1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
|
//===-- Graph.cpp - Implements Graph class --------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements Graph for helping in trace generation This graph gets used by
// "ProfilePaths" class.
//
//===----------------------------------------------------------------------===//
#include "Graph.h"
#include "llvm/Instructions.h"
#include "llvm/Support/Debug.h"
#include <algorithm>
using std::vector;
namespace llvm {
const graphListElement *findNodeInList(const Graph::nodeList &NL,
Node *N) {
for(Graph::nodeList::const_iterator NI = NL.begin(), NE=NL.end(); NI != NE;
++NI)
if (*NI->element== *N)
return &*NI;
return 0;
}
graphListElement *findNodeInList(Graph::nodeList &NL, Node *N) {
for(Graph::nodeList::iterator NI = NL.begin(), NE=NL.end(); NI != NE; ++NI)
if (*NI->element== *N)
return &*NI;
return 0;
}
//graph constructor with root and exit specified
Graph::Graph(std::vector<Node*> n, std::vector<Edge> e,
Node *rt, Node *lt){
strt=rt;
ext=lt;
for(vector<Node* >::iterator x=n.begin(), en=n.end(); x!=en; ++x)
//nodes[*x] = list<graphListElement>();
nodes[*x] = vector<graphListElement>();
for(vector<Edge >::iterator x=e.begin(), en=e.end(); x!=en; ++x){
Edge ee=*x;
int w=ee.getWeight();
//nodes[ee.getFirst()].push_front(graphListElement(ee.getSecond(),w, ee.getRandId()));
nodes[ee.getFirst()].push_back(graphListElement(ee.getSecond(),w, ee.getRandId()));
}
}
//sorting edgelist, called by backEdgeVist ONLY!!!
Graph::nodeList &Graph::sortNodeList(Node *par, nodeList &nl, vector<Edge> &be){
assert(par && "null node pointer");
BasicBlock *bbPar = par->getElement();
if(nl.size()<=1) return nl;
if(getExit() == par) return nl;
for(nodeList::iterator NLI = nl.begin(), NLE = nl.end()-1; NLI != NLE; ++NLI){
nodeList::iterator min = NLI;
for(nodeList::iterator LI = NLI+1, LE = nl.end(); LI!=LE; ++LI){
//if LI < min, min = LI
if(min->element->getElement() == LI->element->getElement() &&
min->element == getExit()){
//same successors: so might be exit???
//if it is exit, then see which is backedge
//check if LI is a left back edge!
TerminatorInst *tti = par->getElement()->getTerminator();
BranchInst *ti = cast<BranchInst>(tti);
assert(ti && "not a branch");
assert(ti->getNumSuccessors()==2 && "less successors!");
BasicBlock *tB = ti->getSuccessor(0);
BasicBlock *fB = ti->getSuccessor(1);
//so one of LI or min must be back edge!
//Algo: if succ(0)!=LI (and so !=min) then succ(0) is backedge
//and then see which of min or LI is backedge
//THEN if LI is in be, then min=LI
if(LI->element->getElement() != tB){//so backedge must be made min!
for(vector<Edge>::iterator VBEI = be.begin(), VBEE = be.end();
VBEI != VBEE; ++VBEI){
if(VBEI->getRandId() == LI->randId){
min = LI;
break;
}
else if(VBEI->getRandId() == min->randId)
break;
}
}
else{// if(LI->element->getElement() != fB)
for(vector<Edge>::iterator VBEI = be.begin(), VBEE = be.end();
VBEI != VBEE; ++VBEI){
if(VBEI->getRandId() == min->randId){
min = LI;
break;
}
else if(VBEI->getRandId() == LI->randId)
break;
}
}
}
else if (min->element->getElement() != LI->element->getElement()){
TerminatorInst *tti = par->getElement()->getTerminator();
BranchInst *ti = cast<BranchInst>(tti);
assert(ti && "not a branch");
if(ti->getNumSuccessors()<=1) continue;
assert(ti->getNumSuccessors()==2 && "less successors!");
BasicBlock *tB = ti->getSuccessor(0);
BasicBlock *fB = ti->getSuccessor(1);
if(tB == LI->element->getElement() || fB == min->element->getElement())
min = LI;
}
}
graphListElement tmpElmnt = *min;
*min = *NLI;
*NLI = tmpElmnt;
}
return nl;
}
//check whether graph has an edge
//having an edge simply means that there is an edge in the graph
//which has same endpoints as the given edge
bool Graph::hasEdge(Edge ed){
if(ed.isNull())
