aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Transforms/InstCombine/InstructionCombining.cpp
blob: 61676f82b1e40d7bd7e94f6f22b42f85778e8be3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// InstructionCombining - Combine instructions to form fewer, simple
// instructions.  This pass does not modify the CFG.  This pass is where
// algebraic simplification happens.
//
// This pass combines things like:
//    %Y = add i32 %X, 1
//    %Z = add i32 %Y, 1
// into:
//    %Z = add i32 %X, 2
//
// This is a simple worklist driven algorithm.
//
// This pass guarantees that the following canonicalizations are performed on
// the program:
//    1. If a binary operator has a constant operand, it is moved to the RHS
//    2. Bitwise operators with constant operands are always grouped so that
//       shifts are performed first, then or's, then and's, then xor's.
//    3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
//    4. All cmp instructions on boolean values are replaced with logical ops
//    5. add X, X is represented as (X*2) => (X << 1)
//    6. Multiplies with a power-of-two constant argument are transformed into
//       shifts.
//   ... etc.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "instcombine"
#include "llvm/Transforms/Scalar.h"
#include "InstCombine.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/PatternMatch.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm-c/Initialization.h"
#include <algorithm>
#include <climits>
using namespace llvm;
using namespace llvm::PatternMatch;

STATISTIC(NumCombined , "Number of insts combined");
STATISTIC(NumConstProp, "Number of constant folds");
STATISTIC(NumDeadInst , "Number of dead inst eliminated");
STATISTIC(NumSunkInst , "Number of instructions sunk");

// Initialization Routines
void llvm::initializeInstCombine(PassRegistry &Registry) {
  initializeInstCombinerPass(Registry);
}

void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
  initializeInstCombine(*unwrap(R));
}

char InstCombiner::ID = 0;
INITIALIZE_PASS(InstCombiner, "instcombine",
                "Combine redundant instructions", false, false)

void InstCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.addPreservedID(LCSSAID);
  AU.setPreservesCFG();
}


/// ShouldChangeType - Return true if it is desirable to convert a computation
/// from 'From' to 'To'.  We don't want to convert from a legal to an illegal
/// type for example, or from a smaller to a larger illegal type.
bool InstCombiner::ShouldChangeType(const Type *From, const Type *To) const {
  assert(From->isIntegerTy() && To->isIntegerTy());
  
  // If we don't have TD, we don't know if the source/dest are legal.
  if (!TD) return false;
  
  unsigned FromWidth = From->getPrimitiveSizeInBits();
  unsigned ToWidth = To->getPrimitiveSizeInBits();
  bool FromLegal = TD->isLegalInteger(FromWidth);
  bool ToLegal = TD->isLegalInteger(ToWidth);
  
  // If this is a legal integer from type, and the result would be an illegal
  // type, don't do the transformation.
  if (FromLegal && !ToLegal)
    return false;
  
  // Otherwise, if both are illegal, do not increase the size of the result. We
  // do allow things like i160 -> i64, but not i64 -> i160.
  if (!FromLegal && !ToLegal && ToWidth > FromWidth)
    return false;
  
  return true;
}


/// SimplifyAssociativeOrCommutative - This performs a few simplifications for
/// operators which are associative or commutative:
//
//  Commutative operators:
//
//  1. Order operands such that they are listed from right (least complex) to
//     left (most complex).  This puts constants before unary operators before
//     binary operators.
//
//  Associative operators:
//
//  2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
//  3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
//
//  Associative and commutative operators:
//
//  4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
//  5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
//  6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
//     if C1 and C2 are constants.
//
bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
  Instruction::BinaryOps Opcode = I.getOpcode();
  bool Changed = false;

  do {
    // Order operands such that they are listed from right (least complex) to
    // left (most complex).  This puts constants before unary operators before
    // binary operators.
    if (I.isCommutative() && getComplexity(I.getOperand(0)) <
        getComplexity(I.getOperand(1)))
      Changed = !I.swapOperands();

    BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
    BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));

    if (I.isAssociative()) {
      // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
      if (Op0 && Op0->getOpcode() == Opcode) {
        Value *A = Op0->getOperand(0);
        Value *B = Op0->getOperand(1);
        Value *C = I.getOperand(1);

        // Does "B op C" simplify?
        if (Value *V = SimplifyBinOp(Opcode, B, C, TD)) {
          // It simplifies to V.  Form "A op V".
          I.setOperand(0, A);
          I.setOperand(1, V);
          Changed = true;
          continue;
        }
      }

      // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
      if (Op1 && Op1->getOpcode() == Opcode) {
        Value *A = I.getOperand(0);
        Value *B = Op1->getOperand(0);
        Value *C = Op1->getOperand(1);

        // Does "A op B" simplify?
        if (Value *V = SimplifyBinOp(Opcode, A, B, TD)) {
          // It simplifies to V.  Form "V op C".
          I.setOperand(0, V);
          I.setOperand(1, C);
          Changed = true;
          continue;
        }
      }
    }

    if (I.isAssociative() && I.isCommutative()) {
      // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
      if (Op0 && Op0->getOpcode() == Opcode) {
        Value *A = Op0->getOperand(0);
        Value *B = Op0->getOperand(1);
        Value *C = I.getOperand(1);

        // Does "C op A" simplify?
        if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) {
          // It simplifies to V.  Form "V op B".
          I.setOperand(0, V);
          I.setOperand(1, B);
          Changed = true;
          continue;
        }
      }

      // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
      if (Op1 && Op1->getOpcode() == Opcode) {
        Value *A = I.getOperand(0);
        Value *B = Op1->getOperand(0);
        Value *C = Op1->getOperand(1);

        // Does "C op A" simplify?
        if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) {
          // It simplifies to V.  Form "B op V".
          I.setOperand(0, B);
          I.setOperand(1, V);
          Changed = true;
          continue;
        }
      }

      // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
      // if C1 and C2 are constants.
      if (Op0 && Op1 &&
          Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
          isa<Constant>(Op0->getOperand(1)) &&
          isa<Constant>(Op1->getOperand(1)) &&
          Op0->hasOneUse() && Op1->hasOneUse()) {
        Value *A = Op0->getOperand(0);
        Constant *C1 = cast<Constant>(Op0->getOperand(1));
        Value *B = Op1->getOperand(0);
        Constant *C2 = cast<Constant>(Op1->getOperand(1));

        Constant *Folded = ConstantExpr::get(Opcode, C1, C2);
        Instruction *New = BinaryOperator::Create(Opcode, A, B, Op1->getName(),
                                                  &I);
        Worklist.Add(New);
        I.setOperand(0, New);
        I.setOperand(1, Folded);
        Changed = true;
        continue;
      }
    }

    // No further simplifications.
    return Changed;
  } while (1);
}

// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
// if the LHS is a constant zero (which is the 'negate' form).
//
Value *InstCombiner::dyn_castNegVal(Value *V) const {
  if (BinaryOperator::isNeg(V))
    return BinaryOperator::getNegArgument(V);

  // Constants can be considered to be negated values if they can be folded.
  if (ConstantInt *C = dyn_cast<ConstantInt>(V))
    return ConstantExpr::getNeg(C);

  if (ConstantVector *C = dyn_cast<ConstantVector>(V))
    if (C->getType()->getElementType()->isIntegerTy())
      return ConstantExpr::getNeg(C);

  return 0;
}

// dyn_castFNegVal - Given a 'fsub' instruction, return the RHS of the
// instruction if the LHS is a constant negative zero (which is the 'negate'
// form).
//
Value *InstCombiner::dyn_castFNegVal(Value *V) const {
  if (BinaryOperator::isFNeg(V))
    return BinaryOperator::getFNegArgument(V);

  // Constants can be considered to be negated values if they can be folded.
  if (ConstantFP *C = dyn_cast<ConstantFP>(V))
    return ConstantExpr::getFNeg(C);

  if (ConstantVector *C = dyn_cast<ConstantVector>(V))
    if (C->getType()->getElementType()->isFloatingPointTy())
      return ConstantExpr::getFNeg(C);

  return 0;
}

static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
                                             InstCombiner *IC) {
  if (CastInst *CI = dyn_cast<CastInst>(&I))
    return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType());

  // Figure out if the constant is the left or the right argument.
  bool ConstIsRHS = isa<Constant>(I.getOperand(1));
  Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));

  if (Constant *SOC = dyn_cast<Constant>(SO)) {
    if (ConstIsRHS)
      return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
    return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
  }

  Value *Op0 = SO, *Op1 = ConstOperand;
  if (!ConstIsRHS)
    std::swap(Op0, Op1);
  
  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
    return IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1,
                                    SO->getName()+".op");
  if (ICmpInst *CI = dyn_cast<ICmpInst>(&I))
    return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
                                   SO->getName()+".cmp");
  if (FCmpInst *CI = dyn_cast<FCmpInst>(&I))
    return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
                                   SO->getName()+".cmp");
  llvm_unreachable("Unknown binary instruction type!");
}

// FoldOpIntoSelect - Given an instruction with a select as one operand and a
// constant as the other operand, try to fold the binary operator into the
// select arguments.  This also works for Cast instructions, which obviously do
// not have a second operand.
Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
  // Don't modify shared select instructions
  if (!SI->hasOneUse()) return 0;
  Value *TV = SI->getOperand(1);
  Value *FV = SI->getOperand(2);

  if (isa<Constant>(TV) || isa<Constant>(FV)) {
    // Bool selects with constant operands can be folded to logical ops.
    if (SI->getType()->isIntegerTy(1)) return 0;

    Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this);
    Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this);

    return SelectInst::Create(SI->getCondition(), SelectTrueVal,
                              SelectFalseVal);
  }
  return 0;
}


/// FoldOpIntoPhi - Given a binary operator, cast instruction, or select which
/// has a PHI node as operand #0, see if we can fold the instruction into the
/// PHI (which is only possible if all operands to the PHI are constants).
///
/// If AllowAggressive is true, FoldOpIntoPhi will allow certain transforms
/// that would normally be unprofitable because they strongly encourage jump
/// threading.
Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I,
                                         bool AllowAggressive) {
  AllowAggressive = false;
  PHINode *PN = cast<PHINode>(I.getOperand(0));
  unsigned NumPHIValues = PN->getNumIncomingValues();
  if (NumPHIValues == 0 ||
      // We normally only transform phis with a single use, unless we're trying
      // hard to make jump threading happen.
      (!PN->hasOneUse() && !AllowAggressive))
    return 0;
  
  
  // Check to see if all of the operands of the PHI are simple constants
  // (constantint/constantfp/undef).  If there is one non-constant value,
  // remember the BB it is in.  If there is more than one or if *it* is a PHI,
  // bail out.  We don't do arbitrary constant expressions here because moving
  // their computation can be expensive without a cost model.
  BasicBlock *NonConstBB = 0;
  for (unsigned i = 0; i != NumPHIValues; ++i)
    if (!isa<Constant>(PN->getIncomingValue(i)) ||
        isa<ConstantExpr>(PN->getIncomingValue(i))) {
      if (NonConstBB) return 0;  // More than one non-const value.
      if (isa<PHINode>(PN->getIncomingValue(i))) return 0;  // Itself a phi.
      NonConstBB = PN->getIncomingBlock(i);
      
      // If the incoming non-constant value is in I's block, we have an infinite
      // loop.
      if (NonConstBB == I.getParent())
        return 0;
    }
  
  // If there is exactly one non-constant value, we can insert a copy of the
  // operation in that block.  However, if this is a critical edge, we would be
  // inserting the computation one some other paths (e.g. inside a loop).  Only
  // do this if the pred block is unconditionally branching into the phi block.
  if (NonConstBB != 0 && !AllowAggressive) {
    BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
    if (!BI || !BI->isUnconditional()) return 0;
  }

  // Okay, we can do the transformation: create the new PHI node.
  PHINode *NewPN = PHINode::Create(I.getType(), "");
  NewPN->reserveOperandSpace(PN->getNumOperands()/2);
  InsertNewInstBefore(NewPN, *PN);
  NewPN->takeName(PN);

