aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp
blob: a7bfe0965b03c5a50f9e3d8f9b9856a324a37158 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
//===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains logic for simplifying instructions based on information
// about how they are used.
//
//===----------------------------------------------------------------------===//


#include "InstCombine.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Support/PatternMatch.h"

using namespace llvm;
using namespace llvm::PatternMatch;

/// ShrinkDemandedConstant - Check to see if the specified operand of the
/// specified instruction is a constant integer.  If so, check to see if there
/// are any bits set in the constant that are not demanded.  If so, shrink the
/// constant and return true.
static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
                                   APInt Demanded) {
  assert(I && "No instruction?");
  assert(OpNo < I->getNumOperands() && "Operand index too large");

  // If the operand is not a constant integer, nothing to do.
  ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo));
  if (!OpC) return false;

  // If there are no bits set that aren't demanded, nothing to do.
  Demanded = Demanded.zextOrTrunc(OpC->getValue().getBitWidth());
  if ((~Demanded & OpC->getValue()) == 0)
    return false;

  // This instruction is producing bits that are not demanded. Shrink the RHS.
  Demanded &= OpC->getValue();
  I->setOperand(OpNo, ConstantInt::get(OpC->getType(), Demanded));
  return true;
}



/// SimplifyDemandedInstructionBits - Inst is an integer instruction that
/// SimplifyDemandedBits knows about.  See if the instruction has any
/// properties that allow us to simplify its operands.
bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) {
  unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
  APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
  APInt DemandedMask(APInt::getAllOnesValue(BitWidth));

  Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask,
                                     KnownZero, KnownOne, 0);
  if (V == 0) return false;
  if (V == &Inst) return true;
  ReplaceInstUsesWith(Inst, V);
  return true;
}

/// SimplifyDemandedBits - This form of SimplifyDemandedBits simplifies the
/// specified instruction operand if possible, updating it in place.  It returns
/// true if it made any change and false otherwise.
bool InstCombiner::SimplifyDemandedBits(Use &U, APInt DemandedMask,
                                        APInt &KnownZero, APInt &KnownOne,
                                        unsigned Depth) {
  Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask,
                                          KnownZero, KnownOne, Depth);
  if (NewVal == 0) return false;
  U = NewVal;
  return true;
}


/// SimplifyDemandedUseBits - This function attempts to replace V with a simpler
/// value based on the demanded bits.  When this function is called, it is known
/// that only the bits set in DemandedMask of the result of V are ever used
/// downstream. Consequently, depending on the mask and V, it may be possible
/// to replace V with a constant or one of its operands. In such cases, this
/// function does the replacement and returns true. In all other cases, it
/// returns false after analyzing the expression and setting KnownOne and known
/// to be one in the expression.  KnownZero contains all the bits that are known
/// to be zero in the expression. These are provided to potentially allow the
/// caller (which might recursively be SimplifyDemandedBits itself) to simplify
/// the expression. KnownOne and KnownZero always follow the invariant that
/// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that
/// the bits in KnownOne and KnownZero may only be accurate for those bits set
/// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero
/// and KnownOne must all be the same.
///
/// This returns null if it did not change anything and it permits no
/// simplification.  This returns V itself if it did some simplification of V's
/// operands based on the information about what bits are demanded. This returns
/// some other non-null value if it found out that V is equal to another value
/// in the context where the specified bits are demanded, but not for all users.
Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
                                             APInt &KnownZero, APInt &KnownOne,
                                             unsigned Depth) {
  assert(V != 0 && "Null pointer of Value???");
  assert(Depth <= 6 && "Limit Search Depth");
  uint32_t BitWidth = DemandedMask.getBitWidth();
  Type *VTy = V->getType();
  assert((TD || !VTy->isPointerTy()) &&
         "SimplifyDemandedBits needs to know bit widths!");
  assert((!TD || TD->getTypeSizeInBits(VTy->getScalarType()) == BitWidth) &&
         (!VTy->isIntOrIntVectorTy() ||
          VTy->getScalarSizeInBits() == BitWidth) &&
         KnownZero.getBitWidth() == BitWidth &&
         KnownOne.getBitWidth() == BitWidth &&
         "Value *V, DemandedMask, KnownZero and KnownOne "
         "must have same BitWidth");
  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
    // We know all of the bits for a constant!
    KnownOne = CI->getValue() & DemandedMask;
    KnownZero = ~KnownOne & DemandedMask;
    return 0;
  }
  if (isa<ConstantPointerNull>(V)) {
    // We know all of the bits for a constant!
    KnownOne.clearAllBits();
    KnownZero = DemandedMask;
    return 0;
  }

  KnownZero.clearAllBits();
  KnownOne.clearAllBits();
  if (DemandedMask == 0) {   // Not demanding any bits from V.
    if (isa<UndefValue>(V))
      return 0;
    return UndefValue::get(VTy);
  }

  if (Depth == 6)        // Limit search depth.
    return 0;

  APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
  APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);

  Instruction *I = dyn_cast<Instruction>(V);
  if (!I) {
    ComputeMaskedBits(V, KnownZero, KnownOne, Depth);
    return 0;        // Only analyze instructions.
  }

  // If there are multiple uses of this value and we aren't at the root, then
  // we can't do any simplifications of the operands, because DemandedMask
  // only reflects the bits demanded by *one* of the users.
  if (Depth != 0 && !I->hasOneUse()) {
    // Despite the fact that we can't simplify this instruction in all User's
    // context, we can at least compute the knownzero/knownone bits, and we can
    // do simplifications that apply to *just* the one user if we know that
    // this instruction has a simpler value in that context.
    if (I->getOpcode() == Instruction::And) {
      // If either the LHS or the RHS are Zero, the result is zero.
      ComputeMaskedBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth+1);
      ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1);

      // If all of the demanded bits are known 1 on one side, return the other.
      // These bits cannot contribute to the result of the 'and' in this
      // context.
      if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
          (DemandedMask & ~LHSKnownZero))
        return I->getOperand(0);
      if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
          (DemandedMask & ~RHSKnownZero))
        return I->getOperand(1);

      // If all of the demanded bits in the inputs are known zeros, return zero.
      if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
        return Constant::getNullValue(VTy);

    } else if (I->getOpcode() == Instruction::Or) {
      // We can simplify (X|Y) -> X or Y in the user's context if we know that
      // only bits from X or Y are demanded.

      // If either the LHS or the RHS are One, the result is One.
      ComputeMaskedBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth+1);
      ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1);

      // If all of the demanded bits are known zero on one side, return the
      // other.  These bits cannot contribute to the result of the 'or' in this
      // context.
      if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
          (DemandedMask & ~LHSKnownOne))
        return I->getOperand(0);
      if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
          (DemandedMask & ~RHSKnownOne))
        return I->getOperand(1);

      // If all of the potentially set bits on one side are known to be set on
      // the other side, just use the 'other' side.
      if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
          (DemandedMask & (~RHSKnownZero)))
        return I->getOperand(0);
      if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
          (DemandedMask & (~LHSKnownZero)))
        return I->getOperand(1);
    } else if (I->getOpcode() == Instruction::Xor) {
      // We can simplify (X^Y) -> X or Y in the user's context if we know that
      // only bits from X or Y are demanded.

      ComputeMaskedBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth+1);
      ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1);

      // If all of the demanded bits are known zero on one side, return the
      // other.
      if ((DemandedMask & RHSKnownZero) == DemandedMask)
        return I->getOperand(0);
      if ((DemandedMask & LHSKnownZero) == DemandedMask)
        return I->getOperand(1);
    }

    // Compute the KnownZero/KnownOne bits to simplify things downstream.
    ComputeMaskedBits(I, KnownZero, KnownOne, Depth);
    return 0;
  }

  // If this is the root being simplified, allow it to have multiple uses,
  // just set the DemandedMask to all bits so that we can try to simplify the
  // operands.  This allows visitTruncInst (for example) to simplify the
  // operand of a trunc without duplicating all the logic below.
  if (Depth == 0 && !V->hasOneUse())
    DemandedMask = APInt::getAllOnesValue(BitWidth);

  switch (I->getOpcode()) {
  default:
    ComputeMaskedBits(I, KnownZero, KnownOne, Depth);
    break;
  case Instruction::And:
    // If either the LHS or the RHS are Zero, the result is zero.
    if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
                             RHSKnownZero, RHSKnownOne, Depth+1) ||
        SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownZero,
                             LHSKnownZero, LHSKnownOne, Depth+1))
      return I;
    assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
    assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");

    // If all of the demanded bits are known 1 on one side, return the other.
    // These bits cannot contribute to the result of the 'and'.
    if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
        (DemandedMask & ~LHSKnownZero))
      return I->getOperand(0);
    if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
        (DemandedMask & ~RHSKnownZero))
      return I->getOperand(1);

    // If all of the demanded bits in the inputs are known zeros, return zero.
    if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
      return Constant::getNullValue(VTy);

    // If the RHS is a constant, see if we can simplify it.
    if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero))
      return I;

    // Output known-1 bits are only known if set in both the LHS & RHS.
    KnownOne = RHSKnownOne & LHSKnownOne;
    // Output known-0 are known to be clear if zero in either the LHS | RHS.
    KnownZero = RHSKnownZero | LHSKnownZero;
    break;
  case Instruction::Or:
    // If either the LHS or the RHS are One, the result is One.
    if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
                             RHSKnownZero, RHSKnownOne, Depth+1) ||
        SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownOne,
                             LHSKnownZero, LHSKnownOne, Depth+1))
      return I;
    assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
    assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");

    // If all of the demanded bits are known zero on one side, return the other.
    // These bits cannot contribute to the result of the 'or'.
    if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
        (DemandedMask & ~LHSKnownOne))
      return I->getOperand(0);
    if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
        (DemandedMask & ~RHSKnownOne))
      return I->getOperand(1);

    // If all of the potentially set bits on one side are known to be set on
    // the other side, just use the 'other' side.
    if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
        (DemandedMask & (~RHSKnownZero)))
      return I->getOperand(0);
    if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
        (DemandedMask & (~LHSKnownZero)))
      return I->getOperand(1);

    // If the RHS is a constant, see if we can simplify it.
    if (ShrinkDemandedConstant(I, 1, DemandedMask))
      return I;

    // Output known-0 bits are only known if clear in both the LHS & RHS.
    KnownZero = RHSKnownZero & LHSKnownZero;
    // Output known-1 are known to be set if set in either the LHS | RHS.
    KnownOne = RHSKnownOne | LHSKnownOne;
    break;
  case Instruction::Xor: {
    if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
                             RHSKnownZero, RHSKnownOne, Depth+1) ||
        SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
                             LHSKnownZero, LHSKnownOne, Depth+1))
      return I;
    assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
    assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");

    // If all of the demanded bits are known zero on one side, return the other.
    // These bits cannot contribute to the result of the 'xor'.
    if ((DemandedMask & RHSKnownZero) == DemandedMask)
      return I->getOperand(0);
    if ((DemandedMask & LHSKnownZero) == DemandedMask)
      return I->getOperand(1);

    // If all of the demanded bits are known to be zero on one side or the
    // other, turn this into an *inclusive* or.
    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
    if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) {
      Instruction *Or =
        BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
                                 I->getName());
      return InsertNewInstWith(Or, *I);
    }

    // If all of the demanded bits on one side are known, and all of the set
    // bits on that side are also known to be set on the other side, turn this
    // into an AND, as we know the bits will be cleared.
    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
    if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) {
      // all known
      if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) {
        Constant *AndC = Constant::getIntegerValue(VTy,
                                                   ~RHSKnownOne & DemandedMask);
        Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
        return InsertNewInstWith(And, *I);
      }
    }

    // If the RHS is a constant, see if we can simplify it.
    // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
    if (ShrinkDemandedConstant(I, 1, DemandedMask))
      return I;

    // If our LHS is an 'and' and if it has one use, and if any of the bits we
    // are flipping are known to be set, then the xor is just resetting those
    // bits to zero.  We can just knock out bits from the 'and' and the 'xor',
    // simplifying both of them.
    if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0)))
      if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
          isa<ConstantInt>(I->getOperand(1)) &&
          isa<ConstantInt>(LHSInst->getOperand(1)) &&
          (LHSKnownOne & RHSKnownOne & DemandedMask) != 0) {
        ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1));
        ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1));
        APInt NewMask = ~(LHSKnownOne & RHSKnownOne & DemandedMask);

        Constant *AndC =
          ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
        Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
        InsertNewInstWith(NewAnd, *I);

        Constant *XorC =
          ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
        Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC);
        return InsertNewInstWith(NewXor, *I);
      }

    // Output known-0 bits are known if clear or set in both the LHS & RHS.
    KnownZero= (RHSKnownZero & LHSKnownZero) | (RHSKnownOne & LHSKnownOne);
    // Output known-1 are known to be set if set in only one of the LHS, RHS.
    KnownOne = (RHSKnownZero & LHSKnownOne) | (RHSKnownOne & LHSKnownZero);
    break;
  }
  case Instruction::Select:
    if (SimplifyDemandedBits(I->getOperandUse(2), DemandedMask,
                             RHSKnownZero, RHSKnownOne, Depth+1) ||
        SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
                             LHSKnownZero, LHSKnownOne, Depth+1))
      return I;
    assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
    assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");

    // If the operands are constants, see if we can simplify them.
    if (ShrinkDemandedConstant(I, 1, DemandedMask) ||
        ShrinkDemandedConstant(I, 2, DemandedMask))
      return I;

    // Only known if known in both the LHS and RHS.
    KnownOne = RHSKnownOne & LHSKnownOne;
    KnownZero = RHSKnownZero & LHSKnownZero;
    break;
  case Instruction::Trunc: {
    unsigned truncBf = I->getOperand(0)->getType()->getScalarSizeInBits();
    DemandedMask = DemandedMask.zext(truncBf);
    KnownZero = KnownZero.zext(truncBf);
    KnownOne = KnownOne.zext(truncBf);
    if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
                             KnownZero, KnownOne, Depth+1))
      return I;
    DemandedMask = DemandedMask.trunc(BitWidth);
    KnownZero = KnownZero.trunc(BitWidth);
    KnownOne = KnownOne.trunc(BitWidth);
    assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
    break;
  }
  case Instruction::BitCast:
    if (!I->getOperand(0)->getType()->isIntOrIntVectorTy())
      return 0;  // vector->int or fp->int?

    if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) {
      if (VectorType *SrcVTy =
            dyn_cast<VectorType>(I->getOperand(0)->getType())) {
        if (DstVTy->getNumElements() != SrcVTy->getNumElements())
          // Don't touch a bitcast between vectors of different element counts.
          return 0;
      } else
        // Don't touch a scalar-to-vector bitcast.
        return 0;
    } else if (I->getOperand(0)->getType()->isVectorTy())
      // Don't touch a vector-to-scalar bitcast.
      return 0;

    if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
                             KnownZero, KnownOne, Depth+1))
      return I;
    assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
    break;
  case Instruction::ZExt: {
    // Compute the bits in the result that are not present in the input.
    unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();

    DemandedMask = DemandedMask.trunc(SrcBitWidth);
    KnownZero = KnownZero.trunc(SrcBitWidth);
    KnownOne = KnownOne.trunc(SrcBitWidth);
    if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
                             KnownZero, KnownOne, Depth+1))
      return I;
    DemandedMask = DemandedMask.zext(BitWidth);
    KnownZero = KnownZero.zext(BitWidth);
    KnownOne = KnownOne.zext(BitWidth);
    assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
    // The top bits are known to be zero.
    KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
    break;
  }
  case Instruction::SExt: {
    // Compute the bits in the result that are not present in the input.
    unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();

    APInt InputDemandedBits = DemandedMask &
                              APInt::getLowBitsSet(BitWidth, SrcBitWidth);

    APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth));
    // If any of the sign extended bits are demanded, we know that the sign
    // bit is demanded.
    if ((NewBits & DemandedMask) != 0)
      InputDemandedBits.setBit(SrcBitWidth-1);

    InputDemandedBits = InputDemandedBits.trunc(SrcBitWidth);
    KnownZero = KnownZero.trunc(SrcBitWidth);
    KnownOne = KnownOne.trunc(SrcBitWidth);
    if (SimplifyDemandedBits(I->getOperandUse(0), InputDemandedBits,
                             KnownZero, KnownOne, Depth+1))
      return I;
    InputDemandedBits = InputDemandedBits.zext(BitWidth);
    KnownZero = KnownZero.zext(BitWidth);
    KnownOne = KnownOne.zext(BitWidth);
    assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");

    // If the sign bit of the input is known set or clear, then we know the
    // top bits of the result.

    // If the input sign bit is known zero, or if the NewBits are not demanded
    // convert this into a zero extension.
    if (KnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits) {
      // Convert to ZExt cast
      CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
      return InsertNewInstWith(NewCast, *I);
    } else if (KnownOne[SrcBitWidth-1]) {    // Input sign bit known set
      KnownOne |= NewBits;
    }
    break;
  }
  case Instruction::Add: {
    // Figure out what the input bits are.  If the top bits of the and result
    // are not demanded, then the add doesn't demand them from its input
    // either.
    unsigned NLZ = DemandedMask.countLeadingZeros();

    // If there is a constant on the RHS, there are a variety of xformations
    // we can do.
    if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
      // If null, this should be simplified elsewhere.  Some of the xforms here
      // won't work if the RHS is zero.
      if (RHS->isZero())
        break;

      // If the top bit of the output is demanded, demand everything from the
      // input.  Otherwise, we demand all the input bits except NLZ top bits.
      APInt InDemandedBits(APInt::getLowBitsSet(BitWidth, BitWidth - NLZ));

      // Find information about known zero/one bits in the input.
      if (SimplifyDemandedBits(I->getOperandUse(0), InDemandedBits,
                               LHSKnownZero, LHSKnownOne, Depth+1))
        return I;

      // If the RHS of the add has bits set that can't affect the input, reduce
      // the constant.
      if (ShrinkDemandedConstant(I, 1, InDemandedBits))
        return I;

      // Avoid excess work.
      if (LHSKnownZero == 0 && LHSKnownOne == 0)
        break;

      // Turn it into OR if input bits are zero.
      if ((LHSKnownZero & RHS->getValue()) == RHS->getValue()) {
        Instruction *Or =
          BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
                                   I->getName());
        return InsertNewInstWith(Or, *I);
      }

      // We can say something about the output known-zero and known-one bits,
      // depending on potential carries from the input constant and the
      // unknowns.  For example if the LHS is known to have at most the 0x0F0F0
      // bits set and the RHS constant is 0x01001, then we know we have a known
      // one mask of 0x00001 and a known zero mask of 0xE0F0E.

      // To compute this, we first compute the potential carry bits.  These are
      // the bits which may be modified.  I'm not aware of a better way to do
      // this scan.
      const APInt &RHSVal = RHS->getValue();
      APInt CarryBits((~LHSKnownZero + RHSVal) ^ (~LHSKnownZero ^ RHSVal));

      // Now that we know which bits have carries, compute the known-1/0 sets.

      // Bits are known one if they are known zero in one operand and one in the
      // other, and there is no input carry.
      KnownOne = ((LHSKnownZero & RHSVal) |
                  (LHSKnownOne & ~RHSVal)) & ~CarryBits;

      // Bits are known zero if they are known zero in both operands and there
      // is no input carry.
      KnownZero = LHSKnownZero & ~RHSVal & ~CarryBits;
    } else {
      // If the high-bits of this ADD are not demanded, then it does not demand
      // the high bits of its LHS or RHS.
      if (DemandedMask[BitWidth-1] == 0) {
        // Right fill the mask of bits for this ADD to demand the most
        // significant bit and all those below it.
        APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
        if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps,
                                 LHSKnownZero, LHSKnownOne, Depth+1) ||
            SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps,
                                 LHSKnownZero, LHSKnownOne, Depth+1))
          return I;
      }
    }
    break;
  }
  case Instruction::Sub:
    // If the high-bits of this SUB are not demanded, then it does not demand
    // the high bits of its LHS or RHS.
    if (DemandedMask[BitWidth-1] == 0) {
      // Right fill the mask of bits for this SUB to demand the most
      // significant bit and all those below it.
      uint32_t NLZ = DemandedMask.countLeadingZeros();
      APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
      if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps,
                               LHSKnownZero, LHSKnownOne, Depth+1) ||
          SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps,
                               LHSKnownZero, LHSKnownOne, Depth+1))
        return I;
    }

    // Otherwise just hand the sub off to ComputeMaskedBits to fill in
    // the known zeros and ones.
    ComputeMaskedBits(V, KnownZero, KnownOne, Depth);

    // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known
    // zero.
    if (ConstantInt *C0 = dyn_cast<ConstantInt>(I->getOperand(0))) {
      APInt I0 = C0->getValue();
      if ((I0 + 1).isPowerOf2() && (I0 | KnownZero).isAllOnesValue()) {
        Instruction *Xor = BinaryOperator::CreateXor(I->getOperand(1), C0);
        return InsertNewInstWith(Xor, *I);
      }
    }
    break;
  case Instruction::Shl:
    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
      {
        Value *VarX; ConstantInt *C1;
        if (match(I->getOperand(0), m_Shr(m_Value(VarX), m_ConstantInt(C1)))) {
          Instruction *Shr = cast<Instruction>(I->getOperand(0));
          Value *R = SimplifyShrShlDemandedBits(Shr, I, DemandedMask,
                                                KnownZero, KnownOne);
          if (R)
            return R;
        }
      }

      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
      APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));

      // If the shift is NUW/NSW, then it does demand the high bits.
      ShlOperator *IOp = cast<ShlOperator>(I);
      if (IOp->hasNoSignedWrap())
        DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1);
      else if (IOp->hasNoUnsignedWrap())
        DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt);

      if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
                               KnownZero, KnownOne, Depth+1))
        return I;
      assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
      KnownZero <<= ShiftAmt;
      KnownOne  <<= ShiftAmt;
      // low bits known zero.
      if (ShiftAmt)
        KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
    }
    break;
  case Instruction::LShr:
    // For a logical shift right
    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);

      // Unsigned shift right.
      APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));

      // If the shift is exact, then it does demand the low bits (and knows that
      // they are zero).
      if (cast<LShrOperator>(I)->isExact())
        DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt);

      if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
                               KnownZero, KnownOne, Depth+1))
        return I;
      assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
      KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
      KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
      if (ShiftAmt) {
        // Compute the new bits that are at the top now.
        APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
        KnownZero |= HighBits;  // high bits known zero.
      }
    }
    break;
  case Instruction::AShr:
    // If this is an arithmetic shift right and only the low-bit is set, we can
    // always convert this into a logical shr, even if the shift amount is
    // variable.  The low bit of the shift cannot be an input sign bit unless
    // the shift amount is >= the size of the datatype, which is undefined.
    if (DemandedMask == 1) {
      // Perform the logical shift right.
      Instruction *NewVal = BinaryOperator::CreateLShr(
                        I->getOperand(0), I->getOperand(1), I->getName());
      return InsertNewInstWith(NewVal, *I);
    }

    // If the sign bit is the only bit demanded by this ashr, then there is no
    // need to do it, the shift doesn't change the high bit.
    if (DemandedMask.isSignBit())
      return I->getOperand(0);

    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
      uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);

      // Signed shift right.
      APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
      // If any of the "high bits" are demanded, we should set the sign bit as
      // demanded.
      if (DemandedMask.countLeadingZeros() <= ShiftAmt)
        DemandedMaskIn.setBit(BitWidth-1);

      // If the shift is exact, then it does demand the low bits (and knows that
      // they are zero).
      if (cast<AShrOperator>(I)->isExact())
        DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt);

      if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
                               KnownZero, KnownOne, Depth+1))
        return I;
      assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
      // Compute the new bits that are at the top now.
      APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
      KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
      KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);

      // Handle the sign bits.
      APInt SignBit(APInt::getSignBit(BitWidth));
      // Adjust to where it is now in the mask.
      SignBit = APIntOps::lshr(SignBit, ShiftAmt);

      // If the input sign bit is known to be zero, or if none of the top bits
      // are demanded, turn this into an unsigned shift right.
      if (BitWidth <= ShiftAmt || KnownZero[BitWidth-ShiftAmt-1] ||
          (HighBits & ~DemandedMask) == HighBits) {
        // Perform the logical shift right.
        BinaryOperator *NewVal = BinaryOperator::CreateLShr(I->getOperand(0),
                                                            SA, I->getName());
        NewVal->setIsExact(cast<BinaryOperator>(I)->isExact());
        return InsertNewInstWith(NewVal, *I);
      } else if ((KnownOne & SignBit) != 0) { // New bits are known one.
        KnownOne |= HighBits;
      }
    }
    break;
  case Instruction::SRem:
    if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
      // X % -1 demands all the bits because we don't want to introduce
      // INT_MIN % -1 (== undef) by accident.
      if (Rem->isAllOnesValue())
        break;
      APInt RA = Rem->getValue().abs();
      if (RA.isPowerOf2()) {
        if (DemandedMask.ult(RA))    // srem won't affect demanded bits
          return I->getOperand(0);

        APInt LowBits = RA - 1;
        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
        if (SimplifyDemandedBits(I->getOperandUse(0), Mask2,
                                 LHSKnownZero, LHSKnownOne, Depth+1))
          return I;

        // The low bits of LHS are unchanged by the srem.
        KnownZero = LHSKnownZero & LowBits;
        KnownOne = LHSKnownOne & LowBits;

        // If LHS is non-negative or has all low bits zero, then the upper bits
        // are all zero.
        if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits))
          KnownZero |= ~LowBits;

        // If LHS is negative and not all low bits are zero, then the upper bits
        // are all one.
        if (LHSKnownOne[BitWidth-1] && ((LHSKnownOne & LowBits) != 0))
          KnownOne |= ~LowBits;

        assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
      }
    }

    // The sign bit is the LHS's sign bit, except when the result of the
    // remainder is zero.
    if (DemandedMask.isNegative() && KnownZero.isNonNegative()) {
      APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
      ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1);
      // If it's known zero, our sign bit is also zero.
      if (LHSKnownZero.isNegative())
        KnownZero.setBit(KnownZero.getBitWidth() - 1);
    }
    break;
  case Instruction::URem: {
    APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
    if (SimplifyDemandedBits(I->getOperandUse(0), AllOnes,
                             KnownZero2, KnownOne2, Depth+1) ||
        SimplifyDemandedBits(I->getOperandUse(1), AllOnes,
                             KnownZero2, KnownOne2, Depth+1))
      return I;

    unsigned Leaders = KnownZero2.countLeadingOnes();
    Leaders = std::max(Leaders,
                       KnownZero2.countLeadingOnes());
    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
    break;
  }
  case Instruction::Call:
    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
      switch (II->getIntrinsicID()) {
      default: break;
      case Intrinsic::bswap: {
        // If the only bits demanded come from one byte of the bswap result,
        // just shift the input byte into position to eliminate the bswap.
        unsigned NLZ = DemandedMask.countLeadingZeros();
        unsigned NTZ = DemandedMask.countTrailingZeros();

        // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
        // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
        // have 14 leading zeros, round to 8.
        NLZ &= ~7;
        NTZ &= ~7;
        // If we need exactly one byte, we can do this transformation.
        if (BitWidth-NLZ-NTZ == 8) {
          unsigned ResultBit = NTZ;
          unsigned InputBit = BitWidth-NTZ-8;

          // Replace this with either a left or right shift to get the byte into
          // the right place.
          Instruction *NewVal;
          if (InputBit > ResultBit)
            NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0),
                    ConstantInt::get(I->getType(), InputBit-ResultBit));
          else
            NewVal = BinaryOperator::CreateShl(II->getArgOperand(0),
                    ConstantInt::get(I->getType(), ResultBit-InputBit));
          NewVal->takeName(I);
          return InsertNewInstWith(NewVal, *I);
        }

        // TODO: Could compute known zero/one bits based on the input.
        break;
      }
      case Intrinsic::x86_sse42_crc32_64_8:
      case Intrinsic::x86_sse42_crc32_64_64:
        KnownZero = APInt::getHighBitsSet(64, 32);
        return 0;
      }
    }
    ComputeMaskedBits(V, KnownZero, KnownOne, Depth);
    break;
  }

  // If the client is only demanding bits that we know, return the known
  // constant.
  if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
    return Constant::getIntegerValue(VTy, KnownOne);
  return 0;
}

/// Helper routine of SimplifyDemandedUseBits. It tries to simplify
/// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into
/// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign
/// of "C2-C1".
///
/// Suppose E1 and E2 are generally different in bits S={bm, bm+1,
/// ..., bn}, without considering the specific value X is holding.
/// This transformation is legal iff one of following conditions is hold:
///  1) All the bit in S are 0, in this case E1 == E2.
///  2) We don't care those bits in S, per the input DemandedMask.
///  3) Combination of 1) and 2). Some bits in S are 0, and we don't care the
///     rest bits.
///
/// Currently we only test condition 2).
///
/// As with SimplifyDemandedUseBits, it returns NULL if the simplification was
/// not successful.
Value *InstCombiner::SimplifyShrShlDemandedBits(Instruction *Shr,
  Instruction *Shl, APInt DemandedMask, APInt &KnownZero, APInt &KnownOne) {

  unsigned ShlAmt = cast<ConstantInt>(Shl->getOperand(1))->getZExtValue();
  unsigned ShrAmt = cast<ConstantInt>(Shr->getOperand(1))->getZExtValue();

  KnownOne.clearAllBits();
  KnownZero = APInt::getBitsSet(KnownZero.getBitWidth(), 0, ShlAmt-1);
  KnownZero &= DemandedMask;

  if (ShlAmt == 0 || ShrAmt == 0)
    return 0;

  Value *VarX = Shr->getOperand(0);
  Type *Ty = VarX->getType();

  APInt BitMask1(APInt::getAllOnesValue(Ty->getIntegerBitWidth()));
  APInt BitMask2(APInt::getAllOnesValue(Ty->getIntegerBitWidth()));

  bool isLshr = (Shr->getOpcode() == Instruction::LShr);
  BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) :
                      (BitMask1.ashr(ShrAmt) << ShlAmt);

  if (ShrAmt <= ShlAmt) {
    BitMask2 <<= (ShlAmt - ShrAmt);
  } else {
    BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt):
                        BitMask2.ashr(ShrAmt - ShlAmt);
  }

  // Check if condition-2 (see the comment to this function) is satified.
  if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) {
    if (ShrAmt == ShlAmt)
      return VarX;

    if (!Shr->hasOneUse())
      return 0;

    BinaryOperator *New;
    if (ShrAmt < ShlAmt) {
      Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt);
      New = BinaryOperator::CreateShl(VarX, Amt);
      BinaryOperator *Orig = cast<BinaryOperator>(Shl);
      New->setHasNoSignedWrap(Orig->hasNoSignedWrap());
      New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap());
    } else {
      Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt);
      New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) :
                     BinaryOperator::CreateAShr(VarX, Amt);
      if (cast<BinaryOperator>(Shr)->isExact())
        New->setIsExact(true);
    }

    return InsertNewInstWith(New, *Shl);
  }

  return 0;
}

/// SimplifyDemandedVectorElts - The specified value produces a vector with
/// any number of elements. DemandedElts contains the set of elements that are
/// actually used by the caller.  This method analyzes which elements of the
/// operand are undef and returns that information in UndefElts.
///
/// If the information about demanded elements can be used to simplify the
/// operation, the operation is simplified, then the resultant value is
/// returned.  This returns null if no change was made.
Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
                                                APInt &UndefElts,
                                                unsigned Depth) {
  unsigned VWidth = cast<VectorType>(V->getType())->getNumElements();
  APInt EltMask(APInt::getAllOnesValue(VWidth));
  assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");

  if (isa<UndefValue>(V)) {
    // If the entire vector is undefined, just return this info.
    UndefElts = EltMask;
    return 0;
  }

  if (DemandedElts == 0) { // If nothing is demanded, provide undef.
    UndefElts = EltMask;
    return UndefValue::get(V->getType());
  }

  UndefElts = 0;

  // Handle ConstantAggregateZero, ConstantVector, ConstantDataSequential.
  if (Constant *C = dyn_cast<Constant>(V)) {
    // Check if this is identity. If so, return 0 since we are not simplifying
    // anything.
    if (DemandedElts.isAllOnesValue())
      return 0;

    Type *EltTy = cast<VectorType>(V->getType())->getElementType();
    Constant *Undef = UndefValue::get(EltTy);

    SmallVector<Constant*, 16> Elts;
    for (unsigned i = 0; i != VWidth; ++i) {
      if (!DemandedElts[i]) {   // If not demanded, set to undef.
        Elts.push_back(Undef);
        UndefElts.setBit(i);
        continue;
      }

      Constant *Elt = C->getAggregateElement(i);
      if (Elt == 0) return 0;

      if (isa<UndefValue>(Elt)) {   // Already undef.
        Elts.push_back(Undef);
        UndefElts.setBit(i);
      } else {                               // Otherwise, defined.
        Elts.push_back(Elt);
      }
    }

    // If we changed the constant, return it.
    Constant *NewCV = ConstantVector::get(Elts);
    return NewCV != C ? NewCV : 0;
  }

  // Limit search depth.
  if (Depth == 10)
    return 0;

  // If multiple users are using the root value, proceed with
  // simplification conservatively assuming that all elements
  // are needed.
  if (!V->hasOneUse()) {
    // Quit if we find multiple users of a non-root value though.
    // They'll be handled when it's their turn to be visited by
    // the main instcombine process.
    if (Depth != 0)
      // TODO: Just compute the UndefElts information recursively.
      return 0;

    // Conservatively assume that all elements are needed.
    DemandedElts = EltMask;
  }

  Instruction *I = dyn_cast<Instruction>(V);
  if (!I) return 0;        // Only analyze instructions.

  bool MadeChange = false;
  APInt UndefElts2(VWidth, 0);
  Value *TmpV;
  switch (I->getOpcode()) {
  default: break;

  case Instruction::InsertElement: {
    // If this is a variable index, we don't know which element it overwrites.
    // demand exactly the same input as we produce.
    ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
    if (Idx == 0) {
      // Note that we can't propagate undef elt info, because we don't know
      // which elt is getting updated.
      TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
                                        UndefElts2, Depth+1);
      if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
      break;
    }

    // If this is inserting an element that isn't demanded, remove this
    // insertelement.
    unsigned IdxNo = Idx->getZExtValue();
    if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
      Worklist.Add(I);
      return I->getOperand(0);
    }

    // Otherwise, the element inserted overwrites whatever was there, so the
    // input demanded set is simpler than the output set.
    APInt DemandedElts2 = DemandedElts;
    DemandedElts2.clearBit(IdxNo);
    TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts2,
                                      UndefElts, Depth+1);
    if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }

    // The inserted element is defined.
    UndefElts.clearBit(IdxNo);
    break;
  }
  case Instruction::ShuffleVector: {
    ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
    uint64_t LHSVWidth =
      cast<VectorType>(Shuffle->getOperand(0)->getType())->getNumElements();
    APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0);
    for (unsigned i = 0; i < VWidth; i++) {
      if (DemandedElts[i]) {
        unsigned MaskVal = Shuffle->getMaskValue(i);
        if (MaskVal != -1u) {
          assert(MaskVal < LHSVWidth * 2 &&
                 "shufflevector mask index out of range!");
          if (MaskVal < LHSVWidth)
            LeftDemanded.setBit(MaskVal);
          else
            RightDemanded.setBit(MaskVal - LHSVWidth);
        }
      }
    }

    APInt UndefElts4(LHSVWidth, 0);
    TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded,
                                      UndefElts4, Depth+1);
    if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }

    APInt UndefElts3(LHSVWidth, 0);
    TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded,
                                      UndefElts3, Depth+1);
    if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }

    bool NewUndefElts = false;
    for (unsigned i = 0; i < VWidth; i++) {
      unsigned MaskVal = Shuffle->getMaskValue(i);
      if (MaskVal == -1u) {
        UndefElts.setBit(i);
      } else if (!DemandedElts[i]) {
        NewUndefElts = true;
        UndefElts.setBit(i);
      } else if (MaskVal < LHSVWidth) {
        if (UndefElts4[MaskVal]) {
          NewUndefElts = true;
          UndefElts.setBit(i);
        }
      } else {
        if (UndefElts3[MaskVal - LHSVWidth]) {
          NewUndefElts = true;
          UndefElts.setBit(i);
        }
      }
    }

    if (NewUndefElts) {
      // Add additional discovered undefs.
      SmallVector<Constant*, 16> Elts;
      for (unsigned i = 0; i < VWidth; ++i) {
        if (UndefElts[i])
          Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext())));
        else
          Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()),
                                          Shuffle->getMaskValue(i)));
      }
      I->setOperand(2, ConstantVector::get(Elts));
      MadeChange = true;
    }
    break;
  }
  case Instruction::Select: {
    APInt LeftDemanded(DemandedElts), RightDemanded(DemandedElts);
    if (ConstantVector* CV = dyn_cast<ConstantVector>(I->getOperand(0))) {
      for (unsigned i = 0; i < VWidth; i++) {
        if (CV->getAggregateElement(i)->isNullValue())
          LeftDemanded.clearBit(i);
        else
          RightDemanded.clearBit(i);
      }
    }

    TmpV = SimplifyDemandedVectorElts(I->getOperand(1), LeftDemanded,
                                      UndefElts, Depth+1);
    if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }

    TmpV = SimplifyDemandedVectorElts(I->getOperand(2), RightDemanded,
                                      UndefElts2, Depth+1);
    if (TmpV) { I->setOperand(2, TmpV); MadeChange = true; }