return false;
nodeList &nli= nodes[ed.getFirst()]; //getNodeList(ed.getFirst());
Node *nd2=ed.getSecond();
return (findNodeInList(nli,nd2)!=NULL);
}
//check whether graph has an edge, with a given wt
//having an edge simply means that there is an edge in the graph
//which has same endpoints as the given edge
//This function checks, moreover, that the wt of edge matches too
bool Graph::hasEdgeAndWt(Edge ed){
if(ed.isNull())
return false;
Node *nd2=ed.getSecond();
nodeList &nli = nodes[ed.getFirst()];//getNodeList(ed.getFirst());
for(nodeList::iterator NI=nli.begin(), NE=nli.end(); NI!=NE; ++NI)
if(*NI->element == *nd2 && ed.getWeight()==NI->weight)
return true;
return false;
}
//add a node
void Graph::addNode(Node *nd){
vector<Node *> lt=getAllNodes();
for(vector<Node *>::iterator LI=lt.begin(), LE=lt.end(); LI!=LE;++LI){
if(**LI==*nd)
return;
}
//chng
nodes[nd] =vector<graphListElement>(); //list<graphListElement>();
}
//add an edge
//this adds an edge ONLY when
//the edge to be added does not already exist
//we "equate" two edges here only with their
//end points
void Graph::addEdge(Edge ed, int w){
nodeList &ndList = nodes[ed.getFirst()];
Node *nd2=ed.getSecond();
if(findNodeInList(nodes[ed.getFirst()], nd2))
return;
//ndList.push_front(graphListElement(nd2,w, ed.getRandId()));
ndList.push_back(graphListElement(nd2,w, ed.getRandId()));//chng
//sortNodeList(ed.getFirst(), ndList);
//sort(ndList.begin(), ndList.end(), NodeListSort());
}
//add an edge EVEN IF such an edge already exists
//this may make a multi-graph
//which does happen when we add dummy edges
//to the graph, for compensating for back-edges
void Graph::addEdgeForce(Edge ed){
//nodes[ed.getFirst()].push_front(graphListElement(ed.getSecond(),
//ed.getWeight(), ed.getRandId()));
nodes[ed.getFirst()].push_back
(graphListElement(ed.getSecond(), ed.getWeight(), ed.getRandId()));
//sortNodeList(ed.getFirst(), nodes[ed.getFirst()]);
//sort(nodes[ed.getFirst()].begin(), nodes[ed.getFirst()].end(), NodeListSort());
}
//remove an edge
//Note that it removes just one edge,
//the first edge that is encountered
void Graph::removeEdge(Edge ed){
nodeList &ndList = nodes[ed.getFirst()];
Node &nd2 = *ed.getSecond();
for(nodeList::iterator NI=ndList.begin(), NE=ndList.end(); NI!=NE ;++NI) {
if(*NI->element == nd2) {
ndList.erase(NI);
break;
}
}
}
//remove an edge with a given wt
//Note that it removes just one edge,
//the first edge that is encountered
void Graph::removeEdgeWithWt(Edge ed){
nodeList &ndList = nodes[ed.getFirst()];
Node &nd2 = *ed.getSecond();
for(nodeList::iterator NI=ndList.begin(), NE=ndList.end(); NI!=NE ;++NI) {
if(*NI->element == nd2 && NI->weight==ed.getWeight()) {
ndList.erase(NI);
break;
}
}
}
//set the weight of an edge
void Graph::setWeight(Edge ed){
graphListElement *El = findNodeInList(nodes[ed.getFirst()], ed.getSecond());
if (El)
El->weight=ed.getWeight();
}
//get the list of successor nodes
vector<Node *> Graph::getSuccNodes(Node *nd){
nodeMapTy::const_iterator nli = nodes.find(nd);
assert(nli != nodes.end() && "Node must be in nodes map");
const nodeList &nl = getNodeList(nd);//getSortedNodeList(nd);
vector<Node *> lt;
for(nodeList::const_iterator NI=nl.begin(), NE=nl.end(); NI!=NE; ++NI)
lt.push_back(NI->element);
return lt;
}
//get the number of outgoing edges
int Graph::getNumberOfOutgoingEdges(Node *nd) const {
nodeMapTy::const_iterator nli = nodes.find(nd);
assert(nli != nodes.end() && "Node must be in nodes map");
const nodeList &nl = nli->second;
int count=0;
for(nodeList::const_iterator NI=nl.begin(), NE=nl.end(); NI!=NE; ++NI)
count++;
return count;
}
//get the list of predecessor nodes
vector<Node *> Graph::getPredNodes(Node *nd){
vector<Node *> lt;
for(nodeMapTy::const_iterator EI=nodes.begin(), EE=nodes.end(); EI!=EE ;++EI){