  // Next, add all of the operands to the PHI.
  if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
    // We only currently try to fold the condition of a select when it is a phi,
    // not the true/false values.
    Value *TrueV = SI->getTrueValue();
    Value *FalseV = SI->getFalseValue();
    BasicBlock *PhiTransBB = PN->getParent();
    for (unsigned i = 0; i != NumPHIValues; ++i) {
      BasicBlock *ThisBB = PN->getIncomingBlock(i);
      Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
      Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
      Value *InV = 0;
      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
        InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
      } else {
        assert(PN->getIncomingBlock(i) == NonConstBB);
        InV = SelectInst::Create(PN->getIncomingValue(i), TrueVInPred,
                                 FalseVInPred,
                                 "phitmp", NonConstBB->getTerminator());
        Worklist.Add(cast<Instruction>(InV));
      }
      NewPN->addIncoming(InV, ThisBB);
    }
  } else if (I.getNumOperands() == 2) {
    Constant *C = cast<Constant>(I.getOperand(1));
    for (unsigned i = 0; i != NumPHIValues; ++i) {
      Value *InV = 0;
      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
        if (CmpInst *CI = dyn_cast<CmpInst>(&I))
          InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
        else
          InV = ConstantExpr::get(I.getOpcode(), InC, C);
      } else {
        assert(PN->getIncomingBlock(i) == NonConstBB);
        if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I)) 
          InV = BinaryOperator::Create(BO->getOpcode(),
                                       PN->getIncomingValue(i), C, "phitmp",
                                       NonConstBB->getTerminator());
        else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
          InV = CmpInst::Create(CI->getOpcode(),
                                CI->getPredicate(),
                                PN->getIncomingValue(i), C, "phitmp",
                                NonConstBB->getTerminator());
        else
          llvm_unreachable("Unknown binop!");
        
        Worklist.Add(cast<Instruction>(InV));
      }
      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
    }
  } else { 
    CastInst *CI = cast<CastInst>(&I);
    const Type *RetTy = CI->getType();
    for (unsigned i = 0; i != NumPHIValues; ++i) {
      Value *InV;
      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
        InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
      } else {
        assert(PN->getIncomingBlock(i) == NonConstBB);
        InV = CastInst::Create(CI->getOpcode(), PN->getIncomingValue(i), 
                               I.getType(), "phitmp", 
                               NonConstBB->getTerminator());
        Worklist.Add(cast<Instruction>(InV));
      }
      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
    }
  }
  return ReplaceInstUsesWith(I, NewPN);
}

/// FindElementAtOffset - Given a type and a constant offset, determine whether
/// or not there is a sequence of GEP indices into the type that will land us at
/// the specified offset.  If so, fill them into NewIndices and return the
/// resultant element type, otherwise return null.
const Type *InstCombiner::FindElementAtOffset(const Type *Ty, int64_t Offset, 
                                          SmallVectorImpl<Value*> &NewIndices) {
  if (!TD) return 0;
  if (!Ty->isSized()) return 0;
  
  // Start with the index over the outer type.  Note that the type size
  // might be zero (even if the offset isn't zero) if the indexed type
  // is something like [0 x {int, int}]
  const Type *IntPtrTy = TD->getIntPtrType(Ty->getContext());
  int64_t FirstIdx = 0;
  if (int64_t TySize = TD->getTypeAllocSize(Ty)) {
    FirstIdx = Offset/TySize;
    Offset -= FirstIdx*TySize;
    
    // Handle hosts where % returns negative instead of values [0..TySize).
    if (Offset < 0) {
      --FirstIdx;
      Offset += TySize;
      assert(Offset >= 0);
    }
    assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
  }
  
  NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
    
  // Index into the types.  If we fail, set OrigBase to null.
  while (Offset) {
    // Indexing into tail padding between struct/array elements.
    if (uint64_t(Offset*8) >= TD->getTypeSizeInBits(Ty))
      return 0;
    
    if (const StructType *STy = dyn_cast<StructType>(Ty)) {
      const StructLayout *SL = TD->getStructLayout(STy);
      assert(Offset < (int64_t)SL->getSizeInBytes() &&
             "Offset must stay within the indexed type");
      
      unsigned Elt = SL->getElementContainingOffset(Offset);
      NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
                                            Elt));
      
      Offset -= SL->getElementOffset(Elt);
      Ty = STy->getElementType(Elt);
    } else if (const ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
      uint64_t EltSize = TD->getTypeAllocSize(AT->getElementType());
      assert(EltSize && "Cannot index into a zero-sized array");
      NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
      Offset %= EltSize;
      Ty = AT->getElementType();
    } else {
      // Otherwise, we can't index into the middle of this atomic type, bail.
      return 0;
    }
  }
  
  return Ty;
}



Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
  SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());

  if (Value *V = SimplifyGEPInst(&Ops[0], Ops.size(), TD))
    return ReplaceInstUsesWith(GEP, V);

  Value *PtrOp = GEP.getOperand(0);

  if (isa<UndefValue>(GEP.getOperand(0)))
    return ReplaceInstUsesWith(GEP, UndefValue::get(GEP.getType()));

  // Eliminate unneeded casts for indices.
  if (TD) {
    bool MadeChange = false;
    unsigned PtrSize = TD->getPointerSizeInBits();
    
    gep_type_iterator GTI = gep_type_begin(GEP);
    for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end();
         I != E; ++I, ++GTI) {
      if (!isa<SequentialType>(*GTI)) continue;
      
      // If we are using a wider index than needed for this platform, shrink it
      // to what we need.  If narrower, sign-extend it to what we need.  This
      // explicit cast can make subsequent optimizations more obvious.
      unsigned OpBits = cast<IntegerType>((*I)->getType())->getBitWidth();
      if (OpBits == PtrSize)
        continue;
      
      *I = Builder->CreateIntCast(*I, TD->getIntPtrType(GEP.getContext()),true);
      MadeChange = true;
    }
    if (MadeChange) return &GEP;
  }

  // Combine Indices - If the source pointer to this getelementptr instruction
  // is a getelementptr instruction, combine the indices of the two
  // getelementptr instructions into a single instruction.
  //
  if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) {
    // Note that if our source is a gep chain itself that we wait for that
    // chain to be resolved before we perform this transformation.  This
    // avoids us creating a TON of code in some cases.
    //
    if (GetElementPtrInst *SrcGEP =
          dyn_cast<GetElementPtrInst>(Src->getOperand(0)))
      if (SrcGEP->getNumOperands() == 2)
        return 0;   // Wait until our source is folded to completion.

