keys) in replacements with the 
// constants (values).  Replace all calls to F with those constants with
// a call to the specialized function.  Returns the specialized function
static Function* 
SpecializeFunction(Function* F, 
                   DenseMap<const Value*, Value*>& replacements) {
  // arg numbers of deleted arguments
  DenseSet<unsigned> deleted;
  for (DenseMap<const Value*, Value*>::iterator 
         repb = replacements.begin(), repe = replacements.end();
       repb != repe; ++repb)
    deleted.insert(cast<Argument>(repb->first)->getArgNo());

  Function* NF = CloneFunction(F, replacements);
  NF->setLinkage(GlobalValue::InternalLinkage);
  F->getParent()->getFunctionList().push_back(NF);

  for (Value::use_iterator ii = F->use_begin(), ee = F->use_end(); 
       ii != ee; ) {
    Value::use_iterator i = ii;
    ++ii;
    if (isa<CallInst>(i) || isa<InvokeInst>(i)) {
      CallSite CS(cast<Instruction>(i));
      if (CS.getCalledFunction() == F) {
        
        SmallVector<Value*, 6> args;
        for (unsigned x = 0; x < CS.arg_size(); ++x)
          if (!deleted.count(x))
            args.push_back(CS.getArgument(x));
        Value* NCall;
        if (CallInst *CI = dyn_cast<CallInst>(i)) {
          NCall = CallInst::Create(NF, args.begin(), args.end(), 
                                   CI->getName(), CI);
          cast<CallInst>(NCall)->setTailCall(CI->isTailCall());
          cast<CallInst>(NCall)->setCallingConv(CI->getCallingConv());
        } else {
          InvokeInst *II = cast<InvokeInst>(i);
          NCall = InvokeInst::Create(NF, II->getNormalDest(),
                                     II->getUnwindDest(),
                                     args.begin(), args.end(), 
                                     II->getName(), II);
          cast<InvokeInst>(NCall)->setCallingConv(II->getCallingConv());
        }
        CS.getInstruction()->replaceAllUsesWith(NCall);
        CS.getInstruction()->eraseFromParent();
      }
    }
  }
  return NF;
}


bool PartSpec::runOnModule(Module &M) {
  bool Changed = false;
  for (Module::iterator I = M.begin(); I != M.end(); ++I) {
    Function &F = *I;
    if (F.isDeclaration() || F.mayBeOverridden()) continue;
    SmallVector<int, 6> interestingArgs;
    scanForInterest(F, interestingArgs);

    // Find the first interesting Argument that we can specialize on
    // If there are multiple interesting Arguments, then those will be found
    // when processing the cloned function.
    bool breakOuter = false;
    for (unsigned int x = 0; !breakOuter && x < interestingArgs.size(); ++x) {
      std::map<Constant*, int> distribution;
      int total = scanDistribution(F, interestingArgs[x], distribution);
      if (total > CallsMin) 
        for (std::map<Constant*, int>::iterator ii = distribution.begin(),
               ee = distribution.end(); ii != ee; ++ii)
          if (total > ii->second && ii->first &&
               ii->second > total * ConstValPercent) {
            DenseMap<const Value*, Value*> m;
            Function::arg_iterator arg = F.arg_begin();
            for (int y = 0; y < interestingArgs[x]; ++y)
              ++arg;
            m[&*arg] = ii->first;
            SpecializeFunction(&F, m);
            ++numSpecialized;
            breakOuter = true;
            Changed = true;
          }
    }
  }
  return Changed;
}

/// scanForInterest - This function decides which arguments would be worth
/// specializing on.
void PartSpec::scanForInterest(Function& F, SmallVector<int, 6>& args) {
  for(Function::arg_iterator ii = F.arg_begin(), ee = F.arg_end();
      ii != ee; ++ii) {
    for(Value::use_iterator ui = ii->use_begin(), ue = ii->use_end();
        ui != ue; ++ui) {

      bool interesting = false;

      if (isa<CmpInst>(ui)) interesting = true;
      else if (isa<CallInst>(ui))
        interesting = ui->getOperand(0) == ii;
      else if (isa<InvokeInst>(ui))
        interesting = ui->getOperand(0) == ii;
      else if (isa<SwitchInst>(ui)) interesting = true;
      else if (isa<BranchInst>(ui)) interesting = true;

      if (interesting) {
        args.push_back(std::distance(F.arg_begin(), ii));
        break;
      }
    }
  }
}

/// scanDistribution - Construct a histogram of constants for arg of F at arg.
int PartSpec::scanDistribution(Function& F, int arg, 
                               std::map<Constant*, int>& dist) {
  bool hasIndirect = false;
  int total = 0;
  for(Value::use_iterator ii = F.use_begin(), ee = F.use_end();
      ii != ee; ++ii)
    if ((isa<CallInst>(ii) || isa<InvokeInst>(ii))
        && ii->getOperand(0) == &F) {
      ++dist[dyn_cast<Constant>(ii->getOperand(arg + 1))];
      ++total;
    } else
      hasIndirect = true;

  // Preserve the original address taken function even if all other uses
  // will be specialized.
  if (hasIndirect) ++total;
  return total;
}

ModulePass* llvm::createPartialSpecializationPass() { return new PartSpec(); }