Node *lnode=EI->first;
const nodeList &nl = getNodeList(lnode);
const graphListElement *N = findNodeInList(nl, nd);
if (N) lt.push_back(lnode);
}
return lt;
}
//get the number of predecessor nodes
int Graph::getNumberOfIncomingEdges(Node *nd){
int count=0;
for(nodeMapTy::const_iterator EI=nodes.begin(), EE=nodes.end(); EI!=EE ;++EI){
Node *lnode=EI->first;
const nodeList &nl = getNodeList(lnode);
for(Graph::nodeList::const_iterator NI = nl.begin(), NE=nl.end(); NI != NE;
++NI)
if (*NI->element== *nd)
count++;
}
return count;
}
//get the list of all the vertices in graph
vector<Node *> Graph::getAllNodes() const{
vector<Node *> lt;
for(nodeMapTy::const_iterator x=nodes.begin(), en=nodes.end(); x != en; ++x)
lt.push_back(x->first);
return lt;
}
//get the list of all the vertices in graph
vector<Node *> Graph::getAllNodes(){
vector<Node *> lt;
for(nodeMapTy::const_iterator x=nodes.begin(), en=nodes.end(); x != en; ++x)
lt.push_back(x->first);
return lt;
}
//class to compare two nodes in graph
//based on their wt: this is used in
//finding the maximal spanning tree
struct compare_nodes {
bool operator()(Node *n1, Node *n2){
return n1->getWeight() < n2->getWeight();
}
};
static void printNode(Node *nd){
std::cerr<<"Node:"<<nd->getElement()->getName()<<"\n";
}
//Get the Maximal spanning tree (also a graph)
//of the graph
Graph* Graph::getMaxSpanningTree(){
//assume connected graph
Graph *st=new Graph();//max spanning tree, undirected edges
int inf=9999999;//largest key
vector<Node *> lt = getAllNodes();
//initially put all vertices in vector vt
//assign wt(root)=0
//wt(others)=infinity
//
//now:
//pull out u: a vertex frm vt of min wt
//for all vertices w in vt,
//if wt(w) greater than
//the wt(u->w), then assign
//wt(w) to be wt(u->w).
//
//make parent(u)=w in the spanning tree
//keep pulling out vertices from vt till it is empty
vector<Node *> vt;
std::map<Node*, Node* > parent;
std::map<Node*, int > ed_weight;
//initialize: wt(root)=0, wt(others)=infinity
//parent(root)=NULL, parent(others) not defined (but not null)
for(vector<Node *>::iterator LI=lt.begin(), LE=lt.end(); LI!=LE; ++LI){
Node *thisNode=*LI;
if(*thisNode == *getRoot()){
thisNode->setWeight(0);
parent[thisNode]=NULL;
ed_weight[thisNode]=0;
}
else{
thisNode->setWeight(inf);
}
st->addNode(thisNode);//add all nodes to spanning tree
//we later need to assign edges in the tree
vt.push_back(thisNode); //pushed all nodes in vt
}
//keep pulling out vertex of min wt from vt
while(!vt.empty()){
Node *u=*(min_element(vt.begin(), vt.end(), compare_nodes()));
DEBUG(std::cerr<<"popped wt"<<(u)->getWeight()<<"\n";
printNode(u));
if(parent[u]!=NULL){ //so not root
Edge edge(parent[u],u, ed_weight[u]); //assign edge in spanning tree
st->addEdge(edge,ed_weight[u]);
DEBUG(std::cerr<<"added:\n";
printEdge(edge));
}
//vt.erase(u);
//remove u frm vt
for(vector<Node *>::iterator VI=vt.begin(), VE=vt.end(); VI!=VE; ++VI){
if(**VI==*u){
vt.erase(VI);
break;
}
}
//assign wt(v) to all adjacent vertices v of u
//only if v is in vt
Graph::nodeList &nl = getNodeList(u);
for(nodeList::iterator NI=nl.begin(), NE=nl.end(); NI!=NE; ++NI){
Node *v=NI->element;
int weight=-NI->weight;
//check if v is in vt
bool contains=false;
for(vector<Node *>::iterator VI=vt.begin(), VE=vt.end(); VI!=VE; ++VI){
if(**VI==*v){
contains=true;
break;
}
}
DEBUG(std::cerr<<"wt:v->wt"<<weight<<":"<<v->getWeight()<<"\n";
printNode(v);std::cerr<<"node wt:"<<(*v).weight<<"\n");
//so if v in in vt, change wt(v) to wt(u->v)
//only if wt(u->v)<wt(v)
if(contains && weight<v->getWeight()){
parent[v]=u;
ed_weight[v]=weight;
v->setWeight(weight);
DEBUG(std::cerr<<v->getWeight()<<":Set weight------\n";
printGraph();
printEdge(Edge(u,v,weight)));
}
}
}
return st;
}
//print the graph (for debugging)
void Graph::printGraph(){