    SmallVector<Value*, 8> Indices;

    // Find out whether the last index in the source GEP is a sequential idx.
    bool EndsWithSequential = false;
    for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
         I != E; ++I)
      EndsWithSequential = !(*I)->isStructTy();

    // Can we combine the two pointer arithmetics offsets?
    if (EndsWithSequential) {
      // Replace: gep (gep %P, long B), long A, ...
      // With:    T = long A+B; gep %P, T, ...
      //
      Value *Sum;
      Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
      Value *GO1 = GEP.getOperand(1);
      if (SO1 == Constant::getNullValue(SO1->getType())) {
        Sum = GO1;
      } else if (GO1 == Constant::getNullValue(GO1->getType())) {
        Sum = SO1;
      } else {
        // If they aren't the same type, then the input hasn't been processed
        // by the loop above yet (which canonicalizes sequential index types to
        // intptr_t).  Just avoid transforming this until the input has been
        // normalized.
        if (SO1->getType() != GO1->getType())
          return 0;
        Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
      }

      // Update the GEP in place if possible.
      if (Src->getNumOperands() == 2) {
        GEP.setOperand(0, Src->getOperand(0));
        GEP.setOperand(1, Sum);
        return &GEP;
      }
      Indices.append(Src->op_begin()+1, Src->op_end()-1);
      Indices.push_back(Sum);
      Indices.append(GEP.op_begin()+2, GEP.op_end());
    } else if (isa<Constant>(*GEP.idx_begin()) &&
               cast<Constant>(*GEP.idx_begin())->isNullValue() &&
               Src->getNumOperands() != 1) {
      // Otherwise we can do the fold if the first index of the GEP is a zero
      Indices.append(Src->op_begin()+1, Src->op_end());
      Indices.append(GEP.idx_begin()+1, GEP.idx_end());
    }

    if (!Indices.empty())
      return (GEP.isInBounds() && Src->isInBounds()) ?
        GetElementPtrInst::CreateInBounds(Src->getOperand(0), Indices.begin(),
                                          Indices.end(), GEP.getName()) :
        GetElementPtrInst::Create(Src->getOperand(0), Indices.begin(),
                                  Indices.end(), GEP.getName());
  }
  
  // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
  Value *StrippedPtr = PtrOp->stripPointerCasts();
  if (StrippedPtr != PtrOp) {
    const PointerType *StrippedPtrTy =cast<PointerType>(StrippedPtr->getType());

    bool HasZeroPointerIndex = false;
    if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
      HasZeroPointerIndex = C->isZero();
    
    // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
    // into     : GEP [10 x i8]* X, i32 0, ...
    //
    // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
    //           into     : GEP i8* X, ...
    // 
    // This occurs when the program declares an array extern like "int X[];"
    if (HasZeroPointerIndex) {
      const PointerType *CPTy = cast<PointerType>(PtrOp->getType());
      if (const ArrayType *CATy =
          dyn_cast<ArrayType>(CPTy->getElementType())) {
        // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
        if (CATy->getElementType() == StrippedPtrTy->getElementType()) {
          // -> GEP i8* X, ...
          SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
          GetElementPtrInst *Res =
            GetElementPtrInst::Create(StrippedPtr, Idx.begin(),
                                      Idx.end(), GEP.getName());
          Res->setIsInBounds(GEP.isInBounds());
          return Res;
        }
        
        if (const ArrayType *XATy =
              dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){
          // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
          if (CATy->getElementType() == XATy->getElementType()) {
            // -> GEP [10 x i8]* X, i32 0, ...
            // At this point, we know that the cast source type is a pointer
            // to an array of the same type as the destination pointer
            // array.  Because the array type is never stepped over (there
            // is a leading zero) we can fold the cast into this GEP.
            GEP.setOperand(0, StrippedPtr);
            return &GEP;
          }
        }
      }
    } else if (GEP.getNumOperands() == 2) {
      // Transform things like:
      // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
      // into:  %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
      const Type *SrcElTy = StrippedPtrTy->getElementType();
      const Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
      if (TD && SrcElTy->isArrayTy() &&
          TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
          TD->getTypeAllocSize(ResElTy)) {
        Value *Idx[2];
        Idx[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext()));
        Idx[1] = GEP.getOperand(1);
        Value *NewGEP = GEP.isInBounds() ?
          Builder->CreateInBoundsGEP(StrippedPtr, Idx, Idx + 2, GEP.getName()) :
          Builder->CreateGEP(StrippedPtr, Idx, Idx + 2, GEP.getName());
        // V and GEP are both pointer types --> BitCast
        return new BitCastInst(NewGEP, GEP.getType());
      }
      
      // Transform things like:
      // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
      //   (where tmp = 8*tmp2) into:
      // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
      
      if (TD && SrcElTy->isArrayTy() && ResElTy->isIntegerTy(8)) {
        uint64_t ArrayEltSize =
            TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType());
        
        // Check to see if "tmp" is a scale by a multiple of ArrayEltSize.  We
        // allow either a mul, shift, or constant here.
        Value *NewIdx = 0;
        ConstantInt *Scale = 0;
        if (ArrayEltSize == 1) {
          NewIdx = GEP.getOperand(1);
          Scale = ConstantInt::get(cast<IntegerType>(NewIdx->getType()), 1);
        } else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) {
          NewIdx = ConstantInt::get(CI->getType(), 1);
          Scale = CI;
        } else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){
          if (Inst->getOpcode() == Instruction::Shl &&
              isa<ConstantInt>(Inst->getOperand(1))) {
            ConstantInt *ShAmt = cast<ConstantInt>(Inst->getOperand(1));
            uint32_t ShAmtVal = ShAmt->getLimitedValue(64);
            Scale = ConstantInt::get(cast<IntegerType>(Inst->getType()),
                                     1ULL << ShAmtVal);
            NewIdx = Inst->getOperand(0);
          } else if (Inst->getOpcode() == Instruction::Mul &&
                     isa<ConstantInt>(Inst->getOperand(1))) {
            Scale = cast<ConstantInt>(Inst->getOperand(1));
            NewIdx = Inst->getOperand(0);
          }
        }
        
