1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
|
//===-- EdgeCode.cpp - generate LLVM instrumentation code --------*- C++ -*--=//
//It implements the class EdgeCode: which provides
//support for inserting "appropriate" instrumentation at
//designated points in the graph
//
//It also has methods to insert initialization code in
//top block of cfg
//===----------------------------------------------------------------------===//
#include "Graph.h"
#include "llvm/ConstantVals.h"
#include "llvm/DerivedTypes.h"
#include "llvm/iMemory.h"
#include "llvm/iTerminators.h"
#include "llvm/iOther.h"
#include "llvm/iOperators.h"
#include "llvm/iPHINode.h"
using std::vector;
//get the code to be inserted on the edge
//This is determined from cond (1-6)
void getEdgeCode::getCode(Instruction *rInst,
Instruction *countInst,
Function *M,
BasicBlock *BB){
BasicBlock::InstListType& instList=BB->getInstList();
BasicBlock::iterator here=instList.begin();
//case: r=k code to be inserted
switch(cond){
case 1:{
Value *val=ConstantSInt::get(Type::IntTy,inc);
Instruction *stInst=new StoreInst(val, rInst);
here=instList.insert(here,stInst)+1;
break;
}
//case: r=0 to be inserted
case 2:{
Value *val=ConstantSInt::get(Type::IntTy,0);
Instruction *stInst=new StoreInst(val, rInst);
here=instList.insert(here,stInst)+1;
break;
}
//r+=k
case 3:{
Instruction *ldInst=new LoadInst(rInst, "ti1");
Value *val=ConstantSInt::get(Type::IntTy,inc);
Instruction *addIn=BinaryOperator::
create(Instruction::Add, ldInst, val,"ti2");
Instruction *stInst=new StoreInst(addIn, rInst);
here=instList.insert(here,ldInst)+1;
here=instList.insert(here,addIn)+1;
here=instList.insert(here,stInst)+1;
break;
}
//count[inc]++
case 4:{
Instruction *ldInst=new
LoadInst(countInst,vector<Value *>
(1,ConstantUInt::get(Type::UIntTy, inc)), "ti1");
Value *val=ConstantSInt::get(Type::IntTy,1);
Instruction *addIn=BinaryOperator::
create(Instruction::Add, ldInst, val,"ti2");
assert(inc>=0 && "IT MUST BE POSITIVE NOW");
Instruction *stInst=new
StoreInst(addIn, countInst, vector<Value *>
(1, ConstantUInt::get(Type::UIntTy,inc)));
here=instList.insert(here,ldInst)+1;
here=instList.insert(here,addIn)+1;
here=instList.insert(here,stInst)+1;
break;
}
//case: count[r+inc]++
case 5:{
//ti1=inc+r
Instruction *ldIndex=new LoadInst(rInst, "ti1");
Value *val=ConstantSInt::get(Type::IntTy,inc);
Instruction *addIndex=BinaryOperator::
create(Instruction::Add, ldIndex, val,"ti2");
//now load count[addIndex]
Instruction *castInst=new CastInst(addIndex,
Type::UIntTy,"ctin");
Instruction *ldInst=new
LoadInst(countInst, vector<Value *>(1,castInst), "ti3");
Value *cons=ConstantSInt::get(Type::IntTy,1);
//count[addIndex]++
Instruction *addIn=BinaryOperator::
create(Instruction::Add, ldInst, cons,"ti4");
Instruction *stInst=new
StoreInst(addIn, countInst,
vector<Value *>(1,castInst));
here=instList.insert(here,ldIndex)+1;
here=instList.insert(here,addIndex)+1;
here=instList.insert(here,castInst)+1;
here=instList.insert(here,ldInst)+1;
here=instList.insert(here,addIn)+1;
here=instList.insert(here,stInst)+1;
break;
}
//case: count[r]+
case 6:{
//ti1=inc+r
Instruction *ldIndex=new LoadInst(rInst, "ti1");
//now load count[addIndex]
Instruction *castInst2=new
CastInst(ldIndex, Type::UIntTy,"ctin");
Instruction *ldInst=new
LoadInst(countInst, vector<Value *>(1,castInst2), "ti2");
Value *cons=ConstantSInt::get(Type::IntTy,1);
//count[addIndex]++
Instruction *addIn=BinaryOperator::