vector<Node *> lt=getAllNodes();
std::cerr<<"Graph---------------------\n";
for(vector<Node *>::iterator LI=lt.begin(), LE=lt.end(); LI!=LE; ++LI){
std::cerr<<((*LI)->getElement())->getName()<<"->";
Graph::nodeList &nl = getNodeList(*LI);
for(Graph::nodeList::iterator NI=nl.begin(), NE=nl.end(); NI!=NE; ++NI){
std::cerr<<":"<<"("<<(NI->element->getElement())
->getName()<<":"<<NI->element->getWeight()<<","<<NI->weight<<")";
}
std::cerr<<"--------\n";
}
}
//get a list of nodes in the graph
//in r-topological sorted order
//note that we assumed graph to be connected
vector<Node *> Graph::reverseTopologicalSort(){
vector <Node *> toReturn;
vector<Node *> lt=getAllNodes();
for(vector<Node *>::iterator LI=lt.begin(), LE=lt.end(); LI!=LE; ++LI){
if((*LI)->getWeight()!=GREY && (*LI)->getWeight()!=BLACK)
DFS_Visit(*LI, toReturn);
}
return toReturn;
}
//a private method for doing DFS traversal of graph
//this is used in determining the reverse topological sort
//of the graph
void Graph::DFS_Visit(Node *nd, vector<Node *> &toReturn){
nd->setWeight(GREY);
vector<Node *> lt=getSuccNodes(nd);
for(vector<Node *>::iterator LI=lt.begin(), LE=lt.end(); LI!=LE; ++LI){
if((*LI)->getWeight()!=GREY && (*LI)->getWeight()!=BLACK)
DFS_Visit(*LI, toReturn);
}
toReturn.push_back(nd);
}
//Ordinarily, the graph is directional
//this converts the graph into an
//undirectional graph
//This is done by adding an edge
//v->u for all existing edges u->v
void Graph::makeUnDirectional(){
vector<Node* > allNodes=getAllNodes();
for(vector<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
++NI) {
nodeList &nl = getNodeList(*NI);
for(nodeList::iterator NLI=nl.begin(), NLE=nl.end(); NLI!=NLE; ++NLI){
Edge ed(NLI->element, *NI, NLI->weight);
if(!hasEdgeAndWt(ed)){
DEBUG(std::cerr<<"######doesn't hv\n";
printEdge(ed));
addEdgeForce(ed);
}
}
}
}
//reverse the sign of weights on edges
//this way, max-spanning tree could be obtained
//using min-spanning tree, and vice versa
void Graph::reverseWts(){
vector<Node *> allNodes=getAllNodes();
for(vector<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
++NI) {
nodeList &node_list = getNodeList(*NI);
for(nodeList::iterator NLI=nodes[*NI].begin(), NLE=nodes[*NI].end();
NLI!=NLE; ++NLI)
NLI->weight=-NLI->weight;
}
}
//getting the backedges in a graph
//Its a variation of DFS to get the backedges in the graph
//We get back edges by associating a time
//and a color with each vertex.
//The time of a vertex is the time when it was first visited
//The color of a vertex is initially WHITE,
//Changes to GREY when it is first visited,
//and changes to BLACK when ALL its neighbors
//have been visited
//So we have a back edge when we meet a successor of
//a node with smaller time, and GREY color
void Graph::getBackEdges(vector<Edge > &be, std::map<Node *, int> &d){
std::map<Node *, Color > color;
int time=0;
getBackEdgesVisit(getRoot(), be, color, d, time);
}
//helper function to get back edges: it is called by
//the "getBackEdges" function above
void Graph::getBackEdgesVisit(Node *u, vector<Edge > &be,
std::map<Node *, Color > &color,
std::map<Node *, int > &d, int &time) {
color[u]=GREY;
time++;
d[u]=time;
vector<graphListElement> &succ_list = getNodeList(u);
for(vector<graphListElement>::iterator vl=succ_list.begin(),
ve=succ_list.end(); vl!=ve; ++vl){
Node *v=vl->element;
if(color[v]!=GREY && color[v]!=BLACK){
getBackEdgesVisit(v, be, color, d, time);
}
//now checking for d and f vals
if(color[v]==GREY){
//so v is ancestor of u if time of u > time of v
if(d[u] >= d[v]){
Edge *ed=new Edge(u, v,vl->weight, vl->randId);
if (!(*u == *getExit() && *v == *getRoot()))
be.push_back(*ed); // choose the forward edges
}
}
}
color[u]=BLACK;//done with visiting the node and its neighbors
}
} // End llvm namespace
|