aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Transforms/Instrumentation/AddressSanitizer.cpp
blob: 882aab0a70d3e4082b438d952e3a93f6e1c17084 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
//===-- AddressSanitizer.cpp - memory error detector ------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of AddressSanitizer, an address sanity checker.
// Details of the algorithm:
//  http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Instrumentation.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/Triple.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/DIBuilder.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/MC/MCSectionMachO.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/SwapByteOrder.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/ASanStackFrameLayout.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
#include <algorithm>
#include <string>
#include <system_error>

using namespace llvm;

#define DEBUG_TYPE "asan"

static const uint64_t kDefaultShadowScale = 3;
static const uint64_t kDefaultShadowOffset32 = 1ULL << 29;
static const uint64_t kIOSShadowOffset32 = 1ULL << 30;
static const uint64_t kDefaultShadowOffset64 = 1ULL << 44;
static const uint64_t kSmallX86_64ShadowOffset = 0x7FFF8000;  // < 2G.
static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 41;
static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000;
static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37;
static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36;
static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30;
static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46;
static const uint64_t kWindowsShadowOffset32 = 3ULL << 28;

static const size_t kMinStackMallocSize = 1 << 6;  // 64B
static const size_t kMaxStackMallocSize = 1 << 16;  // 64K
static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3;
static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E;

static const char *const kAsanModuleCtorName = "asan.module_ctor";
static const char *const kAsanModuleDtorName = "asan.module_dtor";
static const uint64_t    kAsanCtorAndDtorPriority = 1;
static const char *const kAsanReportErrorTemplate = "__asan_report_";
static const char *const kAsanReportLoadN = "__asan_report_load_n";
static const char *const kAsanReportStoreN = "__asan_report_store_n";
static const char *const kAsanRegisterGlobalsName = "__asan_register_globals";
static const char *const kAsanUnregisterGlobalsName =
    "__asan_unregister_globals";
static const char *const kAsanPoisonGlobalsName = "__asan_before_dynamic_init";
static const char *const kAsanUnpoisonGlobalsName = "__asan_after_dynamic_init";
static const char *const kAsanInitName = "__asan_init_v5";
static const char *const kAsanPtrCmp = "__sanitizer_ptr_cmp";
static const char *const kAsanPtrSub = "__sanitizer_ptr_sub";
static const char *const kAsanHandleNoReturnName = "__asan_handle_no_return";
static const int         kMaxAsanStackMallocSizeClass = 10;
static const char *const kAsanStackMallocNameTemplate = "__asan_stack_malloc_";
static const char *const kAsanStackFreeNameTemplate = "__asan_stack_free_";
static const char *const kAsanGenPrefix = "__asan_gen_";
static const char *const kSanCovGenPrefix = "__sancov_gen_";
static const char *const kAsanPoisonStackMemoryName =
    "__asan_poison_stack_memory";
static const char *const kAsanUnpoisonStackMemoryName =
    "__asan_unpoison_stack_memory";

static const char *const kAsanOptionDetectUAR =
    "__asan_option_detect_stack_use_after_return";

#ifndef NDEBUG
static const int kAsanStackAfterReturnMagic = 0xf5;
#endif

// Accesses sizes are powers of two: 1, 2, 4, 8, 16.
static const size_t kNumberOfAccessSizes = 5;

static const unsigned kAllocaRzSize = 32;
static const unsigned kAsanAllocaLeftMagic = 0xcacacacaU;
static const unsigned kAsanAllocaRightMagic = 0xcbcbcbcbU;
static const unsigned kAsanAllocaPartialVal1 = 0xcbcbcb00U;
static const unsigned kAsanAllocaPartialVal2 = 0x000000cbU;

// Command-line flags.

// This flag may need to be replaced with -f[no-]asan-reads.
static cl::opt<bool> ClInstrumentReads("asan-instrument-reads",
       cl::desc("instrument read instructions"), cl::Hidden, cl::init(true));
static cl::opt<bool> ClInstrumentWrites("asan-instrument-writes",
       cl::desc("instrument write instructions"), cl::Hidden, cl::init(true));
static cl::opt<bool> ClInstrumentAtomics("asan-instrument-atomics",
       cl::desc("instrument atomic instructions (rmw, cmpxchg)"),
       cl::Hidden, cl::init(true));
static cl::opt<bool> ClAlwaysSlowPath("asan-always-slow-path",
       cl::desc("use instrumentation with slow path for all accesses"),
       cl::Hidden, cl::init(false));
// This flag limits the number of instructions to be instrumented
// in any given BB. Normally, this should be set to unlimited (INT_MAX),
// but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary
// set it to 10000.
static cl::opt<int> ClMaxInsnsToInstrumentPerBB("asan-max-ins-per-bb",
       cl::init(10000),
       cl::desc("maximal number of instructions to instrument in any given BB"),
       cl::Hidden);
// This flag may need to be replaced with -f[no]asan-stack.
static cl::opt<bool> ClStack("asan-stack",
       cl::desc("Handle stack memory"), cl::Hidden, cl::init(true));
static cl::opt<bool> ClUseAfterReturn("asan-use-after-return",
       cl::desc("Check return-after-free"), cl::Hidden, cl::init(true));
// This flag may need to be replaced with -f[no]asan-globals.
static cl::opt<bool> ClGlobals("asan-globals",
       cl::desc("Handle global objects"), cl::Hidden, cl::init(true));
static cl::opt<bool> ClInitializers("asan-initialization-order",
       cl::desc("Handle C++ initializer order"), cl::Hidden, cl::init(true));
static cl::opt<bool> ClInvalidPointerPairs("asan-detect-invalid-pointer-pair",
       cl::desc("Instrument <, <=, >, >=, - with pointer operands"),
       cl::Hidden, cl::init(false));
static cl::opt<unsigned> ClRealignStack("asan-realign-stack",
       cl::desc("Realign stack to the value of this flag (power of two)"),
       cl::Hidden, cl::init(32));
static cl::opt<int> ClInstrumentationWithCallsThreshold(
    "asan-instrumentation-with-call-threshold",
       cl::desc("If the function being instrumented contains more than "
                "this number of memory accesses, use callbacks instead of "
                "inline checks (-1 means never use callbacks)."),
       cl::Hidden, cl::init(7000));
static cl::opt<std::string> ClMemoryAccessCallbackPrefix(
       "asan-memory-access-callback-prefix",
       cl::desc("Prefix for memory access callbacks"), cl::Hidden,
       cl::init("__asan_"));
static cl::opt<bool> ClInstrumentAllocas("asan-instrument-allocas",
       cl::desc("instrument dynamic allocas"), cl::Hidden, cl::init(false));

// These flags allow to change the shadow mapping.
// The shadow mapping looks like
//    Shadow = (Mem >> scale) + (1 << offset_log)
static cl::opt<int> ClMappingScale("asan-mapping-scale",
       cl::desc("scale of asan shadow mapping"), cl::Hidden, cl::init(0));

// Optimization flags. Not user visible, used mostly for testing
// and benchmarking the tool.
static cl::opt<bool> ClOpt("asan-opt",
       cl::desc("Optimize instrumentation"), cl::Hidden, cl::init(true));
static cl::opt<bool> ClOptSameTemp("asan-opt-same-temp",
       cl::desc("Instrument the same temp just once"), cl::Hidden,
       cl::init(true));
static cl::opt<bool> ClOptGlobals("asan-opt-globals",
       cl::desc("Don't instrument scalar globals"), cl::Hidden, cl::init(true));

static cl::opt<bool> ClCheckLifetime("asan-check-lifetime",
       cl::desc("Use llvm.lifetime intrinsics to insert extra checks"),
       cl::Hidden, cl::init(false));

static cl::opt<bool> ClDynamicAllocaStack(
    "asan-stack-dynamic-alloca",
    cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden,
    cl::init(true));

// Debug flags.
static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden,
                            cl::init(0));
static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"),
                                 cl::Hidden, cl::init(0));
static cl::opt<std::string> ClDebugFunc("asan-debug-func",
                                        cl::Hidden, cl::desc("Debug func"));
static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"),
                               cl::Hidden, cl::init(-1));
static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug man inst"),
                               cl::Hidden, cl::init(-1));

STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
STATISTIC(NumInstrumentedDynamicAllocas,
          "Number of instrumented dynamic allocas");
STATISTIC(NumOptimizedAccessesToGlobalArray,
          "Number of optimized accesses to global arrays");
STATISTIC(NumOptimizedAccessesToGlobalVar,
          "Number of optimized accesses to global vars");

namespace {
/// Frontend-provided metadata for source location.
struct LocationMetadata {
  StringRef Filename;
  int LineNo;
  int ColumnNo;

  LocationMetadata() : Filename(), LineNo(0), ColumnNo(0) {}

  bool empty() const { return Filename.empty(); }

  void parse(MDNode *MDN) {
    assert(MDN->getNumOperands() == 3);
    MDString *MDFilename = cast<MDString>(MDN->getOperand(0));
    Filename = MDFilename->getString();
    LineNo =
        mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue();
    ColumnNo =
        mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue();
  }
};

/// Frontend-provided metadata for global variables.
class GlobalsMetadata {
 public:
  struct Entry {
    Entry()
        : SourceLoc(), Name(), IsDynInit(false),
          IsBlacklisted(false) {}
    LocationMetadata SourceLoc;
    StringRef Name;
    bool IsDynInit;
    bool IsBlacklisted;
  };

  GlobalsMetadata() : inited_(false) {}

  void init(Module& M) {
    assert(!inited_);
    inited_ = true;
    NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals");
    if (!Globals)
      return;
    for (auto MDN : Globals->operands()) {
      // Metadata node contains the global and the fields of "Entry".
      assert(MDN->getNumOperands() == 5);
      auto *GV = mdconst::extract_or_null<GlobalVariable>(MDN->getOperand(0));
      // The optimizer may optimize away a global entirely.
      if (!GV)
        continue;
      // We can already have an entry for GV if it was merged with another
      // global.
      Entry &E = Entries[GV];
      if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1)))
        E.SourceLoc.parse(Loc);
      if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2)))
        E.Name = Name->getString();
      ConstantInt *IsDynInit =
          mdconst::extract<ConstantInt>(MDN->getOperand(3));
      E.IsDynInit |= IsDynInit->isOne();
      ConstantInt *IsBlacklisted =
          mdconst::extract<ConstantInt>(MDN->getOperand(4));
      E.IsBlacklisted |= IsBlacklisted->isOne();
    }
  }