create(Instruction::Add, ldInst, cons,"ti3");
Instruction *stInst=new
StoreInst(addIn, countInst, vector<Value *>(1,castInst2));
here=instList.insert(here,ldIndex)+1;
here=instList.insert(here,castInst2)+1;
here=instList.insert(here,ldInst)+1;
here=instList.insert(here,addIn)+1;
here=instList.insert(here,stInst)+1;
break;
}
}
//now check for cdIn and cdOut
//first put cdOut
if(cdOut!=NULL){
cdOut->getCode(rInst, countInst, M, BB);
}
if(cdIn!=NULL){
cdIn->getCode(rInst, countInst, M, BB);
}
}
//Insert the initialization code in the top BB
//this includes initializing r, and count
//r is like an accumulator, that
//keeps on adding increments as we traverse along a path
//and at the end of the path, r contains the path
//number of that path
//Count is an array, where Count[k] represents
//the number of executions of path k
void insertInTopBB(BasicBlock *front,
int k,
Instruction *rVar,
Instruction *countVar){
//rVar is variable r,
//countVar is array Count, and these are allocatted outside
//store uint 0, uint *%R, uint 0
vector<Value *> idx;
idx.push_back(ConstantUInt::get(Type::UIntTy, 0));
Instruction *stInstr=new StoreInst(ConstantInt::get(Type::IntTy, 0), rVar,
idx);
//now push all instructions in front of the BB
BasicBlock::InstListType& instList=front->getInstList();
BasicBlock::iterator here=instList.begin();
here=front->getInstList().insert(here, rVar)+1;
here=front->getInstList().insert(here,countVar)+1;
//Initialize Count[...] with 0
for(int i=0;i<k; i++){
Instruction *stInstrC=new
StoreInst(ConstantInt::get(Type::IntTy, 0),
countVar, std::vector<Value *>
(1,ConstantUInt::get(Type::UIntTy, i)));
here=front->getInstList().insert(here,stInstrC)+1;
}
here=front->getInstList().insert(here,stInstr)+1;
}
//insert a basic block with appropriate code
//along a given edge
void insertBB(Edge ed,
getEdgeCode *edgeCode,
Instruction *rInst,
Instruction *countInst){
BasicBlock* BB1=ed.getFirst()->getElement();
BasicBlock* BB2=ed.getSecond()->getElement();
#ifdef DEBUG_PATH_PROFILES
//debugging info
cerr<<"Edges with codes ######################\n";
cerr<<BB1->getName()<<"->"<<BB2->getName()<<"\n";
cerr<<"########################\n";
#endif
//We need to insert a BB between BB1 and BB2
TerminatorInst *TI=BB1->getTerminator();
BasicBlock *newBB=new BasicBlock("counter", BB1->getParent());
//get code for the new BB
edgeCode->getCode(rInst, countInst, BB1->getParent(), newBB);
//Is terminator a branch instruction?
//then we need to change branch destinations to include new BB
BranchInst *BI=cast<BranchInst>(TI);
if(BI->isUnconditional()){
BI->setUnconditionalDest(newBB);
Instruction *newBI2=new BranchInst(BB2);
newBB->getInstList().push_back(newBI2);
}
else{
Value *cond=BI->getCondition();
BasicBlock *fB, *tB;
if(BI->getSuccessor(0)==BB2){
tB=newBB;
fB=BI->getSuccessor(1);
}
else{
fB=newBB;
tB=BI->getSuccessor(0);
}
delete BB1->getInstList().pop_back();
Instruction *newBI=new BranchInst(tB,fB,cond);
Instruction *newBI2=new BranchInst(BB2);
BB1->getInstList().push_back(newBI);
newBB->getInstList().push_back(newBI2);
}
//now iterate over BB2, and set its Phi nodes right
for(BasicBlock::iterator BB2Inst=BB2->begin(), BBend=BB2->end();
BB2Inst!=BBend; ++BB2Inst){
if(PHINode *phiInst=dyn_cast<PHINode>(*BB2Inst)){
#ifdef DEBUG_PATH_PROFILES
cerr<<"YYYYYYYYYYYYYYYYY\n";
#endif
int bbIndex=phiInst->getBasicBlockIndex(BB1);
if(bbIndex>=0)
phiInst->setIncomingBlock(bbIndex, newBB);
}
}
}
|