aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Transforms/Instrumentation/BoundsChecking.cpp
blob: 2b5f39c9d43e69b7572b17b7c19a5d3c6a0e3c2f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
//===- BoundsChecking.cpp - Instrumentation for run-time bounds checking --===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a pass that instruments the code to perform run-time
// bounds checking on loads, stores, and other memory intrinsics.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Instrumentation.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/TargetFolder.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
using namespace llvm;

#define DEBUG_TYPE "bounds-checking"

static cl::opt<bool> SingleTrapBB("bounds-checking-single-trap",
                                  cl::desc("Use one trap block per function"));

STATISTIC(ChecksAdded, "Bounds checks added");
STATISTIC(ChecksSkipped, "Bounds checks skipped");
STATISTIC(ChecksUnable, "Bounds checks unable to add");

typedef IRBuilder<true, TargetFolder> BuilderTy;

namespace {
  struct BoundsChecking : public FunctionPass {
    static char ID;

    BoundsChecking() : FunctionPass(ID) {
      initializeBoundsCheckingPass(*PassRegistry::getPassRegistry());
    }

    bool runOnFunction(Function &F) override;

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.addRequired<DataLayoutPass>();
      AU.addRequired<TargetLibraryInfoWrapperPass>();
    }

  private:
    const DataLayout *DL;
    const TargetLibraryInfo *TLI;
    ObjectSizeOffsetEvaluator *ObjSizeEval;
    BuilderTy *Builder;
    Instruction *Inst;
    BasicBlock *TrapBB;

    BasicBlock *getTrapBB();
    void emitBranchToTrap(Value *Cmp = nullptr);
    bool instrument(Value *Ptr, Value *Val);
 };
}

char BoundsChecking::ID = 0;
INITIALIZE_PASS(BoundsChecking, "bounds-checking", "Run-time bounds checking",
                false, false)


/// getTrapBB - create a basic block that traps. All overflowing conditions
/// branch to this block. There's only one trap block per function.
BasicBlock *BoundsChecking::getTrapBB() {
  if (TrapBB && SingleTrapBB)
    return TrapBB;

  Function *Fn = Inst->getParent()->getParent();
  IRBuilder<>::InsertPointGuard Guard(*Builder);
  TrapBB = BasicBlock::Create(Fn->getContext(), "trap", Fn);
  Builder->SetInsertPoint(TrapBB);

  llvm::Value *F = Intrinsic::getDeclaration(Fn->getParent(), Intrinsic::trap);
  CallInst *TrapCall = Builder->CreateCall(F);
  TrapCall->setDoesNotReturn();
  TrapCall->setDoesNotThrow();
  TrapCall->setDebugLoc(Inst->getDebugLoc());
  Builder->CreateUnreachable();

  return TrapBB;
}


/// emitBranchToTrap - emit a branch instruction to a trap block.
/// If Cmp is non-null, perform a jump only if its value evaluates to true.
void BoundsChecking::emitBranchToTrap(Value *Cmp) {
  // check if the comparison is always false
  ConstantInt *C = dyn_cast_or_null<ConstantInt>(Cmp);
  if (C) {
    ++ChecksSkipped;
    if (!C->getZExtValue())
      return;
    else
      Cmp = nullptr; // unconditional branch
  }
  ++ChecksAdded;

  Instruction *Inst = Builder->GetInsertPoint();
  BasicBlock *OldBB = Inst->getParent();
  BasicBlock *Cont = OldBB->splitBasicBlock(Inst);
  OldBB->getTerminator()->eraseFromParent();

  if (Cmp)
    BranchInst::Create(getTrapBB(), Cont, Cmp, OldBB);
  else
    BranchInst::Create(getTrapBB(), OldBB);
}


/// instrument - adds run-time bounds checks to memory accessing instructions.
/// Ptr is the pointer that will be read/written, and InstVal is either the
/// result from the load or the value being stored. It is used to determine the
/// size of memory block that is touched.
/// Returns true if any change was made to the IR, false otherwise.
bool BoundsChecking::instrument(Value *Ptr, Value *InstVal) {
  uint64_t NeededSize = DL->getTypeStoreSize(InstVal->getType());
  DEBUG(dbgs() << "Instrument " << *Ptr << " for " << Twine(NeededSize)
              << " bytes\n");

  SizeOffsetEvalType SizeOffset = ObjSizeEval->compute(Ptr);

  if (!ObjSizeEval->bothKnown(SizeOffset)) {
    ++ChecksUnable;
    return false;
  }

  Value *Size   = SizeOffset.first;
  Value *Offset = SizeOffset.second;
  ConstantInt *SizeCI = dyn_cast<ConstantInt>(Size);

  Type *IntTy = DL->getIntPtrType(Ptr->getType());
  Value *NeededSizeVal = ConstantInt::get(IntTy, NeededSize);

  // three checks are required to ensure safety:
  // . Offset >= 0  (since the offset is given from the base ptr)
  // . Size >= Offset  (unsigned)
  // . Size - Offset >= NeededSize  (unsigned)
  //
  // optimization: if Size >= 0 (signed), skip 1st check
  // FIXME: add NSW/NUW here?  -- we dont care if the subtraction overflows
  Value *ObjSize = Builder->CreateSub(Size, Offset);
  Value *Cmp2 = Builder->CreateICmpULT(Size, Offset);
  Value *Cmp3 = Builder->CreateICmpULT(ObjSize, NeededSizeVal);
  Value *Or = Builder->CreateOr(Cmp2, Cmp3);
  if (!SizeCI || SizeCI->getValue().slt(0)) {
    Value *Cmp1 = Builder->CreateICmpSLT(Offset, ConstantInt::get(IntTy, 0));
    Or = Builder->CreateOr(Cmp1, Or);
  }
  emitBranchToTrap(Or);

  return true;
}

bool BoundsChecking::runOnFunction(Function &F) {
  DL = &getAnalysis<DataLayoutPass>().getDataLayout();
  TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();

  TrapBB = nullptr;
  BuilderTy TheBuilder(F.getContext(), TargetFolder(DL));
  Builder = &TheBuilder;
  ObjectSizeOffsetEvaluator TheObjSizeEval(DL, TLI, F.getContext(),
                                           /*RoundToAlign=*/true);
  ObjSizeEval = &TheObjSizeEval;

  // check HANDLE_MEMORY_INST in include/llvm/Instruction.def for memory
  // touching instructions
  std::vector<Instruction*> WorkList;
  for (inst_iterator i = inst_begin(F), e = inst_end(F); i != e; ++i) {
    Instruction *I = &*i;
    if (isa<LoadInst>(I) || isa<StoreInst>(I) || isa<AtomicCmpXchgInst>(I) ||
        isa<AtomicRMWInst>(I))
        WorkList.push_back(I);
  }

  bool MadeChange = false;
  for (std::vector<Instruction*>::iterator i = WorkList.begin(),
       e = WorkList.end(); i != e; ++i) {
    Inst = *i;

    Builder->SetInsertPoint(Inst);
    if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
      MadeChange |= instrument(LI->getPointerOperand(), LI);
    } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
      MadeChange |= instrument(SI->getPointerOperand(), SI->getValueOperand());
    } else if (AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(Inst)) {
      MadeChange |= instrument(AI->getPointerOperand(),AI->getCompareOperand());
    } else if (AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(Inst)) {
      MadeChange |= instrument(AI->getPointerOperand(), AI->getValOperand());
    } else {
      llvm_unreachable("unknown Instruction type");
    }
  }
  return MadeChange;
}

FunctionPass *llvm::createBoundsCheckingPass() {
  return new BoundsChecking();
}