  /// Returns metadata entry for a given global.
  Entry get(GlobalVariable *G) const {
    auto Pos = Entries.find(G);
    return (Pos != Entries.end()) ? Pos->second : Entry();
  }

 private:
  bool inited_;
  DenseMap<GlobalVariable*, Entry> Entries;
};

/// This struct defines the shadow mapping using the rule:
///   shadow = (mem >> Scale) ADD-or-OR Offset.
struct ShadowMapping {
  int Scale;
  uint64_t Offset;
  bool OrShadowOffset;
};

static ShadowMapping getShadowMapping(Triple &TargetTriple, int LongSize) {
  bool IsAndroid = TargetTriple.getEnvironment() == llvm::Triple::Android;
  bool IsIOS = TargetTriple.isiOS();
  bool IsFreeBSD = TargetTriple.isOSFreeBSD();
  bool IsLinux = TargetTriple.isOSLinux();
  bool IsPPC64 = TargetTriple.getArch() == llvm::Triple::ppc64 ||
                 TargetTriple.getArch() == llvm::Triple::ppc64le;
  bool IsX86_64 = TargetTriple.getArch() == llvm::Triple::x86_64;
  bool IsMIPS32 = TargetTriple.getArch() == llvm::Triple::mips ||
                  TargetTriple.getArch() == llvm::Triple::mipsel;
  bool IsMIPS64 = TargetTriple.getArch() == llvm::Triple::mips64 ||
                  TargetTriple.getArch() == llvm::Triple::mips64el;
  bool IsAArch64 = TargetTriple.getArch() == llvm::Triple::aarch64;
  bool IsWindows = TargetTriple.isOSWindows();

  ShadowMapping Mapping;

  if (LongSize == 32) {
    if (IsAndroid)
      Mapping.Offset = 0;
    else if (IsMIPS32)
      Mapping.Offset = kMIPS32_ShadowOffset32;
    else if (IsFreeBSD)
      Mapping.Offset = kFreeBSD_ShadowOffset32;
    else if (IsIOS)
      Mapping.Offset = kIOSShadowOffset32;
    else if (IsWindows)
      Mapping.Offset = kWindowsShadowOffset32;
    else
      Mapping.Offset = kDefaultShadowOffset32;
  } else {  // LongSize == 64
    if (IsPPC64)
      Mapping.Offset = kPPC64_ShadowOffset64;
    else if (IsFreeBSD)
      Mapping.Offset = kFreeBSD_ShadowOffset64;
    else if (IsLinux && IsX86_64)
      Mapping.Offset = kSmallX86_64ShadowOffset;
    else if (IsMIPS64)
      Mapping.Offset = kMIPS64_ShadowOffset64;
    else if (IsAArch64)
      Mapping.Offset = kAArch64_ShadowOffset64;
    else
      Mapping.Offset = kDefaultShadowOffset64;
  }

  Mapping.Scale = kDefaultShadowScale;
  if (ClMappingScale) {
    Mapping.Scale = ClMappingScale;
  }

  // OR-ing shadow offset if more efficient (at least on x86) if the offset
  // is a power of two, but on ppc64 we have to use add since the shadow
  // offset is not necessary 1/8-th of the address space.
  Mapping.OrShadowOffset = !IsPPC64 && !(Mapping.Offset & (Mapping.Offset - 1));

  return Mapping;
}

static size_t RedzoneSizeForScale(int MappingScale) {
  // Redzone used for stack and globals is at least 32 bytes.
  // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively.
  return std::max(32U, 1U << MappingScale);
}

/// AddressSanitizer: instrument the code in module to find memory bugs.
struct AddressSanitizer : public FunctionPass {
  AddressSanitizer() : FunctionPass(ID) {
    initializeAddressSanitizerPass(*PassRegistry::getPassRegistry());
  }
  const char *getPassName() const override {
    return "AddressSanitizerFunctionPass";
  }
  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<DominatorTreeWrapperPass>();
  }
  void instrumentMop(Instruction *I, bool UseCalls);
  void instrumentPointerComparisonOrSubtraction(Instruction *I);
  void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore,
                         Value *Addr, uint32_t TypeSize, bool IsWrite,
                         Value *SizeArgument, bool UseCalls);
  Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
                           Value *ShadowValue, uint32_t TypeSize);
  Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr,
                                 bool IsWrite, size_t AccessSizeIndex,
                                 Value *SizeArgument);
  void instrumentMemIntrinsic(MemIntrinsic *MI);
  Value *memToShadow(Value *Shadow, IRBuilder<> &IRB);
  bool runOnFunction(Function &F) override;
  bool maybeInsertAsanInitAtFunctionEntry(Function &F);
  bool doInitialization(Module &M) override;
  static char ID;  // Pass identification, replacement for typeid

  DominatorTree &getDominatorTree() const { return *DT; }

 private:
  void initializeCallbacks(Module &M);

  bool LooksLikeCodeInBug11395(Instruction *I);
  bool GlobalIsLinkerInitialized(GlobalVariable *G);

  LLVMContext *C;
  const DataLayout *DL;
  Triple TargetTriple;
  int LongSize;
  Type *IntptrTy;
  ShadowMapping Mapping;
  DominatorTree *DT;
  Function *AsanCtorFunction;
  Function *AsanInitFunction;
  Function *AsanHandleNoReturnFunc;
  Function *AsanPtrCmpFunction, *AsanPtrSubFunction;
  // This array is indexed by AccessIsWrite and log2(AccessSize).
  Function *AsanErrorCallback[2][kNumberOfAccessSizes];
  Function *AsanMemoryAccessCallback[2][kNumberOfAccessSizes];
  // This array is indexed by AccessIsWrite.
  Function *AsanErrorCallbackSized[2],
           *AsanMemoryAccessCallbackSized[2];
  Function *AsanMemmove, *AsanMemcpy, *AsanMemset;
  InlineAsm *EmptyAsm;
  GlobalsMetadata GlobalsMD;

  friend struct FunctionStackPoisoner;
};

class AddressSanitizerModule : public ModulePass {
 public:
  AddressSanitizerModule() : ModulePass(ID) {}
  bool runOnModule(Module &M) override;
  static char ID;  // Pass identification, replacement for typeid
  const char *getPassName() const override {
    return "AddressSanitizerModule";
  }

 private:
  void initializeCallbacks(Module &M);

  bool InstrumentGlobals(IRBuilder<> &IRB, Module &M);
  bool ShouldInstrumentGlobal(GlobalVariable *G);
  void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName);
  void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName);
  size_t MinRedzoneSizeForGlobal() const {
    return RedzoneSizeForScale(Mapping.Scale);
  }

  GlobalsMetadata GlobalsMD;
  Type *IntptrTy;
  LLVMContext *C;
  const DataLayout *DL;
  Triple TargetTriple;
  ShadowMapping Mapping;
  Function *AsanPoisonGlobals;
  Function *AsanUnpoisonGlobals;
  Function *AsanRegisterGlobals;
  Function *AsanUnregisterGlobals;
};

// Stack poisoning does not play well with exception handling.
// When an exception is thrown, we essentially bypass the code
// that unpoisones the stack. This is why the run-time library has
// to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire
// stack in the interceptor. This however does not work inside the
// actual function which catches the exception. Most likely because the
// compiler hoists the load of the shadow value somewhere too high.
// This causes asan to report a non-existing bug on 453.povray.
// It sounds like an LLVM bug.
struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> {
  Function &F;
  AddressSanitizer &ASan;
  DIBuilder DIB;
  LLVMContext *C;
  Type *IntptrTy;
  Type *IntptrPtrTy;
  ShadowMapping Mapping;

  SmallVector<AllocaInst*, 16> AllocaVec;
  SmallVector<Instruction*, 8> RetVec;
  unsigned StackAlignment;

  Function *AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1],
           *AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1];
  Function *AsanPoisonStackMemoryFunc, *AsanUnpoisonStackMemoryFunc;

  // Stores a place and arguments of poisoning/unpoisoning call for alloca.
  struct AllocaPoisonCall {
    IntrinsicInst *InsBefore;
    AllocaInst *AI;
    uint64_t Size;
    bool DoPoison;
  };
  SmallVector<AllocaPoisonCall, 8> AllocaPoisonCallVec;

  // Stores left and right redzone shadow addresses for dynamic alloca
  // and pointer to alloca instruction itself.
  // LeftRzAddr is a shadow address for alloca left redzone.
  // RightRzAddr is a shadow address for alloca right redzone.
  struct DynamicAllocaCall {
    AllocaInst *AI;
    Value *LeftRzAddr;
    Value *RightRzAddr;
    bool Poison;
    explicit DynamicAllocaCall(AllocaInst *AI,
                      Value *LeftRzAddr = nullptr,
                      Value *RightRzAddr = nullptr)
      : AI(AI), LeftRzAddr(LeftRzAddr), RightRzAddr(RightRzAddr), Poison(true)
    {}
  };
  SmallVector<DynamicAllocaCall, 1> DynamicAllocaVec;

  // Maps Value to an AllocaInst from which the Value is originated.
  typedef DenseMap<Value*, AllocaInst*> AllocaForValueMapTy;
  AllocaForValueMapTy AllocaForValue;

  bool HasNonEmptyInlineAsm;
  std::unique_ptr<CallInst> EmptyInlineAsm;

  FunctionStackPoisoner(Function &F, AddressSanitizer &ASan)
      : F(F), ASan(ASan), DIB(*F.getParent(), /*AllowUnresolved*/ false),
        C(ASan.C), IntptrTy(ASan.IntptrTy),
        IntptrPtrTy(PointerType::get(IntptrTy, 0)), Mapping(ASan.Mapping),
        StackAlignment(1 << Mapping.Scale), HasNonEmptyInlineAsm(false),
        EmptyInlineAsm(CallInst::Create(ASan.EmptyAsm)) {}

  bool runOnFunction() {
    if (!ClStack) return false;
    // Collect alloca, ret, lifetime instructions etc.
    for (BasicBlock *BB : depth_first(&F.getEntryBlock()))
      visit(*BB);

    if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false;

    initializeCallbacks(*F.getParent());

    poisonStack();

    if (ClDebugStack) {
      DEBUG(dbgs() << F);
    }
    return true;
  }

  // Finds all Alloca instructions and puts
  // poisoned red zones around all of them.
  // Then unpoison everything back before the function returns.
  void poisonStack();