        // If the index will be to exactly the right offset with the scale taken
        // out, perform the transformation. Note, we don't know whether Scale is
        // signed or not. We'll use unsigned version of division/modulo
        // operation after making sure Scale doesn't have the sign bit set.
        if (ArrayEltSize && Scale && Scale->getSExtValue() >= 0LL &&
            Scale->getZExtValue() % ArrayEltSize == 0) {
          Scale = ConstantInt::get(Scale->getType(),
                                   Scale->getZExtValue() / ArrayEltSize);
          if (Scale->getZExtValue() != 1) {
            Constant *C = ConstantExpr::getIntegerCast(Scale, NewIdx->getType(),
                                                       false /*ZExt*/);
            NewIdx = Builder->CreateMul(NewIdx, C, "idxscale");
          }

          // Insert the new GEP instruction.
          Value *Idx[2];
          Idx[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext()));
          Idx[1] = NewIdx;
          Value *NewGEP = GEP.isInBounds() ?
            Builder->CreateInBoundsGEP(StrippedPtr, Idx, Idx + 2,GEP.getName()):
            Builder->CreateGEP(StrippedPtr, Idx, Idx + 2, GEP.getName());
          // The NewGEP must be pointer typed, so must the old one -> BitCast
          return new BitCastInst(NewGEP, GEP.getType());
        }
      }
    }
  }
  
  /// See if we can simplify:
  ///   X = bitcast A* to B*
  ///   Y = gep X, <...constant indices...>
  /// into a gep of the original struct.  This is important for SROA and alias
  /// analysis of unions.  If "A" is also a bitcast, wait for A/X to be merged.
  if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
    if (TD &&
        !isa<BitCastInst>(BCI->getOperand(0)) && GEP.hasAllConstantIndices()) {
      // Determine how much the GEP moves the pointer.  We are guaranteed to get
      // a constant back from EmitGEPOffset.
      ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(&GEP));
      int64_t Offset = OffsetV->getSExtValue();
      
      // If this GEP instruction doesn't move the pointer, just replace the GEP
      // with a bitcast of the real input to the dest type.
      if (Offset == 0) {
        // If the bitcast is of an allocation, and the allocation will be
        // converted to match the type of the cast, don't touch this.
        if (isa<AllocaInst>(BCI->getOperand(0)) ||
            isMalloc(BCI->getOperand(0))) {
          // See if the bitcast simplifies, if so, don't nuke this GEP yet.
          if (Instruction *I = visitBitCast(*BCI)) {
            if (I != BCI) {
              I->takeName(BCI);
              BCI->getParent()->getInstList().insert(BCI, I);
              ReplaceInstUsesWith(*BCI, I);
            }
            return &GEP;
          }
        }
        return new BitCastInst(BCI->getOperand(0), GEP.getType());
      }
      
      // Otherwise, if the offset is non-zero, we need to find out if there is a
      // field at Offset in 'A's type.  If so, we can pull the cast through the
      // GEP.
      SmallVector<Value*, 8> NewIndices;
      const Type *InTy =
        cast<PointerType>(BCI->getOperand(0)->getType())->getElementType();
      if (FindElementAtOffset(InTy, Offset, NewIndices)) {
        Value *NGEP = GEP.isInBounds() ?
          Builder->CreateInBoundsGEP(BCI->getOperand(0), NewIndices.begin(),
                                     NewIndices.end()) :
          Builder->CreateGEP(BCI->getOperand(0), NewIndices.begin(),
                             NewIndices.end());
        
        if (NGEP->getType() == GEP.getType())
          return ReplaceInstUsesWith(GEP, NGEP);
        NGEP->takeName(&GEP);
        return new BitCastInst(NGEP, GEP.getType());
      }
    }
  }    
    
  return 0;
}



static bool IsOnlyNullComparedAndFreed(const Value &V) {
  for (Value::const_use_iterator UI = V.use_begin(), UE = V.use_end();
       UI != UE; ++UI) {
    const User *U = *UI;
    if (isFreeCall(U))
      continue;
    if (const ICmpInst *ICI = dyn_cast<ICmpInst>(U))
      if (ICI->isEquality() && isa<ConstantPointerNull>(ICI->getOperand(1)))
        continue;
    return false;
  }
  return true;
}

Instruction *InstCombiner::visitMalloc(Instruction &MI) {
  // If we have a malloc call which is only used in any amount of comparisons
  // to null and free calls, delete the calls and replace the comparisons with
  // true or false as appropriate.
  if (IsOnlyNullComparedAndFreed(MI)) {
    for (Value::use_iterator UI = MI.use_begin(), UE = MI.use_end();
         UI != UE;) {
      // We can assume that every remaining use is a free call or an icmp eq/ne
      // to null, so the cast is safe.
      Instruction *I = cast<Instruction>(*UI);

      // Early increment here, as we're about to get rid of the user.
      ++UI;

      if (isFreeCall(I)) {
        EraseInstFromFunction(*cast<CallInst>(I));
        continue;
      }
      // Again, the cast is safe.
      ICmpInst *C = cast<ICmpInst>(I);
      ReplaceInstUsesWith(*C, ConstantInt::get(Type::getInt1Ty(C->getContext()),
                                               C->isFalseWhenEqual()));
      EraseInstFromFunction(*C);
    }
    return EraseInstFromFunction(MI);
  }
  return 0;
}



Instruction *InstCombiner::visitFree(CallInst &FI) {
  Value *Op = FI.getArgOperand(0);

  // free undef -> unreachable.
  if (isa<UndefValue>(Op)) {
    // Insert a new store to null because we cannot modify the CFG here.
    new StoreInst(ConstantInt::getTrue(FI.getContext()),
           UndefValue::get(Type::getInt1PtrTy(FI.getContext())), &FI);
    return EraseInstFromFunction(FI);
  }
  
  // If we have 'free null' delete the instruction.  This can happen in stl code
  // when lots of inlining happens.
  if (isa<ConstantPointerNull>(Op))
    return EraseInstFromFunction(FI);

  return 0;
}



Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
  // Change br (not X), label True, label False to: br X, label False, True
  Value *X = 0;
  BasicBlock *TrueDest;
  BasicBlock *FalseDest;
  if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
      !isa<Constant>(X)) {
    // Swap Destinations and condition...
    BI.setCondition(X);
    BI.setSuccessor(0, FalseDest);
    BI.setSuccessor(1, TrueDest);
    return &BI;
  }

  // Cannonicalize fcmp_one -> fcmp_oeq
  FCmpInst::Predicate FPred; Value *Y;
  if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)), 
                             TrueDest, FalseDest)) &&
      BI.getCondition()->hasOneUse())
    if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
        FPred == FCmpInst::FCMP_OGE) {
      FCmpInst *Cond = cast<FCmpInst>(BI.getCondition());
      Cond->setPredicate(FCmpInst::getInversePredicate(FPred));
      
      // Swap Destinations and condition.
      BI.setSuccessor(0, FalseDest);
      BI.setSuccessor(1, TrueDest);
      Worklist.Add(Cond);
      return &BI;
    }

  // Cannonicalize icmp_ne -> icmp_eq
  ICmpInst::Predicate IPred;
  if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
                      TrueDest, FalseDest)) &&
      BI.getCondition()->hasOneUse())
    if (IPred == ICmpInst::ICMP_NE  || IPred == ICmpInst::ICMP_ULE ||
        IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
        IPred == ICmpInst::ICMP_SGE) {
      ICmpInst *Cond = cast<ICmpInst>(BI.getCondition());
      Cond->setPredicate(ICmpInst::getInversePredicate(IPred));
      // Swap Destinations and condition.
      BI.setSuccessor(0, FalseDest);
      BI.setSuccessor(1, TrueDest);
      Worklist.Add(Cond);
      return &BI;
    }

  return 0;
}

Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
  Value *Cond = SI.getCondition();
  if (Instruction *I = dyn_cast<Instruction>(Cond)) {
    if (I->getOpcode() == Instruction::Add)
      if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
        // change 'switch (X+4) case 1:' into 'switch (X) case -3'
        for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2)
          SI.setOperand(i,
                   ConstantExpr::getSub(cast<Constant>(SI.getOperand(i)),
                                                AddRHS));
        SI.setOperand(0, I->getOperand(0));
        Worklist.Add(I);
        return &SI;
      }
  }
  return 0;
}

Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
  Value *Agg = EV.getAggregateOperand();

  if (!EV.hasIndices())
    return ReplaceInstUsesWith(EV, Agg);

  if (Constant *C = dyn_cast<Constant>(Agg)) {
    if (isa<UndefValue>(C))
      return ReplaceInstUsesWith(EV, UndefValue::get(EV.getType()));
      
    if (isa<ConstantAggregateZero>(C))
      return ReplaceInstUsesWith(EV, Constant::getNullValue(EV.getType()));

    if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) {
      // Extract the element indexed by the first index out of the constant
      Value *V = C->getOperand(*EV.idx_begin());
      if (EV.getNumIndices() > 1)
        // Extract the remaining indices out of the constant indexed by the
        // first index
        return ExtractValueInst::Create(V, EV.idx_begin() + 1, EV.idx_end());
      else
        return ReplaceInstUsesWith(EV, V);
    }
    return 0; // Can't handle other constants
  } 
  if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
    // We're extracting from an insertvalue instruction, compare the indices
    const unsigned *exti, *exte, *insi, *inse;
    for (exti = EV.idx_begin(), insi = IV->idx_begin(),
         exte = EV.idx_end(), inse = IV->idx_end();
         exti != exte && insi != inse;
         ++exti, ++insi) {
      if (*insi != *exti)
        // The insert and extract both reference distinctly different elements.
        // This means the extract is not influenced by the insert, and we can
        // replace the aggregate operand of the extract with the aggregate
        // operand of the insert. i.e., replace
        // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
        // %E = extractvalue { i32, { i32 } } %I, 0
        // with
        // %E = extractvalue { i32, { i32 } } %A, 0
        return ExtractValueInst::Create(IV->getAggregateOperand(),
                                        EV.idx_begin(), EV.idx_end());
    }
    if (exti == exte && insi == inse)
      // Both iterators are at the end: Index lists are identical. Replace
      // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
      // %C = extractvalue { i32, { i32 } } %B, 1, 0
      // with "i32 42"
      return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand());
    if (exti == exte) {
      // The extract list is a prefix of the insert list. i.e. replace
      // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
      // %E = extractvalue { i32, { i32 } } %I, 1
      // with
      // %X = extractvalue { i32, { i32 } } %A, 1
      // %E = insertvalue { i32 } %X, i32 42, 0
      // by switching the order of the insert and extract (though the
      // insertvalue should be left in, since it may have other uses).
      Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(),
                                                 EV.idx_begin(), EV.idx_end());
      return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
                                     insi, inse);
    }
    if (insi == inse)
      // The insert list is a prefix of the extract list
      // We can simply remove the common indices from the extract and make it
      // operate on the inserted value instead of the insertvalue result.
      // i.e., replace
      // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
      // %E = extractvalue { i32, { i32 } } %I, 1, 0
      // with
      // %E extractvalue { i32 } { i32 42 }, 0
      return ExtractValueInst::Create(IV->getInsertedValueOperand(), 
                                      exti, exte);
  }
  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) {
    // We're extracting from an intrinsic, see if we're the only user, which
    // allows us to simplify multiple result intrinsics to simpler things that
    // just get one value.
    if (II->hasOneUse()) {
      // Check if we're grabbing the overflow bit or the result of a 'with
      // overflow' intrinsic.  If it's the latter we can remove the intrinsic
      // and replace it with a traditional binary instruction.
      switch (II->getIntrinsicID()) {
      case Intrinsic::uadd_with_overflow:
      case Intrinsic::sadd_with_overflow:
        if (*EV.idx_begin() == 0) {  // Normal result.
          Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
          II->replaceAllUsesWith(UndefValue::get(II->getType()));
          EraseInstFromFunction(*II);
          return BinaryOperator::CreateAdd(LHS, RHS);
        }
        break;
      case Intrinsic::usub_with_overflow:
      case Intrinsic::ssub_with_overflow:
        if (*EV.idx_begin() == 0) {  // Normal result.
          Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
          II->replaceAllUsesWith(UndefValue::get(II->getType()));
          EraseInstFromFunction(*II);
          return BinaryOperator::CreateSub(LHS, RHS);
        }
        break;
      case Intrinsic::umul_with_overflow:
      case Intrinsic::smul_with_overflow:
        if (*EV.idx_begin() == 0) {  // Normal result.
          Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
          II->replaceAllUsesWith(UndefValue::get(II->getType()));
          EraseInstFromFunction(*II);
          return BinaryOperator::CreateMul(LHS, RHS);
        }
        break;
      default:
        break;
      }
    }
  }
  // Can't simplify extracts from other values. Note that nested extracts are
  // already simplified implicitely by the above (extract ( extract (insert) )
  // will be translated into extract ( insert ( extract ) ) first and then just
  // the value inserted, if appropriate).
  return 0;
}




/// TryToSinkInstruction - Try to move the specified instruction from its
/// current block into the beginning of DestBlock, which can only happen if it's
/// safe to move the instruction past all of the instructions between it and the
/// end of its block.
static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
  assert(I->hasOneUse() && "Invariants didn't hold!");

  // Cannot move control-flow-involving, volatile loads, vaarg, etc.
  if (isa<PHINode>(I) || I->mayHaveSideEffects() || isa<TerminatorInst>(I))
    return false;

  // Do not sink alloca instructions out of the entry block.
  if (isa<AllocaInst>(I) && I->getParent() ==
        &DestBlock->getParent()->getEntryBlock())
    return false;

  // We can only sink load instructions if there is nothing between the load and
  // the end of block that could change the value.
  if (I->mayReadFromMemory()) {
    for (BasicBlock::iterator Scan = I, E = I->getParent()->end();
         Scan != E; ++Scan)
      if (Scan->mayWriteToMemory())
        return false;
  }

  BasicBlock::iterator InsertPos = DestBlock->getFirstNonPHI();

  I->moveBefore(InsertPos);
  ++NumSunkInst;
  return true;
}


/// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
/// all reachable code to the worklist.
///
/// This has a couple of tricks to make the code faster and more powerful.  In
/// particular, we constant fold and DCE instructions as we go, to avoid adding
/// them to the worklist (this significantly speeds up instcombine on code where
/// many instructions are dead or constant).  Additionally, if we find a branch
/// whose condition is a known constant, we only visit the reachable successors.
///
static bool AddReachableCodeToWorklist(BasicBlock *BB, 
                                       SmallPtrSet<BasicBlock*, 64> &Visited,
                                       InstCombiner &IC,
                                       const TargetData *TD) {
  bool MadeIRChange = false;
  SmallVector<BasicBlock*, 256> Worklist;
  Worklist.push_back(BB);

  SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
  SmallPtrSet<ConstantExpr*, 64> FoldedConstants;
  
  do {
    BB = Worklist.pop_back_val();
    
    // We have now visited this block!  If we've already been here, ignore it.
    if (!Visited.insert(BB)) continue;

    for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
      Instruction *Inst = BBI++;
      
      // DCE instruction if trivially dead.
      if (isInstructionTriviallyDead(Inst)) {
        ++NumDeadInst;
        DEBUG(errs() << "IC: DCE: " << *Inst << '\n');
        Inst->eraseFromParent();
        continue;
      }
      
      // ConstantProp instruction if trivially constant.
      if (!Inst->use_empty() && isa<Constant>(Inst->getOperand(0)))
        if (Constant *C = ConstantFoldInstruction(Inst, TD)) {
          DEBUG(errs() << "IC: ConstFold to: " << *C << " from: "
                       << *Inst << '\n');
          Inst->replaceAllUsesWith(C);
          ++NumConstProp;
          Inst->eraseFromParent();
          continue;
        }
      
      if (TD) {
        // See if we can constant fold its operands.
        for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end();
             i != e; ++i) {
          ConstantExpr *CE = dyn_cast<ConstantExpr>(i);
          if (CE == 0) continue;
          
          // If we already folded this constant, don't try again.
          if (!FoldedConstants.insert(CE))
            continue;
          
          Constant *NewC = ConstantFoldConstantExpression(CE, TD);
          if (NewC && NewC != CE) {
            *i = NewC;
            MadeIRChange = true;
          }
        }
      }

      InstrsForInstCombineWorklist.push_back(Inst);
    }

    // Recursively visit successors.  If this is a branch or switch on a
    // constant, only visit the reachable successor.
    TerminatorInst *TI = BB->getTerminator();
    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
      if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
        bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
        BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
        Worklist.push_back(ReachableBB);
        continue;
      }
    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
      if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
        // See if this is an explicit destination.
        for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
          if (SI->getCaseValue(i) == Cond) {
            BasicBlock *ReachableBB = SI->getSuccessor(i);
            Worklist.push_back(ReachableBB);
            continue;
          }
        
        // Otherwise it is the default destination.
        Worklist.push_back(SI->getSuccessor(0));
        continue;
      }
    }
    
    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
      Worklist.push_back(TI->getSuccessor(i));
  } while (!Worklist.empty());
  
  // Once we've found all of the instructions to add to instcombine's worklist,
  // add them in reverse order.  This way instcombine will visit from the top
  // of the function down.  This jives well with the way that it adds all uses
  // of instructions to the worklist after doing a transformation, thus avoiding
  // some N^2 behavior in pathological cases.
  IC.Worklist.AddInitialGroup(&InstrsForInstCombineWorklist[0],
                              InstrsForInstCombineWorklist.size());
  
  return MadeIRChange;
}

bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
  MadeIRChange = false;
  