    // Output elements are undefined if both are undefined.
    UndefElts &= UndefElts2;
    break;
  }
  case Instruction::BitCast: {
    // Vector->vector casts only.
    VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
    if (!VTy) break;
    unsigned InVWidth = VTy->getNumElements();
    APInt InputDemandedElts(InVWidth, 0);
    unsigned Ratio;

    if (VWidth == InVWidth) {
      // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
      // elements as are demanded of us.
      Ratio = 1;
      InputDemandedElts = DemandedElts;
    } else if (VWidth > InVWidth) {
      // Untested so far.
      break;

      // If there are more elements in the result than there are in the source,
      // then an input element is live if any of the corresponding output
      // elements are live.
      Ratio = VWidth/InVWidth;
      for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
        if (DemandedElts[OutIdx])
          InputDemandedElts.setBit(OutIdx/Ratio);
      }
    } else {
      // Untested so far.
      break;

      // If there are more elements in the source than there are in the result,
      // then an input element is live if the corresponding output element is
      // live.
      Ratio = InVWidth/VWidth;
      for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
        if (DemandedElts[InIdx/Ratio])
          InputDemandedElts.setBit(InIdx);
    }

    // div/rem demand all inputs, because they don't want divide by zero.
    TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
                                      UndefElts2, Depth+1);
    if (TmpV) {
      I->setOperand(0, TmpV);
      MadeChange = true;
    }

    UndefElts = UndefElts2;
    if (VWidth > InVWidth) {
      llvm_unreachable("Unimp");
      // If there are more elements in the result than there are in the source,
      // then an output element is undef if the corresponding input element is
      // undef.
      for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
        if (UndefElts2[OutIdx/Ratio])
          UndefElts.setBit(OutIdx);
    } else if (VWidth < InVWidth) {
      llvm_unreachable("Unimp");
      // If there are more elements in the source than there are in the result,
      // then a result element is undef if all of the corresponding input
      // elements are undef.
      UndefElts = ~0ULL >> (64-VWidth);  // Start out all undef.
      for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
        if (!UndefElts2[InIdx])            // Not undef?
          UndefElts.clearBit(InIdx/Ratio);    // Clear undef bit.
    }
    break;
  }
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor:
  case Instruction::Add:
  case Instruction::Sub:
  case Instruction::Mul:
    // div/rem demand all inputs, because they don't want divide by zero.
    TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
                                      UndefElts, Depth+1);
    if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
    TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
                                      UndefElts2, Depth+1);
    if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }

    // Output elements are undefined if both are undefined.  Consider things
    // like undef&0.  The result is known zero, not undef.
    UndefElts &= UndefElts2;
    break;
  case Instruction::FPTrunc:
  case Instruction::FPExt:
    TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
                                      UndefElts, Depth+1);
    if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
    break;

  case Instruction::Call: {
    IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
    if (!II) break;
    switch (II->getIntrinsicID()) {
    default: break;

    // Binary vector operations that work column-wise.  A dest element is a
    // function of the corresponding input elements from the two inputs.
    case Intrinsic::x86_sse_sub_ss:
    case Intrinsic::x86_sse_mul_ss:
    case Intrinsic::x86_sse_min_ss:
    case Intrinsic::x86_sse_max_ss:
    case Intrinsic::x86_sse2_sub_sd:
    case Intrinsic::x86_sse2_mul_sd:
    case Intrinsic::x86_sse2_min_sd:
    case Intrinsic::x86_sse2_max_sd:
      TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
                                        UndefElts, Depth+1);
      if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
      TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
                                        UndefElts2, Depth+1);
      if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }

      // If only the low elt is demanded and this is a scalarizable intrinsic,
      // scalarize it now.
      if (DemandedElts == 1) {
        switch (II->getIntrinsicID()) {
        default: break;
        case Intrinsic::x86_sse_sub_ss:
        case Intrinsic::x86_sse_mul_ss:
        case Intrinsic::x86_sse2_sub_sd:
        case Intrinsic::x86_sse2_mul_sd:
          // TODO: Lower MIN/MAX/ABS/etc
          Value *LHS = II->getArgOperand(0);
          Value *RHS = II->getArgOperand(1);
          // Extract the element as scalars.
          LHS = InsertNewInstWith(ExtractElementInst::Create(LHS,
            ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II);
          RHS = InsertNewInstWith(ExtractElementInst::Create(RHS,
            ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II);

          switch (II->getIntrinsicID()) {
          default: llvm_unreachable("Case stmts out of sync!");
          case Intrinsic::x86_sse_sub_ss:
          case Intrinsic::x86_sse2_sub_sd:
            TmpV = InsertNewInstWith(BinaryOperator::CreateFSub(LHS, RHS,
                                                        II->getName()), *II);
            break;
          case Intrinsic::x86_sse_mul_ss:
          case Intrinsic::x86_sse2_mul_sd:
            TmpV = InsertNewInstWith(BinaryOperator::CreateFMul(LHS, RHS,
                                                         II->getName()), *II);
            break;
          }

          Instruction *New =
            InsertElementInst::Create(
              UndefValue::get(II->getType()), TmpV,
              ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U, false),
                                      II->getName());
          InsertNewInstWith(New, *II);
          return New;
        }
      }

      // Output elements are undefined if both are undefined.  Consider things
      // like undef&0.  The result is known zero, not undef.
      UndefElts &= UndefElts2;
      break;
    }
    break;
  }
  }
  return MadeChange ? I : 0;
}