  // ----------------------- Visitors.
  /// \brief Collect all Ret instructions.
  void visitReturnInst(ReturnInst &RI) {
    RetVec.push_back(&RI);
  }

  // Unpoison dynamic allocas redzones.
  void unpoisonDynamicAlloca(DynamicAllocaCall &AllocaCall) {
    if (!AllocaCall.Poison)
      return;
    for (auto Ret : RetVec) {
      IRBuilder<> IRBRet(Ret);
      PointerType *Int32PtrTy = PointerType::getUnqual(IRBRet.getInt32Ty());
      Value *Zero = Constant::getNullValue(IRBRet.getInt32Ty());
      Value *PartialRzAddr = IRBRet.CreateSub(AllocaCall.RightRzAddr,
                                              ConstantInt::get(IntptrTy, 4));
      IRBRet.CreateStore(Zero, IRBRet.CreateIntToPtr(AllocaCall.LeftRzAddr,
                                                     Int32PtrTy));
      IRBRet.CreateStore(Zero, IRBRet.CreateIntToPtr(PartialRzAddr,
                                                     Int32PtrTy));
      IRBRet.CreateStore(Zero, IRBRet.CreateIntToPtr(AllocaCall.RightRzAddr,
                                                     Int32PtrTy));
    }
  }

  // Right shift for BigEndian and left shift for LittleEndian.
  Value *shiftAllocaMagic(Value *Val, IRBuilder<> &IRB, Value *Shift) {
    return ASan.DL->isLittleEndian() ? IRB.CreateShl(Val, Shift)
                                     : IRB.CreateLShr(Val, Shift);
  }

  // Compute PartialRzMagic for dynamic alloca call. Since we don't know the
  // size of requested memory until runtime, we should compute it dynamically.
  // If PartialSize is 0, PartialRzMagic would contain kAsanAllocaRightMagic,
  // otherwise it would contain the value that we will use to poison the
  // partial redzone for alloca call.
  Value *computePartialRzMagic(Value *PartialSize, IRBuilder<> &IRB);

  // Deploy and poison redzones around dynamic alloca call. To do this, we
  // should replace this call with another one with changed parameters and
  // replace all its uses with new address, so
  //   addr = alloca type, old_size, align
  // is replaced by
  //   new_size = (old_size + additional_size) * sizeof(type)
  //   tmp = alloca i8, new_size, max(align, 32)
  //   addr = tmp + 32 (first 32 bytes are for the left redzone).
  // Additional_size is added to make new memory allocation contain not only
  // requested memory, but also left, partial and right redzones.
  // After that, we should poison redzones:
  // (1) Left redzone with kAsanAllocaLeftMagic.
  // (2) Partial redzone with the value, computed in runtime by
  //     computePartialRzMagic function.
  // (3) Right redzone with kAsanAllocaRightMagic.
  void handleDynamicAllocaCall(DynamicAllocaCall &AllocaCall);

  /// \brief Collect Alloca instructions we want (and can) handle.
  void visitAllocaInst(AllocaInst &AI) {
    if (!isInterestingAlloca(AI)) return;

    StackAlignment = std::max(StackAlignment, AI.getAlignment());
    if (isDynamicAlloca(AI))
      DynamicAllocaVec.push_back(DynamicAllocaCall(&AI));
    else
      AllocaVec.push_back(&AI);
  }

  /// \brief Collect lifetime intrinsic calls to check for use-after-scope
  /// errors.
  void visitIntrinsicInst(IntrinsicInst &II) {
    if (!ClCheckLifetime) return;
    Intrinsic::ID ID = II.getIntrinsicID();
    if (ID != Intrinsic::lifetime_start &&
        ID != Intrinsic::lifetime_end)
      return;
    // Found lifetime intrinsic, add ASan instrumentation if necessary.
    ConstantInt *Size = dyn_cast<ConstantInt>(II.getArgOperand(0));
    // If size argument is undefined, don't do anything.
    if (Size->isMinusOne()) return;
    // Check that size doesn't saturate uint64_t and can
    // be stored in IntptrTy.
    const uint64_t SizeValue = Size->getValue().getLimitedValue();
    if (SizeValue == ~0ULL ||
        !ConstantInt::isValueValidForType(IntptrTy, SizeValue))
      return;
    // Find alloca instruction that corresponds to llvm.lifetime argument.
    AllocaInst *AI = findAllocaForValue(II.getArgOperand(1));
    if (!AI) return;
    bool DoPoison = (ID == Intrinsic::lifetime_end);
    AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison};
    AllocaPoisonCallVec.push_back(APC);
  }

  void visitCallInst(CallInst &CI) {
    HasNonEmptyInlineAsm |=
        CI.isInlineAsm() && !CI.isIdenticalTo(EmptyInlineAsm.get());
  }

  // ---------------------- Helpers.
  void initializeCallbacks(Module &M);

  bool doesDominateAllExits(const Instruction *I) const {
    for (auto Ret : RetVec) {
      if (!ASan.getDominatorTree().dominates(I, Ret))
        return false;
    }
    return true;
  }

  bool isDynamicAlloca(AllocaInst &AI) const {
    return AI.isArrayAllocation() || !AI.isStaticAlloca();
  }

  // Check if we want (and can) handle this alloca.
  bool isInterestingAlloca(AllocaInst &AI) const {
    return (AI.getAllocatedType()->isSized() &&
            // alloca() may be called with 0 size, ignore it.
            getAllocaSizeInBytes(&AI) > 0);
  }

  uint64_t getAllocaSizeInBytes(AllocaInst *AI) const {
    Type *Ty = AI->getAllocatedType();
    uint64_t SizeInBytes = ASan.DL->getTypeAllocSize(Ty);
    return SizeInBytes;
  }
  /// Finds alloca where the value comes from.
  AllocaInst *findAllocaForValue(Value *V);
  void poisonRedZones(ArrayRef<uint8_t> ShadowBytes, IRBuilder<> &IRB,
                      Value *ShadowBase, bool DoPoison);
  void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison);

  void SetShadowToStackAfterReturnInlined(IRBuilder<> &IRB, Value *ShadowBase,
                                          int Size);
  Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L,
                               bool Dynamic);
  PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue,
                     Instruction *ThenTerm, Value *ValueIfFalse);
};

}  // namespace

char AddressSanitizer::ID = 0;
INITIALIZE_PASS_BEGIN(AddressSanitizer, "asan",
    "AddressSanitizer: detects use-after-free and out-of-bounds bugs.",
    false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_END(AddressSanitizer, "asan",
    "AddressSanitizer: detects use-after-free and out-of-bounds bugs.",
    false, false)
FunctionPass *llvm::createAddressSanitizerFunctionPass() {
  return new AddressSanitizer();
}

char AddressSanitizerModule::ID = 0;
INITIALIZE_PASS(AddressSanitizerModule, "asan-module",
    "AddressSanitizer: detects use-after-free and out-of-bounds bugs."
    "ModulePass", false, false)
ModulePass *llvm::createAddressSanitizerModulePass() {
  return new AddressSanitizerModule();
}

static size_t TypeSizeToSizeIndex(uint32_t TypeSize) {
  size_t Res = countTrailingZeros(TypeSize / 8);
  assert(Res < kNumberOfAccessSizes);
  return Res;
}

// \brief Create a constant for Str so that we can pass it to the run-time lib.
static GlobalVariable *createPrivateGlobalForString(
    Module &M, StringRef Str, bool AllowMerging) {
  Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
  // We use private linkage for module-local strings. If they can be merged
  // with another one, we set the unnamed_addr attribute.
  GlobalVariable *GV =
      new GlobalVariable(M, StrConst->getType(), true,
                         GlobalValue::PrivateLinkage, StrConst, kAsanGenPrefix);
  if (AllowMerging)
    GV->setUnnamedAddr(true);
  GV->setAlignment(1);  // Strings may not be merged w/o setting align 1.
  return GV;
}

/// \brief Create a global describing a source location.
static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M,
                                                       LocationMetadata MD) {
  Constant *LocData[] = {
      createPrivateGlobalForString(M, MD.Filename, true),
      ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo),
      ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo),
  };
  auto LocStruct = ConstantStruct::getAnon(LocData);
  auto GV = new GlobalVariable(M, LocStruct->getType(), true,
                               GlobalValue::PrivateLinkage, LocStruct,
                               kAsanGenPrefix);
  GV->setUnnamedAddr(true);
  return GV;
}

static bool GlobalWasGeneratedByAsan(GlobalVariable *G) {
  return G->getName().find(kAsanGenPrefix) == 0 ||
         G->getName().find(kSanCovGenPrefix) == 0;
}

Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) {
  // Shadow >> scale
  Shadow = IRB.CreateLShr(Shadow, Mapping.Scale);
  if (Mapping.Offset == 0)
    return Shadow;
  // (Shadow >> scale) | offset
  if (Mapping.OrShadowOffset)
    return IRB.CreateOr(Shadow, ConstantInt::get(IntptrTy, Mapping.Offset));
  else
    return IRB.CreateAdd(Shadow, ConstantInt::get(IntptrTy, Mapping.Offset));
}

// Instrument memset/memmove/memcpy
void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) {
  IRBuilder<> IRB(MI);
  if (isa<MemTransferInst>(MI)) {
    IRB.CreateCall3(
        isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy,
        IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
        IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()),
        IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false));
  } else if (isa<MemSetInst>(MI)) {
    IRB.CreateCall3(
        AsanMemset,
        IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
        IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false),
        IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false));
  }
  MI->eraseFromParent();
}

// If I is an interesting memory access, return the PointerOperand
// and set IsWrite/Alignment. Otherwise return nullptr.
static Value *isInterestingMemoryAccess(Instruction *I, bool *IsWrite,
                                        unsigned *Alignment) {
  // Skip memory accesses inserted by another instrumentation.
  if (I->getMetadata("nosanitize"))
    return nullptr;
  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
    if (!ClInstrumentReads) return nullptr;
    *IsWrite = false;
    *Alignment = LI->getAlignment();
    return LI->getPointerOperand();
  }
  if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
    if (!ClInstrumentWrites) return nullptr;
    *IsWrite = true;
    *Alignment = SI->getAlignment();
    return SI->getPointerOperand();
  }
  if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
    if (!ClInstrumentAtomics) return nullptr;
    *IsWrite = true;
    *Alignment = 0;
    return RMW->getPointerOperand();
  }
  if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) {
    if (!ClInstrumentAtomics) return nullptr;
    *IsWrite = true;
    *Alignment = 0;
    return XCHG->getPointerOperand();
  }
  return nullptr;
}

static bool isPointerOperand(Value *V) {
  return V->getType()->isPointerTy() || isa<PtrToIntInst>(V);
}

