aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Transforms/Instrumentation/RSProfiling.cpp
blob: e487d2fb478efa1e10080d4e459e75047d8c3b6d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
//===- RSProfiling.cpp - Various profiling using random sampling ----------===//
//
//                      The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// These passes implement a random sampling based profiling.  Different methods
// of choosing when to sample are supported, as well as different types of
// profiling.  This is done as two passes.  The first is a sequence of profiling
// passes which insert profiling into the program, and remember what they 
// inserted.
//
// The second stage duplicates all instructions in a function, ignoring the 
// profiling code, then connects the two versions togeather at the entry and at
// backedges.  At each connection point a choice is made as to whether to jump
// to the profiled code (take a sample) or execute the unprofiled code.
//
// It is highly recommended that after this pass one runs mem2reg and adce
// (instcombine load-vn gdce dse also are good to run afterwards)
//
// This design is intended to make the profiling passes independent of the RS
// framework, but any profiling pass that implements the RSProfiling interface
// is compatible with the rs framework (and thus can be sampled)
//
// TODO: obviously the block and function profiling are almost identical to the
// existing ones, so they can be unified (esp since these passes are valid
// without the rs framework).
// TODO: Fix choice code so that frequency is not hard coded
//
//===----------------------------------------------------------------------===//

#include "llvm/Pass.h"
#include "llvm/LLVMContext.h"
#include "llvm/Module.h"
#include "llvm/Instructions.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Intrinsics.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Instrumentation.h"
#include "RSProfiling.h"
#include <set>
#include <map>
#include <queue>
using namespace llvm;

namespace {
  enum RandomMeth {
    GBV, GBVO, HOSTCC
  };
}

static cl::opt<RandomMeth> RandomMethod("profile-randomness",
    cl::desc("How to randomly choose to profile:"),
    cl::values(
               clEnumValN(GBV, "global", "global counter"),
               clEnumValN(GBVO, "ra_global", 
                          "register allocated global counter"),
               clEnumValN(HOSTCC, "rdcc", "cycle counter"),
               clEnumValEnd));
  
namespace {
  /// NullProfilerRS - The basic profiler that does nothing.  It is the default
  /// profiler and thus terminates RSProfiler chains.  It is useful for 
  /// measuring framework overhead
  class VISIBILITY_HIDDEN NullProfilerRS : public RSProfilers {
  public:
    static char ID; // Pass identification, replacement for typeid
    bool isProfiling(Value* v) {
      return false;
    }
    bool runOnModule(Module &M) {
      return false;
    }
    void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.setPreservesAll();
    }
  };
}

static RegisterAnalysisGroup<RSProfilers> A("Profiling passes");
static RegisterPass<NullProfilerRS> NP("insert-null-profiling-rs",
                                       "Measure profiling framework overhead");
static RegisterAnalysisGroup<RSProfilers, true> NPT(NP);

namespace {
  /// Chooser - Something that chooses when to make a sample of the profiled code
  class VISIBILITY_HIDDEN Chooser {
  public:
    /// ProcessChoicePoint - is called for each basic block inserted to choose 
    /// between normal and sample code
    virtual void ProcessChoicePoint(BasicBlock*) = 0;
    /// PrepFunction - is called once per function before other work is done.
    /// This gives the opertunity to insert new allocas and such.
    virtual void PrepFunction(Function*) = 0;
    virtual ~Chooser() {}
  };

  //Things that implement sampling policies
  //A global value that is read-mod-stored to choose when to sample.
  //A sample is taken when the global counter hits 0
  class VISIBILITY_HIDDEN GlobalRandomCounter : public Chooser {
    GlobalVariable* Counter;
    Value* ResetValue;
    const IntegerType* T;
  public:
    GlobalRandomCounter(Module& M, const IntegerType* t, uint64_t resetval);
    virtual ~GlobalRandomCounter();
    virtual void PrepFunction(Function* F);
    virtual void ProcessChoicePoint(BasicBlock* bb);
  };

  //Same is GRC, but allow register allocation of the global counter
  class VISIBILITY_HIDDEN GlobalRandomCounterOpt : public Chooser {
    GlobalVariable* Counter;
    Value* ResetValue;
    AllocaInst* AI;
    const IntegerType* T;
  public:
    GlobalRandomCounterOpt(Module& M, const IntegerType* t, uint64_t resetval);
    virtual ~GlobalRandomCounterOpt();
    virtual void PrepFunction(Function* F);
    virtual void ProcessChoicePoint(BasicBlock* bb);
  };

  //Use the cycle counter intrinsic as a source of pseudo randomness when
  //deciding when to sample.
  class VISIBILITY_HIDDEN CycleCounter : public Chooser {
    uint64_t rm;
    Constant *F;
  public:
    CycleCounter(Module& m, uint64_t resetmask);
    virtual ~CycleCounter();
    virtual void PrepFunction(Function* F);
    virtual void ProcessChoicePoint(BasicBlock* bb);
  };

  /// ProfilerRS - Insert the random sampling framework
  struct VISIBILITY_HIDDEN ProfilerRS : public FunctionPass {
    static char ID; // Pass identification, replacement for typeid
    ProfilerRS() : FunctionPass(&ID) {}

    std::map<Value*, