1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
|
//===-- AddressSanitizer.cpp - memory error detector ------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of AddressSanitizer, an address sanity checker.
// Details of the algorithm:
// http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "asan"
#include "BlackList.h"
#include "llvm/Function.h"
#include "llvm/IRBuilder.h"
#include "llvm/InlineAsm.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/LLVMContext.h"
#include "llvm/Module.h"
#include "llvm/Type.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/system_error.h"
#include "llvm/DataLayout.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/Instrumentation.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
#include <string>
#include <algorithm>
using namespace llvm;
static const uint64_t kDefaultShadowScale = 3;
static const uint64_t kDefaultShadowOffset32 = 1ULL << 29;
static const uint64_t kDefaultShadowOffset64 = 1ULL << 44;
static const uint64_t kDefaultShadowOffsetAndroid = 0;
static const size_t kMaxStackMallocSize = 1 << 16; // 64K
static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3;
static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E;
static const char *kAsanModuleCtorName = "asan.module_ctor";
static const char *kAsanModuleDtorName = "asan.module_dtor";
static const int kAsanCtorAndCtorPriority = 1;
static const char *kAsanReportErrorTemplate = "__asan_report_";
static const char *kAsanRegisterGlobalsName = "__asan_register_globals";
static const char *kAsanUnregisterGlobalsName = "__asan_unregister_globals";
static const char *kAsanPoisonGlobalsName = "__asan_before_dynamic_init";
static const char *kAsanUnpoisonGlobalsName = "__asan_after_dynamic_init";
static const char *kAsanInitName = "__asan_init";
static const char *kAsanHandleNoReturnName = "__asan_handle_no_return";
static const char *kAsanMappingOffsetName = "__asan_mapping_offset";
static const char *kAsanMappingScaleName = "__asan_mapping_scale";
static const char *kAsanStackMallocName = "__asan_stack_malloc";
static const char *kAsanStackFreeName = "__asan_stack_free";
static const int kAsanStackLeftRedzoneMagic = 0xf1;
static const int kAsanStackMidRedzoneMagic = 0xf2;
static const int kAsanStackRightRedzoneMagic = 0xf3;
static const int kAsanStackPartialRedzoneMagic = 0xf4;
// Accesses sizes are powers of two: 1, 2, 4, 8, 16.
static const size_t kNumberOfAccessSizes = 5;
// Command-line flags.
// This flag may need to be replaced with -f[no-]asan-reads.
static cl::opt<bool> ClInstrumentReads("asan-instrument-reads",
cl::desc("instrument read instructions"), cl::Hidden, cl::init(true));
static cl::opt<bool> ClInstrumentWrites("asan-instrument-writes",
cl::desc("instrument write instructions"), cl::Hidden, cl::init(true));
static cl::opt<bool> ClInstrumentAtomics("asan-instrument-atomics",
cl::desc("instrument atomic instructions (rmw, cmpxchg)"),
cl::Hidden, cl::init(true));
static cl::opt<bool> ClAlwaysSlowPath("asan-always-slow-path",
cl::desc("use instrumentation with slow path for all accesses"),
cl::Hidden, cl::init(false));
// This flag limits the number of instructions to be instrumented
// in any given BB. Normally, this should be set to unlimited (INT_MAX),
// but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary
// set it to 10000.
static cl::opt<int> ClMaxInsnsToInstrumentPerBB("asan-max-ins-per-bb",
cl::init(10000),
cl::desc("maximal number of instructions to instrument in any given BB"),
cl::Hidden);
// This flag may need to be replaced with -f[no]asan-stack.
static cl::opt<bool> ClStack("asan-stack",
cl::desc("Handle stack memory"), cl::Hidden, cl::init(true));
// This flag may need to be replaced with -f[no]asan-use-after-return.
static cl::opt<bool> ClUseAfterReturn("asan-use-after-return",
cl::desc("Check return-after-free"), cl::Hidden, cl::init(false));
// This flag may need to be replaced with -f[no]asan-globals.
static cl::opt<bool> ClGlobals("asan-globals",
cl::desc("Handle global objects"), cl::Hidden, cl::init(true));
static cl::opt<bool> ClInitializers("asan-initialization-order",
cl::desc("Handle C++ initializer order"), cl::Hidden, cl::init(false));
static cl::opt<bool> ClMemIntrin("asan-memintrin",
cl::desc("Handle memset/memcpy/memmove"), cl::Hidden, cl::init(true));
// This flag may need to be replaced with -fasan-blacklist.
static cl::opt<std::string> ClBlackListFile("asan-blacklist",
cl::desc("File containing the list of functions to ignore "
"during instrumentation"), cl::Hidden);
// These flags allow to change the shadow mapping.
// The shadow mapping looks like
// Shadow = (Mem >> scale) + (1 << offset_log)
static cl::opt<int> ClMappingScale("asan-mapping-scale",
cl::desc("scale of asan shadow mapping"), cl::Hidden, cl::init(0));
static cl::opt<int> ClMappingOffsetLog("asan-mapping-offset-log",
cl::desc("offset of asan shadow mapping"), cl::Hidden, cl::init(-1));
// Optimization flags. Not user visible, used mostly for testing
// and benchmarking the tool.
static cl::opt<bool> ClOpt("asan-opt",
cl::desc("Optimize instrumentation"), cl::Hidden, cl::init(true));
static cl::opt<bool> ClOptSameTemp("asan-opt-same-temp",
cl::desc("Instrument the same temp just once"), cl::Hidden,
cl::init(true));
static cl::opt<bool> ClOptGlobals("asan-opt-globals",
cl::desc("Don't instrument scalar globals"), cl::Hidden, cl::init(true));
// Debug flags.
static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden,
cl::init(0));
static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"),
cl::Hidden, cl::init(0));
static cl::opt<std::string> ClDebugFunc("asan-debug-func",
cl::Hidden, cl::desc("Debug func"));
static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"),
cl::Hidden, cl::init(-1));
static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug man inst"),
cl::Hidden, cl::init(-1));
namespace {
/// AddressSanitizer: instrument the code in module to find memory bugs.
struct AddressSanitizer : public FunctionPass {
AddressSanitizer();
virtual const char *getPassName() const;
void instrumentMop(Instruction *I);
void instrumentAddress(Instruction *OrigIns, IRBuilder<> &IRB,
Value *Addr, uint32_t TypeSize, bool IsWrite);
Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
Value *ShadowValue, uint32_t TypeSize);
Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr,
bool IsWrite, size_t AccessSizeIndex);
bool instrumentMemIntrinsic(MemIntrinsic *MI);
void instrumentMemIntrinsicParam(Instruction *OrigIns, Value *Addr,
Value *Size,
Instruction *InsertBefore, bool IsWrite);
Value *memToShadow(Value *Shadow, IRBuilder<> &IRB);
bool runOnFunction(Function &F);
void createInitializerPoisonCalls(Module &M,
Value *FirstAddr, Value *LastAddr);
bool maybeInsertAsanInitAtFunctionEntry(Function &F);
bool poisonStackInFunction(Function &F);
virtual bool doInitialization(Module &M);
virtual bool doFinalization(Module &M);
bool insertGlobalRedzones(Module &M);
static char ID; // Pass identification, replacement for typeid
private:
uint64_t getAllocaSizeInBytes(AllocaInst *AI) {
Type *Ty = AI->getAllocatedType();
uint64_t SizeInBytes = TD->getTypeAllocSize(Ty);
return SizeInBytes;
}
uint64_t getAlignedSize(uint64_t SizeInBytes) {
return ((SizeInBytes + RedzoneSize - 1)
/ RedzoneSize) * RedzoneSize;
}
uint64_t getAlignedAllocaSize(AllocaInst *AI) {
uint64_t SizeInBytes = getAllocaSizeInBytes(AI);
return getAlignedSize(SizeInBytes);
}
Function *checkInterfaceFunction(Constant *FuncOrBitcast);
bool ShouldInstrumentGlobal(GlobalVariable *G);
void PoisonStack(const ArrayRef<AllocaInst*> &AllocaVec, IRBuilder<> IRB,
Value *ShadowBase, bool DoPoison);
bool LooksLikeCodeInBug11395(Instruction *I);
void FindDynamicInitializers(Module &M);
bool HasDynamicInitializer(GlobalVariable *G);
LLVMContext *C;
DataLayout *TD;
uint64_t MappingOffset;
int MappingScale;
size_t RedzoneSize;
int LongSize;
Type *IntptrTy;
Type *IntptrPtrTy;
Function *AsanCtorFunction;
Function *AsanInitFunction;
Function *AsanStackMallocFunc, *AsanStackFreeFunc;
Function *AsanHandleNoReturnFunc;
Instruction *CtorInsertBefore;
OwningPtr<BlackList> BL;
// This array is indexed by AccessIsWrite and log2(AccessSize).
Function *AsanErrorCallback[2][kNumberOfAccessSizes];
InlineAsm *EmptyAsm;
SmallSet<GlobalValue*, 32> DynamicallyInitializedGlobals;
};
} // namespace
char AddressSanitizer::ID = 0;
INITIALIZE_PASS(AddressSanitizer, "asan",
"AddressSanitizer: detects use-after-free and out-of-bounds bugs.",
false, false)
AddressSanitizer::AddressSanitizer() : FunctionPass(ID) { }
FunctionPass *llvm::createAddressSanitizerPass() {
return new AddressSanitizer();
}
const char *AddressSanitizer::getPassName() const {
return "AddressSanitizer";
}
static size_t TypeSizeToSizeIndex(uint32_t TypeSize) {
size_t Res = CountTrailingZeros_32(TypeSize / 8);
assert(Res < kNumberOfAccessSizes);
return Res;
}
// Create a constant for Str so that we can pass it to the run-time lib.
static GlobalVariable *createPrivateGlobalForString(Module &M, StringRef Str) {
Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
return new GlobalVariable(M, StrConst->getType(), true,
GlobalValue::PrivateLinkage, StrConst, "");
}
Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) {
// Shadow >> scale
Shadow = IRB.CreateLShr(Shadow, MappingScale);
if (MappingOffset == 0)
return Shadow;
// (Shadow >> scale) | offset
return IRB.CreateOr(Shadow, ConstantInt::get(IntptrTy,
MappingOffset));
}
void AddressSanitizer::instrumentMemIntrinsicParam(
Instruction *OrigIns,
Value *Addr, Value *Size, Instruction *InsertBefore, bool IsWrite) {
// Check the first byte.
{
IRBuilder<> IRB(InsertBefore);
instrumentAddress(OrigIns, IRB, Addr, 8, IsWrite);
}
// Check the last byte.
{
IRBuilder<> IRB(InsertBefore);
Value *SizeMinusOne = IRB.CreateSub(
Size, ConstantInt::get(Size->getType(), 1));
SizeMinusOne = IRB.CreateIntCast(SizeMinusOne, IntptrTy, false);
Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
Value *AddrPlusSizeMinisOne = IRB.CreateAdd(AddrLong, SizeMinusOne);
instrumentAddress(OrigIns, IRB, AddrPlusSizeMinisOne, 8, IsWrite);
}
}
// Instrument memset/memmove/memcpy
bool AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) {
Value *Dst = MI->getDest();
MemTransferInst *MemTran = dyn_cast<MemTransferInst>(MI);
Value *Src = MemTran ? MemTran->getSource() : 0;
Value *Length = MI->getLength();
Constant *ConstLength = dyn_cast<Constant>(Length);
Instruction *InsertBefore = MI;
if (ConstLength) {
if (ConstLength->isNullValue()) return false;
} else {
// The size is not a constant so it could be zero -- check at run-time.
IRBuilder<> IRB(InsertBefore);
Value *Cmp = IRB.CreateICmpNE(Length,
Constant::getNullValue(Length->getType()));
InsertBefore = SplitBlockAndInsertIfThen(cast<Instruction>(Cmp), false);
}
instrumentMemIntrinsicParam(MI, Dst, Length, InsertBefore, true);
if (Src)
instrumentMemIntrinsicParam(MI, Src, Length, InsertBefore, false);
return true;
}
// If I is an interesting memory access, return the PointerOperand
// and set IsWrite. Otherwise return NULL.
static Value *isInterestingMemoryAccess(Instruction *I, bool *IsWrite) {
if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
if (!ClInstrumentReads) return NULL;
*IsWrite = false;
return LI->getPointerOperand();
}
if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
if (!ClInstrumentWrites) return NULL;
*IsWrite = true;
return SI->getPointerOperand();
}
if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
if (!ClInstrumentAtomics) return NULL;
*IsWrite = true;
return RMW->getPointerOperand();
}
if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) {
if (!ClInstrumentAtomics) return NULL;
*IsWrite = true;
return XCHG->getPointerOperand();
}
return NULL;
}
void AddressSanitizer::FindDynamicInitializers(Module& M) {
// Clang generates metadata identifying all dynamically initialized globals.
NamedMDNode *DynamicGlobals =
M.getNamedMetadata("llvm.asan.dynamically_initialized_globals");
if (!DynamicGlobals)
return;
for (int i = 0, n = DynamicGlobals->getNumOperands(); i < n; ++i) {
MDNode *MDN = DynamicGlobals->getOperand(i);
assert(MDN->getNumOperands() == 1);
Value *VG = MDN->getOperand(0);
// The optimizer may optimize away a global entirely, in which case we
// cannot instrument access to it.
if (!VG)
continue;
GlobalVariable *G = cast<GlobalVariable>(VG);
DynamicallyInitializedGlobals.insert(G);
}
}
// Returns true if a global variable is initialized dynamically in this TU.
bool AddressSanitizer::HasDynamicInitializer(GlobalVariable *G) {
return DynamicallyInitializedGlobals.count(G);
}
void AddressSanitizer::instrumentMop(Instruction *I) {
bool IsWrite = false;
Value *Addr = isInterestingMemoryAccess(I, &IsWrite);
assert(Addr);
if (ClOpt && ClOptGlobals) {
if (GlobalVariable *G = dyn_cast<GlobalVariable>(Addr)) {
// If initialization order checking is disabled, a simple access to a
// dynamically initialized global is always valid.
if (!ClInitializers)
return;
// If a global variable does not have dynamic initialization we don't
// have to instrument it. However, if a global has external linkage, we
// assume it has dynamic initialization, as it may have an initializer
// in a different TU.
if (G->getLinkage() != GlobalVariable::ExternalLinkage &&
!HasDynamicInitializer(G))
return;
}
}
Type *OrigPtrTy = Addr->getType();
Type *OrigTy = cast<PointerType>(OrigPtrTy)->getElementType();
assert(OrigTy->isSized());
uint32_t TypeSize = TD->getTypeStoreSizeInBits(OrigTy);
if (TypeSize != 8 && TypeSize != 16 &&
TypeSize != 32 && TypeSize != 64 && TypeSize != 128) {
// Ignore all unusual sizes.
return;
}
IRBuilder<> IRB(I);
instrumentAddress(I, IRB, Addr, TypeSize, IsWrite);
}
// Validate the result of Module::getOrInsertFunction called for an interface
// function of AddressSanitizer. If the instrumented module defines a function
// with the same name, their prototypes must match, otherwise
// getOrInsertFunction returns a bitcast.
Function *AddressSanitizer::checkInterfaceFunction(Constant *FuncOrBitcast) {
if (isa<Function>(FuncOrBitcast)) return cast<Function>(FuncOrBitcast);
FuncOrBitcast->dump();
report_fatal_error("trying to redefine an AddressSanitizer "
"interface function");
}
Instruction *AddressSanitizer::generateCrashCode(
Instruction *InsertBefore, Value *Addr,
bool IsWrite, size_t AccessSizeIndex) {
IRBuilder<> IRB(InsertBefore);
CallInst *Call = IRB.CreateCall(AsanErrorCallback[IsWrite][AccessSizeIndex],
Addr);
// We don't do Call->setDoesNotReturn() because the BB already has
// UnreachableInst at the end.
// This EmptyAsm is required to avoid callback merge.
IRB.CreateCall(EmptyAsm);
return Call;
}
Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
Value *ShadowValue,
uint32_t TypeSize) {
size_t Granularity = 1 << MappingScale;
// Addr & (Granularity - 1)
Value *LastAccessedByte = IRB.CreateAnd(
AddrLong, ConstantInt::get(IntptrTy, Granularity - 1));
// (Addr & (Granularity - 1)) + size - 1
if (TypeSize / 8 > 1)
LastAccessedByte = IRB.CreateAdd(
LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1));
// (uint8_t) ((Addr & (Granularity-1)) + size - 1)
LastAccessedByte = IRB.CreateIntCast(
LastAccessedByte, ShadowValue->getType(), false);
// ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue
return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue);
}
void AddressSanitizer::instrumentAddress(Instruction *OrigIns,
IRBuilder<> &IRB, Value *Addr,
uint32_t TypeSize, bool IsWrite) {
Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
Type *ShadowTy = IntegerType::get(
*C, std::max(8U, TypeSize >> MappingScale));
Type *ShadowPtrTy = PointerType::get(ShadowTy, 0);
Value *ShadowPtr = memToShadow(AddrLong, IRB);
Value *CmpVal = Constant::getNullValue(ShadowTy);
Value *ShadowValue = IRB.CreateLoad(
IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy));
Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal);
size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize);
size_t Granularity = 1 << MappingScale;
TerminatorInst *CrashTerm = 0;
if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) {
TerminatorInst *CheckTerm =
SplitBlockAndInsertIfThen(cast<Instruction>(Cmp), false);
assert(dyn_cast<BranchInst>(CheckTerm)->isUnconditional());
BasicBlock *NextBB = CheckTerm->getSuccessor(0);
IRB.SetInsertPoint(CheckTerm);
Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize);
BasicBlock *CrashBlock =
BasicBlock::Create(*C, "", NextBB->getParent(), NextBB);
CrashTerm = new UnreachableInst(*C, CrashBlock);
BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2);
ReplaceInstWithInst(CheckTerm, NewTerm);
} else {
CrashTerm = SplitBlockAndInsertIfThen(cast<Instruction>(Cmp), true);
}
Instruction *Crash =
generateCrashCode(CrashTerm, AddrLong, IsWrite, AccessSizeIndex);
Crash->setDebugLoc(OrigIns->getDebugLoc());
}
void AddressSanitizer::createInitializerPoisonCalls(Module &M,
Value *FirstAddr,
Value *LastAddr) {
// We do all of our poisoning and unpoisoning within _GLOBAL__I_a.
Function *GlobalInit = M.getFunction("_GLOBAL__I_a");
// If that function is not present, this TU contains no globals, or they have
// all been optimized away
if (!GlobalInit)
return;
// Set up the arguments to our poison/unpoison functions.
IRBuilder<> IRB(GlobalInit->begin()->getFirstInsertionPt());
// Declare our poisoning and unpoisoning functions.
Function *AsanPoisonGlobals = checkInterfaceFunction(M.getOrInsertFunction(
kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
AsanPoisonGlobals->setLinkage(Function::ExternalLinkage);
Function *AsanUnpoisonGlobals = checkInterfaceFunction(M.getOrInsertFunction(
kAsanUnpoisonGlobalsName, IRB.getVoidTy(), NULL));
AsanUnpoisonGlobals->setLinkage(Function::ExternalLinkage);
// Add a call to poison all external globals before the given function starts.
IRB.CreateCall2(AsanPoisonGlobals, FirstAddr, LastAddr);
// Add calls to unpoison all globals before each return instruction.
for (Function::iterator I = GlobalInit->begin(), E = GlobalInit->end();
I != E; ++I) {
if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator())) {
CallInst::Create(AsanUnpoisonGlobals, "", RI);
}
}
}
bool AddressSanitizer::ShouldInstrumentGlobal(GlobalVariable *G) {
Type *Ty = cast<PointerType>(G->getType())->getElementType();
DEBUG(dbgs() << "GLOBAL: " << *G << "\n");
if (BL->isIn(*G)) return false;
if (!Ty->isSized()) return false;
if (!G->hasInitializer()) return false;
// Touch only those globals that will not be defined in other modules.
// Don't handle ODR type linkages since other modules may be built w/o asan.
if (G->getLinkage() != GlobalVariable::ExternalLinkage &&
G->getLinkage() != GlobalVariable::PrivateLinkage &&
G->getLinkage() != GlobalVariable::InternalLinkage)
return false;
// Two problems with thread-locals:
// - The address of the main thread's copy can't be computed at link-time.
// - Need to poison all copies, not just the main thread's one.
if (G->isThreadLocal())
return false;
// For now, just ignore this Alloca if the alignment is large.
if (G->getAlignment() > RedzoneSize) return false;
// Ignore all the globals with the names starting with "\01L_OBJC_".
// Many of those are put into the .cstring section. The linker compresses
// that section by removing the spare \0s after the string terminator, so
// our redzones get broken.
if ((G->getName().find("\01L_OBJC_") == 0) ||
(G->getName().find("\01l_OBJC_") == 0)) {
DEBUG(dbgs() << "Ignoring \\01L_OBJC_* global: " << *G);
return false;
}
if (G->hasSection()) {
StringRef Section(G->getSection());
// Ignore the globals from the __OBJC section. The ObjC runtime assumes
// those conform to /usr/lib/objc/runtime.h, so we can't add redzones to
// them.
if ((Section.find("__OBJC,") == 0) ||
(Section.find("__DATA, __objc_") == 0)) {
DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G);
return false;
}
// See http://code.google.com/p/address-sanitizer/issues/detail?id=32
// Constant CFString instances are compiled in the following way:
// -- the string buffer is emitted into
// __TEXT,__cstring,cstring_literals
// -- the constant NSConstantString structure referencing that buffer
// is placed into __DATA,__cfstring
// Therefore there's no point in placing redzones into __DATA,__cfstring.
// Moreover, it causes the linker to crash on OS X 10.7
if (Section.find("__DATA,__cfstring") == 0) {
DEBUG(dbgs() << "Ignoring CFString: " << *G);
return false;
}
}
return true;
}
// This function replaces all global variables with new variables that have
// trailing redzones. It also creates a function that poisons
// redzones and inserts this function into llvm.global_ctors.
bool AddressSanitizer::insertGlobalRedzones(Module &M) {
SmallVector<GlobalVariable *, 16> GlobalsToChange;
for (Module::GlobalListType::iterator G = M.global_begin(),
E = M.global_end(); G != E; ++G) {
if (ShouldInstrumentGlobal(G))
GlobalsToChange.push_back(G);
}
size_t n = GlobalsToChange.size();
if (n == 0) return false;
// A global is described by a structure
// size_t beg;
// size_t size;
// size_t size_with_redzone;
// const char *name;
// size_t has_dynamic_init;
// We initialize an array of such structures and pass it to a run-time call.
StructType *GlobalStructTy = StructType::get(IntptrTy, IntptrTy,
IntptrTy, IntptrTy,
IntptrTy, NULL);
SmallVector<Constant *, 16> Initializers(n), DynamicInit;
IRBuilder<> IRB(CtorInsertBefore);
if (ClInitializers)
FindDynamicInitializers(M);
// The addresses of the first and last dynamically initialized globals in
// this TU. Used in initialization order checking.
Value *FirstDynamic = 0, *LastDynamic = 0;
for (size_t i = 0; i < n; i++) {
GlobalVariable *G = GlobalsToChange[i];
PointerType *PtrTy = cast<PointerType>(G->getType());
Type *Ty = PtrTy->getElementType();
uint64_t SizeInBytes = TD->getTypeAllocSize(Ty);
uint64_t RightRedzoneSize = RedzoneSize +
(RedzoneSize - (SizeInBytes % RedzoneSize));
Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize);
// Determine whether this global should be poisoned in initialization.
bool GlobalHasDynamicInitializer = HasDynamicInitializer(G);
// Don't check initialization order if this global is blacklisted.
GlobalHasDynamicInitializer &= !BL->isInInit(*G);
StructType *NewTy = StructType::get(Ty, RightRedZoneTy, NULL);
Constant *NewInitializer = ConstantStruct::get(
NewTy, G->getInitializer(),
Constant::getNullValue(RightRedZoneTy), NULL);
SmallString<2048> DescriptionOfGlobal = G->getName();
DescriptionOfGlobal += " (";
DescriptionOfGlobal += M.getModuleIdentifier();
DescriptionOfGlobal += ")";
GlobalVariable *Name = createPrivateGlobalForString(M, DescriptionOfGlobal);
// Create a new global variable with enough space for a redzone.
GlobalVariable *NewGlobal = new GlobalVariable(
M, NewTy, G->isConstant(), G->getLinkage(),
NewInitializer, "", G, G->getThreadLocalMode());
NewGlobal->copyAttributesFrom(G);
NewGlobal->setAlignment(RedzoneSize);
Value *Indices2[2];
Indices2[0] = IRB.getInt32(0);
Indices2[1] = IRB.getInt32(0);
G->replaceAllUsesWith(
ConstantExpr::getGetElementPtr(NewGlobal, Indices2, true));
NewGlobal->takeName(G);
G->eraseFromParent();
Initializers[i] = ConstantStruct::get(
GlobalStructTy,
ConstantExpr::getPointerCast(NewGlobal, IntptrTy),
ConstantInt::get(IntptrTy, SizeInBytes),
ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize),
ConstantExpr::getPointerCast(Name, IntptrTy),
ConstantInt::get(IntptrTy, GlobalHasDynamicInitializer),
NULL);
// Populate the first and last globals declared in this TU.
if (ClInitializers && GlobalHasDynamicInitializer) {
LastDynamic = ConstantExpr::getPointerCast(NewGlobal, IntptrTy);
if (FirstDynamic == 0)
FirstDynamic = LastDynamic;
}
DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n");
}
ArrayType *ArrayOfGlobalStructTy = ArrayType::get(GlobalStructTy, n);
GlobalVariable *AllGlobals = new GlobalVariable(
M, ArrayOfGlobalStructTy, false, GlobalVariable::PrivateLinkage,
ConstantArray::get(ArrayOfGlobalStructTy, Initializers), "");
// Create calls for poisoning before initializers run and unpoisoning after.
if (ClInitializers && FirstDynamic && LastDynamic)
createInitializerPoisonCalls(M, FirstDynamic, LastDynamic);
Function *AsanRegisterGlobals = checkInterfaceFunction(M.getOrInsertFunction(
kAsanRegisterGlobalsName, IRB.getVoidTy(),
IntptrTy, IntptrTy, NULL));
AsanRegisterGlobals->setLinkage(Function::ExternalLinkage);
IRB.CreateCall2(AsanRegisterGlobals,
IRB.CreatePointerCast(AllGlobals, IntptrTy),
ConstantInt::get(IntptrTy, n));
// We also need to unregister globals at the end, e.g. when a shared library
// gets closed.
Function *AsanDtorFunction = Function::Create(
FunctionType::get(Type::getVoidTy(*C), false),
GlobalValue::InternalLinkage, kAsanModuleDtorName, &M);
BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction);
IRBuilder<> IRB_Dtor(ReturnInst::Create(*C, AsanDtorBB));
Function *AsanUnregisterGlobals =
checkInterfaceFunction(M.getOrInsertFunction(
kAsanUnregisterGlobalsName,
IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
AsanUnregisterGlobals->setLinkage(Function::ExternalLinkage);
IRB_Dtor.CreateCall2(AsanUnregisterGlobals,
IRB.CreatePointerCast(AllGlobals, IntptrTy),
ConstantInt::get(IntptrTy, n));
appendToGlobalDtors(M, AsanDtorFunction, kAsanCtorAndCtorPriority);
DEBUG(dbgs() << M);
return true;
}
// virtual
bool AddressSanitizer::doInitialization(Module &M) {
// Initialize the private fields. No one has accessed them before.
TD = getAnalysisIfAvailable<DataLayout>();
if (!TD)
return false;
BL.reset(new BlackList(ClBlackListFile));
C = &(M.getContext());
LongSize = TD->getPointerSizeInBits(0);
IntptrTy = Type::getIntNTy(*C, LongSize);
IntptrPtrTy = PointerType::get(IntptrTy, 0);
AsanCtorFunction = Function::Create(
FunctionType::get(Type::getVoidTy(*C), false),
GlobalValue::InternalLinkage, kAsanModuleCtorName, &M);
BasicBlock *AsanCtorBB = BasicBlock::Create(*C, "", AsanCtorFunction);
CtorInsertBefore = ReturnInst::Create(*C, AsanCtorBB);
// call __asan_init in the module ctor.
IRBuilder<> IRB(CtorInsertBefore);
AsanInitFunction = checkInterfaceFunction(
M.getOrInsertFunction(kAsanInitName, IRB.getVoidTy(), NULL));
AsanInitFunction->setLinkage(Function::ExternalLinkage);
IRB.CreateCall(AsanInitFunction);
// Create __asan_report* callbacks.
for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) {
for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
AccessSizeIndex++) {
// IsWrite and TypeSize are encoded in the function name.
std::string FunctionName = std::string(kAsanReportErrorTemplate) +
(AccessIsWrite ? "store" : "load") + itostr(1 << AccessSizeIndex);
// If we are merging crash callbacks, they have two parameters.
AsanErrorCallback[AccessIsWrite][AccessSizeIndex] = cast<Function>(
M.getOrInsertFunction(FunctionName, IRB.getVoidTy(), IntptrTy, NULL));
}
}
AsanStackMallocFunc = checkInterfaceFunction(M.getOrInsertFunction(
kAsanStackMallocName, IntptrTy, IntptrTy, IntptrTy, NULL));
AsanStackFreeFunc = checkInterfaceFunction(M.getOrInsertFunction(
kAsanStackFreeName, IRB.getVoidTy(),
IntptrTy, IntptrTy, IntptrTy, NULL));
AsanHandleNoReturnFunc = checkInterfaceFunction(M.getOrInsertFunction(
kAsanHandleNoReturnName, IRB.getVoidTy(), NULL));
// We insert an empty inline asm after __asan_report* to avoid callback merge.
EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
StringRef(""), StringRef(""),
/*hasSideEffects=*/true);
llvm::Triple targetTriple(M.getTargetTriple());
bool isAndroid = targetTriple.getEnvironment() == llvm::Triple::Android;
MappingOffset = isAndroid ? kDefaultShadowOffsetAndroid :
(LongSize == 32 ? kDefaultShadowOffset32 : kDefaultShadowOffset64);
if (ClMappingOffsetLog >= 0) {
if (ClMappingOffsetLog == 0) {
// special case
MappingOffset = 0;
} else {
MappingOffset = 1ULL << ClMappingOffsetLog;
}
}
MappingScale = kDefaultShadowScale;
if (ClMappingScale) {
MappingScale = ClMappingScale;
}
// Redzone used for stack and globals is at least 32 bytes.
// For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively.
RedzoneSize = std::max(32, (int)(1 << MappingScale));
if (ClMappingOffsetLog >= 0) {
// Tell the run-time the current values of mapping offset and scale.
GlobalValue *asan_mapping_offset =
new GlobalVariable(M, IntptrTy, true, GlobalValue::LinkOnceODRLinkage,
ConstantInt::get(IntptrTy, MappingOffset),
kAsanMappingOffsetName);
// Read the global, otherwise it may be optimized away.
IRB.CreateLoad(asan_mapping_offset, true);
}
if (ClMappingScale) {
GlobalValue *asan_mapping_scale =
new GlobalVariable(M, IntptrTy, true, GlobalValue::LinkOnceODRLinkage,
ConstantInt::get(IntptrTy, MappingScale),
kAsanMappingScaleName);
// Read the global, otherwise it may be optimized away.
IRB.CreateLoad(asan_mapping_scale, true);
}
appendToGlobalCtors(M, AsanCtorFunction, kAsanCtorAndCtorPriority);
return true;
}
bool AddressSanitizer::doFinalization(Module &M) {
// We transform the globals at the very end so that the optimization analysis
// works on the original globals.
if (ClGlobals)
return insertGlobalRedzones(M);
return false;
}
bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) {
// For each NSObject descendant having a +load method, this method is invoked
// by the ObjC runtime before any of the static constructors is called.
// Therefore we need to instrument such methods with a call to __asan_init
// at the beginning in order to initialize our runtime before any access to
// the shadow memory.
// We cannot just ignore these methods, because they may call other
// instrumented functions.
if (F.getName().find(" load]") != std::string::npos) {
IRBuilder<> IRB(F.begin()->begin());
IRB.CreateCall(AsanInitFunction);
return true;
}
return false;
}
bool AddressSanitizer::runOnFunction(Function &F) {
if (BL->isIn(F)) return false;
if (&F == AsanCtorFunction) return false;
DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n");
// If needed, insert __asan_init before checking for AddressSafety attr.
maybeInsertAsanInitAtFunctionEntry(F);
if (!F.getFnAttributes().hasAttribute(Attributes::AddressSafety))
return false;
if (!ClDebugFunc.empty() && ClDebugFunc != F.getName())
return false;
// We want to instrument every address only once per basic block (unless there
// are calls between uses).
SmallSet<Value*, 16> TempsToInstrument;
SmallVector<Instruction*, 16> ToInstrument;
SmallVector<Instruction*, 8> NoReturnCalls;
bool IsWrite;
// Fill the set of memory operations to instrument.
for (Function::iterator FI = F.begin(), FE = F.end();
FI != FE; ++FI) {
TempsToInstrument.clear();
int NumInsnsPerBB = 0;
for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
BI != BE; ++BI) {
if (LooksLikeCodeInBug11395(BI)) return false;
if (Value *Addr = isInterestingMemoryAccess(BI, &IsWrite)) {
if (ClOpt && ClOptSameTemp) {
if (!TempsToInstrument.insert(Addr))
continue; // We've seen this temp in the current BB.
}
} else if (isa<MemIntrinsic>(BI) && ClMemIntrin) {
// ok, take it.
} else {
if (CallInst *CI = dyn_cast<CallInst>(BI)) {
// A call inside BB.
TempsToInstrument.clear();
if (CI->doesNotReturn()) {
NoReturnCalls.push_back(CI);
}
}
continue;
}
ToInstrument.push_back(BI);
NumInsnsPerBB++;
if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB)
break;
}
}
// Instrument.
int NumInstrumented = 0;
for (size_t i = 0, n = ToInstrument.size(); i != n; i++) {
Instruction *Inst = ToInstrument[i];
if (ClDebugMin < 0 || ClDebugMax < 0 ||
(NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) {
if (isInterestingMemoryAccess(Inst, &IsWrite))
instrumentMop(Inst);
else
instrumentMemIntrinsic(cast<MemIntrinsic>(Inst));
}
NumInstrumented++;
}
bool ChangedStack = poisonStackInFunction(F);
// We must unpoison the stack before every NoReturn call (throw, _exit, etc).
// See e.g. http://code.google.com/p/address-sanitizer/issues/detail?id=37
for (size_t i = 0, n = NoReturnCalls.size(); i != n; i++) {
Instruction *CI = NoReturnCalls[i];
IRBuilder<> IRB(CI);
IRB.CreateCall(AsanHandleNoReturnFunc);
}
DEBUG(dbgs() << "ASAN done instrumenting:\n" << F << "\n");
return NumInstrumented > 0 || ChangedStack || !NoReturnCalls.empty();
}
static uint64_t ValueForPoison(uint64_t PoisonByte, size_t ShadowRedzoneSize) {
if (ShadowRedzoneSize == 1) return PoisonByte;
if (ShadowRedzoneSize == 2) return (PoisonByte << 8) + PoisonByte;
if (ShadowRedzoneSize == 4)
return (PoisonByte << 24) + (PoisonByte << 16) +
(PoisonByte << 8) + (PoisonByte);
llvm_unreachable("ShadowRedzoneSize is either 1, 2 or 4");
}
static void PoisonShadowPartialRightRedzone(uint8_t *Shadow,
size_t Size,
size_t RedzoneSize,
size_t ShadowGranularity,
uint8_t Magic) {
for (size_t i = 0; i < RedzoneSize;
i+= ShadowGranularity, Shadow++) {
if (i + ShadowGranularity <= Size) {
*Shadow = 0; // fully addressable
} else if (i >= Size) {
*Shadow = Magic; // unaddressable
} else {
*Shadow = Size - i; // first Size-i bytes are addressable
}
}
}
void AddressSanitizer::PoisonStack(const ArrayRef<AllocaInst*> &AllocaVec,
IRBuilder<> IRB,
Value *ShadowBase, bool DoPoison) {
size_t ShadowRZSize = RedzoneSize >> MappingScale;
assert(ShadowRZSize >= 1 && ShadowRZSize <= 4);
Type *RZTy = Type::getIntNTy(*C, ShadowRZSize * 8);
Type *RZPtrTy = PointerType::get(RZTy, 0);
Value *PoisonLeft = ConstantInt::get(RZTy,
ValueForPoison(DoPoison ? kAsanStackLeftRedzoneMagic : 0LL, ShadowRZSize));
Value *PoisonMid = ConstantInt::get(RZTy,
ValueForPoison(DoPoison ? kAsanStackMidRedzoneMagic : 0LL, ShadowRZSize));
Value *PoisonRight = ConstantInt::get(RZTy,
ValueForPoison(DoPoison ? kAsanStackRightRedzoneMagic : 0LL, ShadowRZSize));
// poison the first red zone.
IRB.CreateStore(PoisonLeft, IRB.CreateIntToPtr(ShadowBase, RZPtrTy));
// poison all other red zones.
uint64_t Pos = RedzoneSize;
for (size_t i = 0, n = AllocaVec.size(); i < n; i++) {
AllocaInst *AI = AllocaVec[i];
uint64_t SizeInBytes = getAllocaSizeInBytes(AI);
uint64_t AlignedSize = getAlignedAllocaSize(AI);
assert(AlignedSize - SizeInBytes < RedzoneSize);
Value *Ptr = NULL;
Pos += AlignedSize;
assert(ShadowBase->getType() == IntptrTy);
if (SizeInBytes < AlignedSize) {
// Poison the partial redzone at right
Ptr = IRB.CreateAdd(
ShadowBase, ConstantInt::get(IntptrTy,
(Pos >> MappingScale) - ShadowRZSize));
size_t AddressableBytes = RedzoneSize - (AlignedSize - SizeInBytes);
uint32_t Poison = 0;
if (DoPoison) {
PoisonShadowPartialRightRedzone((uint8_t*)&Poison, AddressableBytes,
RedzoneSize,
1ULL << MappingScale,
kAsanStackPartialRedzoneMagic);
}
Value *PartialPoison = ConstantInt::get(RZTy, Poison);
IRB.CreateStore(PartialPoison, IRB.CreateIntToPtr(Ptr, RZPtrTy));
}
// Poison the full redzone at right.
Ptr = IRB.CreateAdd(ShadowBase,
ConstantInt::get(IntptrTy, Pos >> MappingScale));
Value *Poison = i == AllocaVec.size() - 1 ? PoisonRight : PoisonMid;
IRB.CreateStore(Poison, IRB.CreateIntToPtr(Ptr, RZPtrTy));
Pos += RedzoneSize;
}
}
// Workaround for bug 11395: we don't want to instrument stack in functions
// with large assembly blobs (32-bit only), otherwise reg alloc may crash.
// FIXME: remove once the bug 11395 is fixed.
bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) {
if (LongSize != 32) return false;
CallInst *CI = dyn_cast<CallInst>(I);
if (!CI || !CI->isInlineAsm()) return false;
if (CI->getNumArgOperands() <= 5) return false;
// We have inline assembly with quite a few arguments.
return true;
}
// Find all static Alloca instructions and put
// poisoned red zones around all of them.
// Then unpoison everything back before the function returns.
//
// Stack poisoning does not play well with exception handling.
// When an exception is thrown, we essentially bypass the code
// that unpoisones the stack. This is why the run-time library has
// to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire
// stack in the interceptor. This however does not work inside the
// actual function which catches the exception. Most likely because the
// compiler hoists the load of the shadow value somewhere too high.
// This causes asan to report a non-existing bug on 453.povray.
// It sounds like an LLVM bug.
bool AddressSanitizer::poisonStackInFunction(Function &F) {
if (!ClStack) return false;
SmallVector<AllocaInst*, 16> AllocaVec;
SmallVector<Instruction*, 8> RetVec;
uint64_t TotalSize = 0;
// Filter out Alloca instructions we want (and can) handle.
// Collect Ret instructions.
for (Function::iterator FI = F.begin(), FE = F.end();
FI != FE; ++FI) {
BasicBlock &BB = *FI;
for (BasicBlock::iterator BI = BB.begin(), BE = BB.end();
BI != BE; ++BI) {
if (isa<ReturnInst>(BI)) {
RetVec.push_back(BI);
continue;
}
AllocaInst *AI = dyn_cast<AllocaInst>(BI);
if (!AI) continue;
if (AI->isArrayAllocation()) continue;
if (!AI->isStaticAlloca()) continue;
if (!AI->getAllocatedType()->isSized()) continue;
if (AI->getAlignment() > RedzoneSize) continue;
AllocaVec.push_back(AI);
uint64_t AlignedSize = getAlignedAllocaSize(AI);
TotalSize += AlignedSize;
}
}
if (AllocaVec.empty()) return false;
uint64_t LocalStackSize = TotalSize + (AllocaVec.size() + 1) * RedzoneSize;
bool DoStackMalloc = ClUseAfterReturn
&& LocalStackSize <= kMaxStackMallocSize;
Instruction *InsBefore = AllocaVec[0];
IRBuilder<> IRB(InsBefore);
Type *ByteArrayTy = ArrayType::get(IRB.getInt8Ty(), LocalStackSize);
AllocaInst *MyAlloca =
new AllocaInst(ByteArrayTy, "MyAlloca", InsBefore);
MyAlloca->setAlignment(RedzoneSize);
assert(MyAlloca->isStaticAlloca());
Value *OrigStackBase = IRB.CreatePointerCast(MyAlloca, IntptrTy);
Value *LocalStackBase = OrigStackBase;
if (DoStackMalloc) {
LocalStackBase = IRB.CreateCall2(AsanStackMallocFunc,
ConstantInt::get(IntptrTy, LocalStackSize), OrigStackBase);
}
// This string will be parsed by the run-time (DescribeStackAddress).
SmallString<2048> StackDescriptionStorage;
raw_svector_ostream StackDescription(StackDescriptionStorage);
StackDescription << F.getName() << " " << AllocaVec.size() << " ";
uint64_t Pos = RedzoneSize;
// Replace Alloca instructions with base+offset.
for (size_t i = 0, n = AllocaVec.size(); i < n; i++) {
AllocaInst *AI = AllocaVec[i];
uint64_t SizeInBytes = getAllocaSizeInBytes(AI);
StringRef Name = AI->getName();
StackDescription << Pos << " " << SizeInBytes << " "
<< Name.size() << " " << Name << " ";
uint64_t AlignedSize = getAlignedAllocaSize(AI);
assert((AlignedSize % RedzoneSize) == 0);
AI->replaceAllUsesWith(
IRB.CreateIntToPtr(
IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Pos)),
AI->getType()));
Pos += AlignedSize + RedzoneSize;
}
assert(Pos == LocalStackSize);
// Write the Magic value and the frame description constant to the redzone.
Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy);
IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic),
BasePlus0);
Value *BasePlus1 = IRB.CreateAdd(LocalStackBase,
ConstantInt::get(IntptrTy, LongSize/8));
BasePlus1 = IRB.CreateIntToPtr(BasePlus1, IntptrPtrTy);
Value *Description = IRB.CreatePointerCast(
createPrivateGlobalForString(*F.getParent(), StackDescription.str()),
IntptrTy);
IRB.CreateStore(Description, BasePlus1);
// Poison the stack redzones at the entry.
Value *ShadowBase = memToShadow(LocalStackBase, IRB);
PoisonStack(ArrayRef<AllocaInst*>(AllocaVec), IRB, ShadowBase, true);
// Unpoison the stack before all ret instructions.
for (size_t i = 0, n = RetVec.size(); i < n; i++) {
Instruction *Ret = RetVec[i];
IRBuilder<> IRBRet(Ret);
// Mark the current frame as retired.
IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic),
BasePlus0);
// Unpoison the stack.
PoisonStack(ArrayRef<AllocaInst*>(AllocaVec), IRBRet, ShadowBase, false);
if (DoStackMalloc) {
IRBRet.CreateCall3(AsanStackFreeFunc, LocalStackBase,
ConstantInt::get(IntptrTy, LocalStackSize),
OrigStackBase);
}
}
// We are done. Remove the old unused alloca instructions.
for (size_t i = 0, n = AllocaVec.size(); i < n; i++)
AllocaVec[i]->eraseFromParent();
if (ClDebugStack) {
DEBUG(dbgs() << F);
}
return true;
}
|