// This is a rough heuristic; it may cause both false positives and
// false negatives. The proper implementation requires cooperation with
// the frontend.
static bool isInterestingPointerComparisonOrSubtraction(Instruction *I) {
  if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) {
    if (!Cmp->isRelational())
      return false;
  } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
    if (BO->getOpcode() != Instruction::Sub)
      return false;
  } else {
    return false;
  }
  if (!isPointerOperand(I->getOperand(0)) ||
      !isPointerOperand(I->getOperand(1)))
      return false;
  return true;
}

bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) {
  // If a global variable does not have dynamic initialization we don't
  // have to instrument it.  However, if a global does not have initializer
  // at all, we assume it has dynamic initializer (in other TU).
  return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit;
}

void
AddressSanitizer::instrumentPointerComparisonOrSubtraction(Instruction *I) {
  IRBuilder<> IRB(I);
  Function *F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction;
  Value *Param[2] = {I->getOperand(0), I->getOperand(1)};
  for (int i = 0; i < 2; i++) {
    if (Param[i]->getType()->isPointerTy())
      Param[i] = IRB.CreatePointerCast(Param[i], IntptrTy);
  }
  IRB.CreateCall2(F, Param[0], Param[1]);
}

void AddressSanitizer::instrumentMop(Instruction *I, bool UseCalls) {
  bool IsWrite = false;
  unsigned Alignment = 0;
  Value *Addr = isInterestingMemoryAccess(I, &IsWrite, &Alignment);
  assert(Addr);
  if (ClOpt && ClOptGlobals) {
    if (GlobalVariable *G = dyn_cast<GlobalVariable>(Addr)) {
      // If initialization order checking is disabled, a simple access to a
      // dynamically initialized global is always valid.
      if (!ClInitializers || GlobalIsLinkerInitialized(G)) {
        NumOptimizedAccessesToGlobalVar++;
        return;
      }
    }
    ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr);
    if (CE && CE->isGEPWithNoNotionalOverIndexing()) {
      if (GlobalVariable *G = dyn_cast<GlobalVariable>(CE->getOperand(0))) {
        if (CE->getOperand(1)->isNullValue() && GlobalIsLinkerInitialized(G)) {
          NumOptimizedAccessesToGlobalArray++;
          return;
        }
      }
    }
  }

  Type *OrigPtrTy = Addr->getType();
  Type *OrigTy = cast<PointerType>(OrigPtrTy)->getElementType();

  assert(OrigTy->isSized());
  uint32_t TypeSize = DL->getTypeStoreSizeInBits(OrigTy);

  assert((TypeSize % 8) == 0);

  if (IsWrite)
    NumInstrumentedWrites++;
  else
    NumInstrumentedReads++;

  unsigned Granularity = 1 << Mapping.Scale;
  // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check
  // if the data is properly aligned.
  if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 ||
       TypeSize == 128) &&
      (Alignment >= Granularity || Alignment == 0 || Alignment >= TypeSize / 8))
    return instrumentAddress(I, I, Addr, TypeSize, IsWrite, nullptr, UseCalls);
  // Instrument unusual size or unusual alignment.
  // We can not do it with a single check, so we do 1-byte check for the first
  // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able
  // to report the actual access size.
  IRBuilder<> IRB(I);
  Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8);
  Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
  if (UseCalls) {
    IRB.CreateCall2(AsanMemoryAccessCallbackSized[IsWrite], AddrLong, Size);
  } else {
    Value *LastByte = IRB.CreateIntToPtr(
        IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)),
        OrigPtrTy);
    instrumentAddress(I, I, Addr, 8, IsWrite, Size, false);
    instrumentAddress(I, I, LastByte, 8, IsWrite, Size, false);
  }
}

// Validate the result of Module::getOrInsertFunction called for an interface
// function of AddressSanitizer. If the instrumented module defines a function
// with the same name, their prototypes must match, otherwise
// getOrInsertFunction returns a bitcast.
static Function *checkInterfaceFunction(Constant *FuncOrBitcast) {
  if (isa<Function>(FuncOrBitcast)) return cast<Function>(FuncOrBitcast);
  FuncOrBitcast->dump();
  report_fatal_error("trying to redefine an AddressSanitizer "
                     "interface function");
}

Instruction *AddressSanitizer::generateCrashCode(
    Instruction *InsertBefore, Value *Addr,
    bool IsWrite, size_t AccessSizeIndex, Value *SizeArgument) {
  IRBuilder<> IRB(InsertBefore);
  CallInst *Call = SizeArgument
    ? IRB.CreateCall2(AsanErrorCallbackSized[IsWrite], Addr, SizeArgument)
    : IRB.CreateCall(AsanErrorCallback[IsWrite][AccessSizeIndex], Addr);

  // We don't do Call->setDoesNotReturn() because the BB already has
  // UnreachableInst at the end.
  // This EmptyAsm is required to avoid callback merge.
  IRB.CreateCall(EmptyAsm);
  return Call;
}

Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
                                            Value *ShadowValue,
                                            uint32_t TypeSize) {
  size_t Granularity = 1 << Mapping.Scale;
  // Addr & (Granularity - 1)
  Value *LastAccessedByte = IRB.CreateAnd(
      AddrLong, ConstantInt::get(IntptrTy, Granularity - 1));
  // (Addr & (Granularity - 1)) + size - 1
  if (TypeSize / 8 > 1)
    LastAccessedByte = IRB.CreateAdd(
        LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1));
  // (uint8_t) ((Addr & (Granularity-1)) + size - 1)
  LastAccessedByte = IRB.CreateIntCast(
      LastAccessedByte, ShadowValue->getType(), false);
  // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue
  return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue);
}

void AddressSanitizer::instrumentAddress(Instruction *OrigIns,
                                         Instruction *InsertBefore, Value *Addr,
                                         uint32_t TypeSize, bool IsWrite,
                                         Value *SizeArgument, bool UseCalls) {
  IRBuilder<> IRB(InsertBefore);
  Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
  size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize);

  if (UseCalls) {
    IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][AccessSizeIndex],
                   AddrLong);
    return;
  }

  Type *ShadowTy  = IntegerType::get(
      *C, std::max(8U, TypeSize >> Mapping.Scale));
  Type *ShadowPtrTy = PointerType::get(ShadowTy, 0);
  Value *ShadowPtr = memToShadow(AddrLong, IRB);
  Value *CmpVal = Constant::getNullValue(ShadowTy);
  Value *ShadowValue = IRB.CreateLoad(
      IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy));

  Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal);
  size_t Granularity = 1 << Mapping.Scale;
  TerminatorInst *CrashTerm = nullptr;

  if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) {
    // We use branch weights for the slow path check, to indicate that the slow
    // path is rarely taken. This seems to be the case for SPEC benchmarks.
    TerminatorInst *CheckTerm =
        SplitBlockAndInsertIfThen(Cmp, InsertBefore, false,
            MDBuilder(*C).createBranchWeights(1, 100000));
    assert(dyn_cast<BranchInst>(CheckTerm)->isUnconditional());
    BasicBlock *NextBB = CheckTerm->getSuccessor(0);
    IRB.SetInsertPoint(CheckTerm);
    Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize);
    BasicBlock *CrashBlock =
        BasicBlock::Create(*C, "", NextBB->getParent(), NextBB);
    CrashTerm = new UnreachableInst(*C, CrashBlock);
    BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2);
    ReplaceInstWithInst(CheckTerm, NewTerm);
  } else {
    CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, true);
  }

  Instruction *Crash = generateCrashCode(
      CrashTerm, AddrLong, IsWrite, AccessSizeIndex, SizeArgument);
  Crash->setDebugLoc(OrigIns->getDebugLoc());
}

void AddressSanitizerModule::poisonOneInitializer(Function &GlobalInit,
                                                  GlobalValue *ModuleName) {
  // Set up the arguments to our poison/unpoison functions.
  IRBuilder<> IRB(GlobalInit.begin()->getFirstInsertionPt());

  // Add a call to poison all external globals before the given function starts.
  Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy);
  IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr);

  // Add calls to unpoison all globals before each return instruction.
  for (auto &BB : GlobalInit.getBasicBlockList())
    if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator()))
      CallInst::Create(AsanUnpoisonGlobals, "", RI);
}

void AddressSanitizerModule::createInitializerPoisonCalls(
    Module &M, GlobalValue *ModuleName) {
  GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors");

  ConstantArray *CA = cast<ConstantArray>(GV->getInitializer());
  for (Use &OP : CA->operands()) {
    if (isa<ConstantAggregateZero>(OP))
      continue;
    ConstantStruct *CS = cast<ConstantStruct>(OP);

    // Must have a function or null ptr.
    if (Function* F = dyn_cast<Function>(CS->getOperand(1))) {
      if (F->getName() == kAsanModuleCtorName) continue;
      ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
      // Don't instrument CTORs that will run before asan.module_ctor.
      if (Priority->getLimitedValue() <= kAsanCtorAndDtorPriority) continue;
      poisonOneInitializer(*F, ModuleName);
    }
  }
}

bool AddressSanitizerModule::ShouldInstrumentGlobal(GlobalVariable *G) {
  Type *Ty = cast<PointerType>(G->getType())->getElementType();
  DEBUG(dbgs() << "GLOBAL: " << *G << "\n");

  if (GlobalsMD.get(G).IsBlacklisted) return false;
  if (!Ty->isSized()) return false;
  if (!G->hasInitializer()) return false;
  if (GlobalWasGeneratedByAsan(G)) return false;  // Our own global.
  // Touch only those globals that will not be defined in other modules.
  // Don't handle ODR linkage types and COMDATs since other modules may be built
  // without ASan.
  if (G->getLinkage() != GlobalVariable::ExternalLinkage &&
      G->getLinkage() != GlobalVariable::PrivateLinkage &&
      G->getLinkage() != GlobalVariable::InternalLinkage)
    return false;
  if (G->hasComdat())
    return false;
  // Two problems with thread-locals:
  //   - The address of the main thread's copy can't be computed at link-time.
  //   - Need to poison all copies, not just the main thread's one.
  if (G->isThreadLocal())
    return false;
  // For now, just ignore this Global if the alignment is large.
  if (G->getAlignment() > MinRedzoneSizeForGlobal()) return false;

  if (G->hasSection()) {
    StringRef Section(G->getSection());

    if (TargetTriple.isOSBinFormatMachO()) {
      StringRef ParsedSegment, ParsedSection;
      unsigned TAA = 0, StubSize = 0;
      bool TAAParsed;
      std::string ErrorCode =
        MCSectionMachO::ParseSectionSpecifier(Section, ParsedSegment,
                                              ParsedSection, TAA, TAAParsed,
                                              StubSize);
      if (!ErrorCode.empty()) {
        report_fatal_error("Invalid section specifier '" + ParsedSection +
                           "': " + ErrorCode + ".");
      }

      // Ignore the globals from the __OBJC section. The ObjC runtime assumes
      // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to
      // them.
      if (ParsedSegment == "__OBJC" ||
          (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) {
        DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n");
        return false;
      }
      // See http://code.google.com/p/address-sanitizer/issues/detail?id=32
      // Constant CFString instances are compiled in the following way:
      //  -- the string buffer is emitted into
      //     __TEXT,__cstring,cstring_literals
      //  -- the constant NSConstantString structure referencing that buffer
      //     is placed into __DATA,__cfstring
      // Therefore there's no point in placing redzones into __DATA,__cfstring.
      // Moreover, it causes the linker to crash on OS X 10.7
      if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") {
        DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n");
        return false;
      }
      // The linker merges the contents of cstring_literals and removes the
      // trailing zeroes.
      if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) {
        DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n");
        return false;
      }
    }

    // Callbacks put into the CRT initializer/terminator sections
    // should not be instrumented.
    // See https://code.google.com/p/address-sanitizer/issues/detail?id=305
    // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx
    if (Section.startswith(".CRT")) {
      DEBUG(dbgs() << "Ignoring a global initializer callback: " << *G << "\n");
      return false;
    }

    // Globals from llvm.metadata aren't emitted, do not instrument them.
    if (Section == "llvm.metadata") return false;
  }

  return true;
}

void AddressSanitizerModule::initializeCallbacks(Module &M) {
  IRBuilder<> IRB(*C);
  // Declare our poisoning and unpoisoning functions.
  AsanPoisonGlobals = checkInterfaceFunction(M.getOrInsertFunction(
      kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy, nullptr));
  AsanPoisonGlobals->setLinkage(Function::ExternalLinkage);
  AsanUnpoisonGlobals = checkInterfaceFunction(M.getOrInsertFunction(
      kAsanUnpoisonGlobalsName, IRB.getVoidTy(), nullptr));
  AsanUnpoisonGlobals->setLinkage(Function::ExternalLinkage);
  // Declare functions that register/unregister globals.
  AsanRegisterGlobals = checkInterfaceFunction(M.getOrInsertFunction(
      kAsanRegisterGlobalsName, IRB.getVoidTy(),
      IntptrTy, IntptrTy, nullptr));
  AsanRegisterGlobals->setLinkage(Function::ExternalLinkage);
  AsanUnregisterGlobals = checkInterfaceFunction(M.getOrInsertFunction(
      kAsanUnregisterGlobalsName,
      IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
  AsanUnregisterGlobals->setLinkage(Function::ExternalLinkage);
}

// This function replaces all global variables with new variables that have
// trailing redzones. It also creates a function that poisons
// redzones and inserts this function into llvm.global_ctors.
bool AddressSanitizerModule::InstrumentGlobals(IRBuilder<> &IRB, Module &M) {
  GlobalsMD.init(M);

  SmallVector<GlobalVariable *, 16> GlobalsToChange;

  for (auto &G : M.globals()) {
    if (ShouldInstrumentGlobal(&G))
      GlobalsToChange.push_back(&G);
  }

  size_t n = GlobalsToChange.size();
  if (n == 0) return false;

  // A global is described by a structure
  //   size_t beg;
  //   size_t size;
  //   size_t size_with_redzone;
  //   const char *name;
  //   const char *module_name;
  //   size_t has_dynamic_init;
  //   void *source_location;
  // We initialize an array of such structures and pass it to a run-time call.
  StructType *GlobalStructTy =
      StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy,
                      IntptrTy, IntptrTy, nullptr);
  SmallVector<Constant *, 16> Initializers(n);

  bool HasDynamicallyInitializedGlobals = false;

  // We shouldn't merge same module names, as this string serves as unique
  // module ID in runtime.
  GlobalVariable *ModuleName = createPrivateGlobalForString(
      M, M.getModuleIdentifier(), /*AllowMerging*/false);

  for (size_t i = 0; i < n; i++) {
    static const uint64_t kMaxGlobalRedzone = 1 << 18;
    GlobalVariable *G = GlobalsToChange[i];

    auto MD = GlobalsMD.get(G);
    // Create string holding the global name (use global name from metadata
    // if it's available, otherwise just write the name of global variable).
    GlobalVariable *Name = createPrivateGlobalForString(
        M, MD.Name.empty() ? G->getName() : MD.Name,
        /*AllowMerging*/ true);

    PointerType *PtrTy = cast<PointerType>(G->getType());
    Type *Ty = PtrTy->getElementType();
    uint64_t SizeInBytes = DL->getTypeAllocSize(Ty);
    uint64_t MinRZ = MinRedzoneSizeForGlobal();
    // MinRZ <= RZ <= kMaxGlobalRedzone
    // and trying to make RZ to be ~ 1/4 of SizeInBytes.
    uint64_t RZ = std::max(MinRZ,
                         std::min(kMaxGlobalRedzone,
                                  (SizeInBytes / MinRZ / 4) * MinRZ));
    uint64_t RightRedzoneSize = RZ;
    // Round up to MinRZ
    if (SizeInBytes % MinRZ)
      RightRedzoneSize += MinRZ - (SizeInBytes % MinRZ);
    assert(((RightRedzoneSize + SizeInBytes) % MinRZ) == 0);
    Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize);

    StructType *NewTy = StructType::get(Ty, RightRedZoneTy, nullptr);
    Constant *NewInitializer = ConstantStruct::get(
        NewTy, G->getInitializer(),
        Constant::getNullValue(RightRedZoneTy), nullptr);

    // Create a new global variable with enough space for a redzone.
    GlobalValue::LinkageTypes Linkage = G->getLinkage();
    if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage)
      Linkage = GlobalValue::InternalLinkage;
    GlobalVariable *NewGlobal = new GlobalVariable(
        M, NewTy, G->isConstant(), Linkage,
        NewInitializer, "", G, G->getThreadLocalMode());
    NewGlobal->copyAttributesFrom(G);
    NewGlobal->setAlignment(MinRZ);

    Value *Indices2[2];
    Indices2[0] = IRB.getInt32(0);
    Indices2[1] = IRB.getInt32(0);

    G->replaceAllUsesWith(
        ConstantExpr::getGetElementPtr(NewGlobal, Indices2, true));
    NewGlobal->takeName(G);
    G->eraseFromParent();

    Constant *SourceLoc;
    if (!MD.SourceLoc.empty()) {
      auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc);
      SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy);
    } else {
      SourceLoc = ConstantInt::get(IntptrTy, 0);
    }

    Initializers[i] = ConstantStruct::get(
        GlobalStructTy, ConstantExpr::getPointerCast(NewGlobal, IntptrTy),
        ConstantInt::get(IntptrTy, SizeInBytes),
        ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize),
        ConstantExpr::getPointerCast(Name, IntptrTy),
        ConstantExpr::getPointerCast(ModuleName, IntptrTy),
        ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc, nullptr);

    if (ClInitializers && MD.IsDynInit)
      HasDynamicallyInitializedGlobals = true;

    DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n");
  }

  ArrayType *ArrayOfGlobalStructTy = ArrayType::get(GlobalStructTy, n);
  GlobalVariable *AllGlobals = new GlobalVariable(
      M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage,
      ConstantArray::get(ArrayOfGlobalStructTy, Initializers), "");

  // Create calls for poisoning before initializers run and unpoisoning after.
  if (HasDynamicallyInitializedGlobals)
    createInitializerPoisonCalls(M, ModuleName);
  IRB.CreateCall2(AsanRegisterGlobals,
                  IRB.CreatePointerCast(AllGlobals, IntptrTy),
                  ConstantInt::get(IntptrTy, n));

  // We also need to unregister globals at the end, e.g. when a shared library
  // gets closed.
  Function *AsanDtorFunction = Function::Create(
      FunctionType::get(Type::getVoidTy(*C), false),
      GlobalValue::InternalLinkage, kAsanModuleDtorName, &M);
  BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction);
  IRBuilder<> IRB_Dtor(ReturnInst::Create(*C, AsanDtorBB));
  IRB_Dtor.CreateCall2(AsanUnregisterGlobals,
                       IRB.CreatePointerCast(AllGlobals, IntptrTy),
                       ConstantInt::get(IntptrTy, n));
  appendToGlobalDtors(M, AsanDtorFunction, kAsanCtorAndDtorPriority);

  DEBUG(dbgs() << M);
  return true;
}

bool AddressSanitizerModule::runOnModule(Module &M) {
  DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
  if (!DLP)
    return false;
  DL = &DLP->getDataLayout();
  C = &(M.getContext());
  int LongSize = DL->getPointerSizeInBits();
  IntptrTy = Type::getIntNTy(*C, LongSize);
  TargetTriple = Triple(M.getTargetTriple());
  Mapping = getShadowMapping(TargetTriple, LongSize);
  initializeCallbacks(M);

  bool Changed = false;