  DEBUG(errs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
        << F.getNameStr() << "\n");

  {
    // Do a depth-first traversal of the function, populate the worklist with
    // the reachable instructions.  Ignore blocks that are not reachable.  Keep
    // track of which blocks we visit.
    SmallPtrSet<BasicBlock*, 64> Visited;
    MadeIRChange |= AddReachableCodeToWorklist(F.begin(), Visited, *this, TD);

    // Do a quick scan over the function.  If we find any blocks that are
    // unreachable, remove any instructions inside of them.  This prevents
    // the instcombine code from having to deal with some bad special cases.
    for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
      if (!Visited.count(BB)) {
        Instruction *Term = BB->getTerminator();
        while (Term != BB->begin()) {   // Remove instrs bottom-up
          BasicBlock::iterator I = Term; --I;

          DEBUG(errs() << "IC: DCE: " << *I << '\n');
          // A debug intrinsic shouldn't force another iteration if we weren't
          // going to do one without it.
          if (!isa<DbgInfoIntrinsic>(I)) {
            ++NumDeadInst;
            MadeIRChange = true;
          }

          // If I is not void type then replaceAllUsesWith undef.
          // This allows ValueHandlers and custom metadata to adjust itself.
          if (!I->getType()->isVoidTy())
            I->replaceAllUsesWith(UndefValue::get(I->getType()));
          I->eraseFromParent();
        }
      }
  }

  while (!Worklist.isEmpty()) {
    Instruction *I = Worklist.RemoveOne();
    if (I == 0) continue;  // skip null values.

    // Check to see if we can DCE the instruction.
    if (isInstructionTriviallyDead(I)) {
      DEBUG(errs() << "IC: DCE: " << *I << '\n');
      EraseInstFromFunction(*I);
      ++NumDeadInst;
      MadeIRChange = true;
      continue;
    }

    // Instruction isn't dead, see if we can constant propagate it.
    if (!I->use_empty() && isa<Constant>(I->getOperand(0)))
      if (Constant *C = ConstantFoldInstruction(I, TD)) {
        DEBUG(errs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n');

        // Add operands to the worklist.
        ReplaceInstUsesWith(*I, C);
        ++NumConstProp;
        EraseInstFromFunction(*I);
        MadeIRChange = true;
        continue;
      }

    // See if we can trivially sink this instruction to a successor basic block.
    if (I->hasOneUse()) {
      BasicBlock *BB = I->getParent();
      Instruction *UserInst = cast<Instruction>(I->use_back());
      BasicBlock *UserParent;
      
      // Get the block the use occurs in.
      if (PHINode *PN = dyn_cast<PHINode>(UserInst))
        UserParent = PN->getIncomingBlock(I->use_begin().getUse());
      else
        UserParent = UserInst->getParent();
      
      if (UserParent != BB) {
        bool UserIsSuccessor = false;
        // See if the user is one of our successors.
        for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
          if (*SI == UserParent) {
            UserIsSuccessor = true;
            break;
          }

        // If the user is one of our immediate successors, and if that successor
        // only has us as a predecessors (we'd have to split the critical edge
        // otherwise), we can keep going.
        if (UserIsSuccessor && UserParent->getSinglePredecessor())
          // Okay, the CFG is simple enough, try to sink this instruction.
          MadeIRChange |= TryToSinkInstruction(I, UserParent);
      }
    }

    // Now that we have an instruction, try combining it to simplify it.
    Builder->SetInsertPoint(I->getParent(), I);
    
#ifndef NDEBUG
    std::string OrigI;
#endif
    DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
    DEBUG(errs() << "IC: Visiting: " << OrigI << '\n');

    if (Instruction *Result = visit(*I)) {
      ++NumCombined;
      // Should we replace the old instruction with a new one?
      if (Result != I) {
        DEBUG(errs() << "IC: Old = " << *I << '\n'
                     << "    New = " << *Result << '\n');

        // Everything uses the new instruction now.
        I->replaceAllUsesWith(Result);

        // Push the new instruction and any users onto the worklist.
        Worklist.Add(Result);
        Worklist.AddUsersToWorkList(*Result);

        // Move the name to the new instruction first.
        Result->takeName(I);

        // Insert the new instruction into the basic block...
        BasicBlock *InstParent = I->getParent();
        BasicBlock::iterator InsertPos = I;

        if (!isa<PHINode>(Result))        // If combining a PHI, don't insert
          while (isa<PHINode>(InsertPos)) // middle of a block of PHIs.
            ++InsertPos;

        InstParent->getInstList().insert(InsertPos, Result);

        EraseInstFromFunction(*I);
      } else {
#ifndef NDEBUG
        DEBUG(errs() << "IC: Mod = " << OrigI << '\n'
                     << "    New = " << *I << '\n');
#endif

        // If the instruction was modified, it's possible that it is now dead.
        // if so, remove it.
        if (isInstructionTriviallyDead(I)) {
          EraseInstFromFunction(*I);
        } else {
          Worklist.Add(I);
          Worklist.AddUsersToWorkList(*I);
        }
      }
      MadeIRChange = true;
    }
  }

  Worklist.Zap();
  return MadeIRChange;
}


bool InstCombiner::runOnFunction(Function &F) {
  MustPreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
  TD = getAnalysisIfAvailable<TargetData>();

  
  /// Builder - This is an IRBuilder that automatically inserts new
  /// instructions into the worklist when they are created.
  IRBuilder<true, TargetFolder, InstCombineIRInserter> 
    TheBuilder(F.getContext(), TargetFolder(TD),
               InstCombineIRInserter(Worklist));
  Builder = &TheBuilder;
  
  bool EverMadeChange = false;

  // Iterate while there is work to do.
  unsigned Iteration = 0;
  while (DoOneIteration(F, Iteration++))
    EverMadeChange = true;
  
  Builder = 0;
  return EverMadeChange;
}

FunctionPass *llvm::createInstructionCombiningPass() {
  return new InstCombiner();
}