  Function *CtorFunc = M.getFunction(kAsanModuleCtorName);
  assert(CtorFunc);
  IRBuilder<> IRB(CtorFunc->getEntryBlock().getTerminator());

  if (ClGlobals)
    Changed |= InstrumentGlobals(IRB, M);

  return Changed;
}

void AddressSanitizer::initializeCallbacks(Module &M) {
  IRBuilder<> IRB(*C);
  // Create __asan_report* callbacks.
  for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) {
    for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
         AccessSizeIndex++) {
      // IsWrite and TypeSize are encoded in the function name.
      std::string Suffix =
          (AccessIsWrite ? "store" : "load") + itostr(1 << AccessSizeIndex);
      AsanErrorCallback[AccessIsWrite][AccessSizeIndex] =
          checkInterfaceFunction(
              M.getOrInsertFunction(kAsanReportErrorTemplate + Suffix,
                                    IRB.getVoidTy(), IntptrTy, nullptr));
      AsanMemoryAccessCallback[AccessIsWrite][AccessSizeIndex] =
          checkInterfaceFunction(
              M.getOrInsertFunction(ClMemoryAccessCallbackPrefix + Suffix,
                                    IRB.getVoidTy(), IntptrTy, nullptr));
    }
  }
  AsanErrorCallbackSized[0] = checkInterfaceFunction(M.getOrInsertFunction(
              kAsanReportLoadN, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
  AsanErrorCallbackSized[1] = checkInterfaceFunction(M.getOrInsertFunction(
              kAsanReportStoreN, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));

  AsanMemoryAccessCallbackSized[0] = checkInterfaceFunction(
      M.getOrInsertFunction(ClMemoryAccessCallbackPrefix + "loadN",
                            IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
  AsanMemoryAccessCallbackSized[1] = checkInterfaceFunction(
      M.getOrInsertFunction(ClMemoryAccessCallbackPrefix + "storeN",
                            IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));

  AsanMemmove = checkInterfaceFunction(M.getOrInsertFunction(
      ClMemoryAccessCallbackPrefix + "memmove", IRB.getInt8PtrTy(),
      IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy, nullptr));
  AsanMemcpy = checkInterfaceFunction(M.getOrInsertFunction(
      ClMemoryAccessCallbackPrefix + "memcpy", IRB.getInt8PtrTy(),
      IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy, nullptr));
  AsanMemset = checkInterfaceFunction(M.getOrInsertFunction(
      ClMemoryAccessCallbackPrefix + "memset", IRB.getInt8PtrTy(),
      IRB.getInt8PtrTy(), IRB.getInt32Ty(), IntptrTy, nullptr));

  AsanHandleNoReturnFunc = checkInterfaceFunction(
      M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy(), nullptr));

  AsanPtrCmpFunction = checkInterfaceFunction(M.getOrInsertFunction(
      kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
  AsanPtrSubFunction = checkInterfaceFunction(M.getOrInsertFunction(
      kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
  // We insert an empty inline asm after __asan_report* to avoid callback merge.
  EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
                            StringRef(""), StringRef(""),
                            /*hasSideEffects=*/true);
}

// virtual
bool AddressSanitizer::doInitialization(Module &M) {
  // Initialize the private fields. No one has accessed them before.
  DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
  if (!DLP)
    report_fatal_error("data layout missing");
  DL = &DLP->getDataLayout();

  GlobalsMD.init(M);

  C = &(M.getContext());
  LongSize = DL->getPointerSizeInBits();
  IntptrTy = Type::getIntNTy(*C, LongSize);
  TargetTriple = Triple(M.getTargetTriple());

  AsanCtorFunction = Function::Create(
      FunctionType::get(Type::getVoidTy(*C), false),
      GlobalValue::InternalLinkage, kAsanModuleCtorName, &M);
  BasicBlock *AsanCtorBB = BasicBlock::Create(*C, "", AsanCtorFunction);
  // call __asan_init in the module ctor.
  IRBuilder<> IRB(ReturnInst::Create(*C, AsanCtorBB));
  AsanInitFunction = checkInterfaceFunction(
      M.getOrInsertFunction(kAsanInitName, IRB.getVoidTy(), nullptr));
  AsanInitFunction->setLinkage(Function::ExternalLinkage);
  IRB.CreateCall(AsanInitFunction);

  Mapping = getShadowMapping(TargetTriple, LongSize);

  appendToGlobalCtors(M, AsanCtorFunction, kAsanCtorAndDtorPriority);
  return true;
}

bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) {
  // For each NSObject descendant having a +load method, this method is invoked
  // by the ObjC runtime before any of the static constructors is called.
  // Therefore we need to instrument such methods with a call to __asan_init
  // at the beginning in order to initialize our runtime before any access to
  // the shadow memory.
  // We cannot just ignore these methods, because they may call other
  // instrumented functions.
  if (F.getName().find(" load]") != std::string::npos) {
    IRBuilder<> IRB(F.begin()->begin());
    IRB.CreateCall(AsanInitFunction);
    return true;
  }
  return false;
}

bool AddressSanitizer::runOnFunction(Function &F) {
  if (&F == AsanCtorFunction) return false;
  if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false;
  DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n");
  initializeCallbacks(*F.getParent());

  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();

  // If needed, insert __asan_init before checking for SanitizeAddress attr.
  maybeInsertAsanInitAtFunctionEntry(F);

  if (!F.hasFnAttribute(Attribute::SanitizeAddress))
    return false;

  if (!ClDebugFunc.empty() && ClDebugFunc != F.getName())
    return false;

  // We want to instrument every address only once per basic block (unless there
  // are calls between uses).
  SmallSet<Value*, 16> TempsToInstrument;
  SmallVector<Instruction*, 16> ToInstrument;
  SmallVector<Instruction*, 8> NoReturnCalls;
  SmallVector<BasicBlock*, 16> AllBlocks;
  SmallVector<Instruction*, 16> PointerComparisonsOrSubtracts;
  int NumAllocas = 0;
  bool IsWrite;
  unsigned Alignment;

  // Fill the set of memory operations to instrument.
  for (auto &BB : F) {
    AllBlocks.push_back(&BB);
    TempsToInstrument.clear();
    int NumInsnsPerBB = 0;
    for (auto &Inst : BB) {
      if (LooksLikeCodeInBug11395(&Inst)) return false;
      if (Value *Addr =
              isInterestingMemoryAccess(&Inst, &IsWrite, &Alignment)) {
        if (ClOpt && ClOptSameTemp) {
          if (!TempsToInstrument.insert(Addr).second)
            continue;  // We've seen this temp in the current BB.
        }
      } else if (ClInvalidPointerPairs &&
                 isInterestingPointerComparisonOrSubtraction(&Inst)) {
        PointerComparisonsOrSubtracts.push_back(&Inst);
        continue;
      } else if (isa<MemIntrinsic>(Inst)) {
        // ok, take it.
      } else {
        if (isa<AllocaInst>(Inst))
          NumAllocas++;
        CallSite CS(&Inst);
        if (CS) {
          // A call inside BB.
          TempsToInstrument.clear();
          if (CS.doesNotReturn())
            NoReturnCalls.push_back(CS.getInstruction());
        }
        continue;
      }
      ToInstrument.push_back(&Inst);
      NumInsnsPerBB++;
      if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB)
        break;
    }
  }

  bool UseCalls = false;
  if (ClInstrumentationWithCallsThreshold >= 0 &&
      ToInstrument.size() > (unsigned)ClInstrumentationWithCallsThreshold)
    UseCalls = true;

  // Instrument.
  int NumInstrumented = 0;
  for (auto Inst : ToInstrument) {
    if (ClDebugMin < 0 || ClDebugMax < 0 ||
        (NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) {
      if (isInterestingMemoryAccess(Inst, &IsWrite, &Alignment))
        instrumentMop(Inst, UseCalls);
      else
        instrumentMemIntrinsic(cast<MemIntrinsic>(Inst));
    }
    NumInstrumented++;
  }

  FunctionStackPoisoner FSP(F, *this);
  bool ChangedStack = FSP.runOnFunction();

  // We must unpoison the stack before every NoReturn call (throw, _exit, etc).
  // See e.g. http://code.google.com/p/address-sanitizer/issues/detail?id=37
  for (auto CI : NoReturnCalls) {
    IRBuilder<> IRB(CI);
    IRB.CreateCall(AsanHandleNoReturnFunc);
  }

  for (auto Inst : PointerComparisonsOrSubtracts) {
    instrumentPointerComparisonOrSubtraction(Inst);
    NumInstrumented++;
  }

  bool res = NumInstrumented > 0 || ChangedStack || !NoReturnCalls.empty();

  DEBUG(dbgs() << "ASAN done instrumenting: " << res << " " << F << "\n");

  return res;
}

// Workaround for bug 11395: we don't want to instrument stack in functions
// with large assembly blobs (32-bit only), otherwise reg alloc may crash.
// FIXME: remove once the bug 11395 is fixed.
bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) {
  if (LongSize != 32) return false;
  CallInst *CI = dyn_cast<CallInst>(I);
  if (!CI || !CI->isInlineAsm()) return false;
  if (CI->getNumArgOperands() <= 5) return false;
  // We have inline assembly with quite a few arguments.
  return true;
}

void FunctionStackPoisoner::initializeCallbacks(Module &M) {
  IRBuilder<> IRB(*C);
  for (int i = 0; i <= kMaxAsanStackMallocSizeClass; i++) {
    std::string Suffix = itostr(i);
    AsanStackMallocFunc[i] = checkInterfaceFunction(M.getOrInsertFunction(
        kAsanStackMallocNameTemplate + Suffix, IntptrTy, IntptrTy, nullptr));
    AsanStackFreeFunc[i] = checkInterfaceFunction(
        M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix,
                              IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
  }
  AsanPoisonStackMemoryFunc = checkInterfaceFunction(
      M.getOrInsertFunction(kAsanPoisonStackMemoryName, IRB.getVoidTy(),
                            IntptrTy, IntptrTy, nullptr));
  AsanUnpoisonStackMemoryFunc = checkInterfaceFunction(
      M.getOrInsertFunction(kAsanUnpoisonStackMemoryName, IRB.getVoidTy(),
                            IntptrTy, IntptrTy, nullptr));
}

void
FunctionStackPoisoner::poisonRedZones(ArrayRef<uint8_t> ShadowBytes,
                                      IRBuilder<> &IRB, Value *ShadowBase,
                                      bool DoPoison) {
  size_t n = ShadowBytes.size();
  size_t i = 0;
  // We need to (un)poison n bytes of stack shadow. Poison as many as we can
  // using 64-bit stores (if we are on 64-bit arch), then poison the rest
  // with 32-bit stores, then with 16-byte stores, then with 8-byte stores.
  for (size_t LargeStoreSizeInBytes = ASan.LongSize / 8;
       LargeStoreSizeInBytes != 0; LargeStoreSizeInBytes /= 2) {
    for (; i + LargeStoreSizeInBytes - 1 < n; i += LargeStoreSizeInBytes) {
      uint64_t Val = 0;
      for (size_t j = 0; j < LargeStoreSizeInBytes; j++) {
        if (ASan.DL->isLittleEndian())
          Val |= (uint64_t)ShadowBytes[i + j] << (8 * j);
        else
          Val = (Val << 8) | ShadowBytes[i + j];
      }
      if (!Val) continue;
      Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i));
      Type *StoreTy = Type::getIntNTy(*C, LargeStoreSizeInBytes * 8);
      Value *Poison = ConstantInt::get(StoreTy, DoPoison ? Val : 0);
      IRB.CreateStore(Poison, IRB.CreateIntToPtr(Ptr, StoreTy->getPointerTo()));
    }
  }
}

// Fake stack allocator (asan_fake_stack.h) has 11 size classes
// for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass
static int StackMallocSizeClass(uint64_t LocalStackSize) {
  assert(LocalStackSize <= kMaxStackMallocSize);
  uint64_t MaxSize = kMinStackMallocSize;
  for (int i = 0; ; i++, MaxSize *= 2)
    if (LocalStackSize <= MaxSize)
      return i;
  llvm_unreachable("impossible LocalStackSize");
}

// Set Size bytes starting from ShadowBase to kAsanStackAfterReturnMagic.
// We can not use MemSet intrinsic because it may end up calling the actual
// memset. Size is a multiple of 8.
// Currently this generates 8-byte stores on x86_64; it may be better to
// generate wider stores.
void FunctionStackPoisoner::SetShadowToStackAfterReturnInlined(
    IRBuilder<> &IRB, Value *ShadowBase, int Size) {
  assert(!(Size % 8));
  assert(kAsanStackAfterReturnMagic == 0xf5);
  for (int i = 0; i < Size; i += 8) {
    Value *p = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i));
    IRB.CreateStore(ConstantInt::get(IRB.getInt64Ty(), 0xf5f5f5f5f5f5f5f5ULL),
                    IRB.CreateIntToPtr(p, IRB.getInt64Ty()->getPointerTo()));
  }
}

static DebugLoc getFunctionEntryDebugLocation(Function &F) {
  for (const auto &Inst : F.getEntryBlock())
    if (!isa<AllocaInst>(Inst))
      return Inst.getDebugLoc();
  return DebugLoc();
}

PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond,
                                          Value *ValueIfTrue,
                                          Instruction *ThenTerm,
                                          Value *ValueIfFalse) {
  PHINode *PHI = IRB.CreatePHI(IntptrTy, 2);
  BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent();
  PHI->addIncoming(ValueIfFalse, CondBlock);
  BasicBlock *ThenBlock = ThenTerm->getParent();
  PHI->addIncoming(ValueIfTrue, ThenBlock);
  return PHI;
}

Value *FunctionStackPoisoner::createAllocaForLayout(
    IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) {
  AllocaInst *Alloca;
  if (Dynamic) {
    Alloca = IRB.CreateAlloca(IRB.getInt8Ty(),
                              ConstantInt::get(IRB.getInt64Ty(), L.FrameSize),
                              "MyAlloca");
  } else {
    Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize),
                              nullptr, "MyAlloca");
    assert(Alloca->isStaticAlloca());
  }
  assert((ClRealignStack & (ClRealignStack - 1)) == 0);
  size_t FrameAlignment = std::max(L.FrameAlignment, (size_t)ClRealignStack);
  Alloca->setAlignment(FrameAlignment);
  return IRB.CreatePointerCast(Alloca, IntptrTy);
}

void FunctionStackPoisoner::poisonStack() {
  assert(AllocaVec.size() > 0 || DynamicAllocaVec.size() > 0);

  if (ClInstrumentAllocas) {
    // Handle dynamic allocas.
    for (auto &AllocaCall : DynamicAllocaVec) {
      handleDynamicAllocaCall(AllocaCall);
      unpoisonDynamicAlloca(AllocaCall);
    }
  }

  if (AllocaVec.size() == 0) return;

  int StackMallocIdx = -1;
  DebugLoc EntryDebugLocation = getFunctionEntryDebugLocation(F);

  Instruction *InsBefore = AllocaVec[0];
  IRBuilder<> IRB(InsBefore);
  IRB.SetCurrentDebugLocation(EntryDebugLocation);

  SmallVector<ASanStackVariableDescription, 16> SVD;
  SVD.reserve(AllocaVec.size());
  for (AllocaInst *AI : AllocaVec) {
    ASanStackVariableDescription D = { AI->getName().data(),
                                   getAllocaSizeInBytes(AI),
                                   AI->getAlignment(), AI, 0};
    SVD.push_back(D);
  }
  // Minimal header size (left redzone) is 4 pointers,
  // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms.
  size_t MinHeaderSize = ASan.LongSize / 2;
  ASanStackFrameLayout L;
  ComputeASanStackFrameLayout(SVD, 1UL << Mapping.Scale, MinHeaderSize, &L);
  DEBUG(dbgs() << L.DescriptionString << " --- " << L.FrameSize << "\n");
  uint64_t LocalStackSize = L.FrameSize;
  bool DoStackMalloc =
      ClUseAfterReturn && LocalStackSize <= kMaxStackMallocSize;
  // Don't do dynamic alloca in presence of inline asm: too often it
  // makes assumptions on which registers are available.
  bool DoDynamicAlloca = ClDynamicAllocaStack && !HasNonEmptyInlineAsm;

  Value *StaticAlloca =
      DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false);

  Value *FakeStack;
  Value *LocalStackBase;

  if (DoStackMalloc) {
    // void *FakeStack = __asan_option_detect_stack_use_after_return
    //     ? __asan_stack_malloc_N(LocalStackSize)
    //     : nullptr;
    // void *LocalStackBase = (FakeStack) ? FakeStack : alloca(LocalStackSize);
    Constant *OptionDetectUAR = F.getParent()->getOrInsertGlobal(
        kAsanOptionDetectUAR, IRB.getInt32Ty());
    Value *UARIsEnabled =
        IRB.CreateICmpNE(IRB.CreateLoad(OptionDetectUAR),
                         Constant::getNullValue(IRB.getInt32Ty()));
    Instruction *Term =
        SplitBlockAndInsertIfThen(UARIsEnabled, InsBefore, false);
    IRBuilder<> IRBIf(Term);
    IRBIf.SetCurrentDebugLocation(EntryDebugLocation);
    StackMallocIdx = StackMallocSizeClass(LocalStackSize);
    assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass);
    Value *FakeStackValue =
        IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx],
                         ConstantInt::get(IntptrTy, LocalStackSize));
    IRB.SetInsertPoint(InsBefore);
    IRB.SetCurrentDebugLocation(EntryDebugLocation);
    FakeStack = createPHI(IRB, UARIsEnabled, FakeStackValue, Term,
                          ConstantInt::get(IntptrTy, 0));

    Value *NoFakeStack =
        IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy));
    Term = SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false);
    IRBIf.SetInsertPoint(Term);
    IRBIf.SetCurrentDebugLocation(EntryDebugLocation);
    Value *AllocaValue =
        DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca;
    IRB.SetInsertPoint(InsBefore);
    IRB.SetCurrentDebugLocation(EntryDebugLocation);
    LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack);
  } else {
    // void *FakeStack = nullptr;
    // void *LocalStackBase = alloca(LocalStackSize);
    FakeStack = ConstantInt::get(IntptrTy, 0);
    LocalStackBase =
        DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca;
  }

  // Insert poison calls for lifetime intrinsics for alloca.
  bool HavePoisonedAllocas = false;
  for (const auto &APC : AllocaPoisonCallVec) {
    assert(APC.InsBefore);
    assert(APC.AI);
    IRBuilder<> IRB(APC.InsBefore);
    poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison);
    HavePoisonedAllocas |= APC.DoPoison;
  }

  // Replace Alloca instructions with base+offset.
  for (const auto &Desc : SVD) {
    AllocaInst *AI = Desc.AI;
    Value *NewAllocaPtr = IRB.CreateIntToPtr(
        IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)),
        AI->getType());
    replaceDbgDeclareForAlloca(AI, NewAllocaPtr, DIB, /*Deref=*/true);
    AI->replaceAllUsesWith(NewAllocaPtr);
  }

  // The left-most redzone has enough space for at least 4 pointers.
  // Write the Magic value to redzone[0].
  Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy);
  IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic),
                  BasePlus0);
  // Write the frame description constant to redzone[1].
  Value *BasePlus1 = IRB.CreateIntToPtr(
    IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, ASan.LongSize/8)),
    IntptrPtrTy);
  GlobalVariable *StackDescriptionGlobal =
      createPrivateGlobalForString(*F.getParent(), L.DescriptionString,
                                   /*AllowMerging*/true);
  Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal,
                                             IntptrTy);
  IRB.CreateStore(Description, BasePlus1);
  // Write the PC to redzone[2].
  Value *BasePlus2 = IRB.CreateIntToPtr(
    IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy,
                                                   2 * ASan.LongSize/8)),
    IntptrPtrTy);
  IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2);

  // Poison the stack redzones at the entry.
  Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB);
  poisonRedZones(L.ShadowBytes, IRB, ShadowBase, true);

  // (Un)poison the stack before all ret instructions.
  for (auto Ret : RetVec) {
    IRBuilder<> IRBRet(Ret);
    // Mark the current frame as retired.
    IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic),
                       BasePlus0);
    if (DoStackMalloc) {
      assert(StackMallocIdx >= 0);
      // if FakeStack != 0  // LocalStackBase == FakeStack
      //     // In use-after-return mode, poison the whole stack frame.
      //     if StackMallocIdx <= 4
      //         // For small sizes inline the whole thing:
      //         memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize);
      //         **SavedFlagPtr(FakeStack) = 0
      //     else
      //         __asan_stack_free_N(FakeStack, LocalStackSize)
      // else
      //     <This is not a fake stack; unpoison the redzones>
      Value *Cmp =
          IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy));
      TerminatorInst *ThenTerm, *ElseTerm;
      SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm);

      IRBuilder<> IRBPoison(ThenTerm);
      if (StackMallocIdx <= 4) {
        int ClassSize = kMinStackMallocSize << StackMallocIdx;
        SetShadowToStackAfterReturnInlined(IRBPoison, ShadowBase,
                                           ClassSize >> Mapping.Scale);
        Value *SavedFlagPtrPtr = IRBPoison.CreateAdd(
            FakeStack,
            ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8));
        Value *SavedFlagPtr = IRBPoison.CreateLoad(
            IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy));
        IRBPoison.CreateStore(
            Constant::getNullValue(IRBPoison.getInt8Ty()),
            IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy()));
      } else {
        // For larger frames call __asan_stack_free_*.
        IRBPoison.CreateCall2(AsanStackFreeFunc[StackMallocIdx], FakeStack,
                              ConstantInt::get(IntptrTy, LocalStackSize));
      }

      IRBuilder<> IRBElse(ElseTerm);
      poisonRedZones(L.ShadowBytes, IRBElse, ShadowBase, false);
    } else if (HavePoisonedAllocas) {
      // If we poisoned some allocas in llvm.lifetime analysis,
      // unpoison whole stack frame now.
      poisonAlloca(LocalStackBase, LocalStackSize, IRBRet, false);
    } else {
      poisonRedZones(L.ShadowBytes, IRBRet, ShadowBase, false);
    }
  }

  // We are done. Remove the old unused alloca instructions.
  for (auto AI : AllocaVec)
    AI->eraseFromParent();
}

void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size,
                                         IRBuilder<> &IRB, bool DoPoison) {
  // For now just insert the call to ASan runtime.
  Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy);
  Value *SizeArg = ConstantInt::get(IntptrTy, Size);
  IRB.CreateCall2(DoPoison ? AsanPoisonStackMemoryFunc
                           : AsanUnpoisonStackMemoryFunc,
                  AddrArg, SizeArg);
}

// Handling llvm.lifetime intrinsics for a given %alloca:
// (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca.
// (2) if %size is constant, poison memory for llvm.lifetime.end (to detect
//     invalid accesses) and unpoison it for llvm.lifetime.start (the memory
//     could be poisoned by previous llvm.lifetime.end instruction, as the
//     variable may go in and out of scope several times, e.g. in loops).
// (3) if we poisoned at least one %alloca in a function,
//     unpoison the whole stack frame at function exit.

AllocaInst *FunctionStackPoisoner::findAllocaForValue(Value *V) {
  if (AllocaInst *AI = dyn_cast<AllocaInst>(V))
    // We're intested only in allocas we can handle.
    return isInterestingAlloca(*AI) ? AI : nullptr;
  // See if we've already calculated (or started to calculate) alloca for a
  // given value.
  AllocaForValueMapTy::iterator I = AllocaForValue.find(V);
  if (I != AllocaForValue.end())
    return I->second;
  // Store 0 while we're calculating alloca for value V to avoid
  // infinite recursion if the value references itself.
  AllocaForValue[V] = nullptr;
  AllocaInst *Res = nullptr;
  if (CastInst *CI = dyn_cast<CastInst>(V))
    Res = findAllocaForValue(CI->getOperand(0));
  else if (PHINode *PN = dyn_cast<PHINode>(V)) {
    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
      Value *IncValue = PN->getIncomingValue(i);
      // Allow self-referencing phi-nodes.
      if (IncValue == PN) continue;
      AllocaInst *IncValueAI = findAllocaForValue(IncValue);
      // AI for incoming values should exist and should all be equal.
      if (IncValueAI == nullptr || (Res != nullptr && IncValueAI != Res))
        return nullptr;
      Res = IncValueAI;
    }
  }
  if (Res)
    AllocaForValue[V] = Res;
  return Res;
}

// Compute PartialRzMagic for dynamic alloca call. PartialRzMagic is
// constructed from two separate 32-bit numbers: PartialRzMagic = Val1 | Val2.
// (1) Val1 is resposible for forming base value for PartialRzMagic, containing
//     only 00 for fully addressable and 0xcb for fully poisoned bytes for each
//     8-byte chunk of user memory respectively.
// (2) Val2 forms the value for marking first poisoned byte in shadow memory
//     with appropriate value (0x01 - 0x07 or 0xcb if Padding % 8 == 0).

// Shift = Padding & ~7; // the number of bits we need to shift to access first
//                          chunk in shadow memory, containing nonzero bytes.
// Example:
// Padding = 21                       Padding = 16
// Shadow:  |00|00|05|cb|          Shadow:  |00|00|cb|cb|
//                ^                               ^
//                |                               |
// Shift = 21 & ~7 = 16            Shift = 16 & ~7 = 16
//
// Val1 = 0xcbcbcbcb << Shift;
// PartialBits = Padding ? Padding & 7 : 0xcb;
// Val2 = PartialBits << Shift;
// Result = Val1 | Val2;
Value *FunctionStackPoisoner::computePartialRzMagic(Value *PartialSize,
                                                    IRBuilder<> &IRB) {
  PartialSize = IRB.CreateIntCast(PartialSize, IRB.getInt32Ty(), false);
  Value *Shift = IRB.CreateAnd(PartialSize, IRB.getInt32(~7));
  unsigned Val1Int = kAsanAllocaPartialVal1;
  unsigned Val2Int = kAsanAllocaPartialVal2;
  if (!ASan.DL->isLittleEndian()) {
    Val1Int = sys::getSwappedBytes(Val1Int);
    Val2Int = sys::getSwappedBytes(Val2Int);
  }
  Value *Val1 = shiftAllocaMagic(IRB.getInt32(Val1Int), IRB, Shift);
  Value *PartialBits = IRB.CreateAnd(PartialSize, IRB.getInt32(7));
  // For BigEndian get 0x000000YZ -> 0xYZ000000.
  if (ASan.DL->isBigEndian())
    PartialBits = IRB.CreateShl(PartialBits, IRB.getInt32(24));
  Value *Val2 = IRB.getInt32(Val2Int);
  Value *Cond =
      IRB.CreateICmpNE(PartialBits, Constant::getNullValue(IRB.getInt32Ty()));
  Val2 = IRB.CreateSelect(Cond, shiftAllocaMagic(PartialBits, IRB, Shift),
                          shiftAllocaMagic(Val2, IRB, Shift));
  return IRB.CreateOr(Val1, Val2);
}

void FunctionStackPoisoner::handleDynamicAllocaCall(
    DynamicAllocaCall &AllocaCall) {
  AllocaInst *AI = AllocaCall.AI;
  if (!doesDominateAllExits(AI)) {
    // We do not yet handle complex allocas
    AllocaCall.Poison = false;
    return;
  }

  IRBuilder<> IRB(AI);

  PointerType *Int32PtrTy = PointerType::getUnqual(IRB.getInt32Ty());
  const unsigned Align = std::max(kAllocaRzSize, AI->getAlignment());
  const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1;

  Value *Zero = Constant::getNullValue(IntptrTy);
  Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize);
  Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask);
  Value *NotAllocaRzMask = ConstantInt::get(IntptrTy, ~AllocaRedzoneMask);

  // Since we need to extend alloca with additional memory to locate
  // redzones, and OldSize is number of allocated blocks with
  // ElementSize size, get allocated memory size in bytes by
  // OldSize * ElementSize.
  unsigned ElementSize = ASan.DL->getTypeAllocSize(AI->getAllocatedType());
  Value *OldSize = IRB.CreateMul(AI->getArraySize(),
                                 ConstantInt::get(IntptrTy, ElementSize));

  // PartialSize = OldSize % 32
  Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask);

  // Misalign = kAllocaRzSize - PartialSize;
  Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize);

  // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0;
  Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize);
  Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero);

  // AdditionalChunkSize = Align + PartialPadding + kAllocaRzSize
  // Align is added to locate left redzone, PartialPadding for possible
  // partial redzone and kAllocaRzSize for right redzone respectively.
  Value *AdditionalChunkSize = IRB.CreateAdd(
      ConstantInt::get(IntptrTy, Align + kAllocaRzSize), PartialPadding);

  Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize);

  // Insert new alloca with new NewSize and Align params.
  AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize);
  NewAlloca->setAlignment(Align);

  // NewAddress = Address + Align
  Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy),
                                    ConstantInt::get(IntptrTy, Align));

  Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType());

  // LeftRzAddress = NewAddress - kAllocaRzSize
  Value *LeftRzAddress = IRB.CreateSub(NewAddress, AllocaRzSize);

  // Poisoning left redzone.
  AllocaCall.LeftRzAddr = ASan.memToShadow(LeftRzAddress, IRB);
  IRB.CreateStore(ConstantInt::get(IRB.getInt32Ty(), kAsanAllocaLeftMagic),
                  IRB.CreateIntToPtr(AllocaCall.LeftRzAddr, Int32PtrTy));

  // PartialRzAligned = PartialRzAddr & ~AllocaRzMask
  Value *PartialRzAddr = IRB.CreateAdd(NewAddress, OldSize);
  Value *PartialRzAligned = IRB.CreateAnd(PartialRzAddr, NotAllocaRzMask);

  // Poisoning partial redzone.
  Value *PartialRzMagic = computePartialRzMagic(PartialSize, IRB);
  Value *PartialRzShadowAddr = ASan.memToShadow(PartialRzAligned, IRB);
  IRB.CreateStore(PartialRzMagic,
                  IRB.CreateIntToPtr(PartialRzShadowAddr, Int32PtrTy));

  // RightRzAddress
  //   =  (PartialRzAddr + AllocaRzMask) & ~AllocaRzMask
  Value *RightRzAddress = IRB.CreateAnd(
      IRB.CreateAdd(PartialRzAddr, AllocaRzMask), NotAllocaRzMask);

  // Poisoning right redzone.
  AllocaCall.RightRzAddr = ASan.memToShadow(RightRzAddress, IRB);
  IRB.CreateStore(ConstantInt::get(IRB.getInt32Ty(), kAsanAllocaRightMagic),
                  IRB.CreateIntToPtr(AllocaCall.RightRzAddr, Int32PtrTy));

  // Replace all uses of AddessReturnedByAlloca with NewAddress.
  AI->replaceAllUsesWith(NewAddressPtr);

  // We are done. Erase old alloca and store left, partial and right redzones
  // shadow addresses for future unpoisoning.
  AI->eraseFromParent();
  NumInstrumentedDynamicAllocas++;
}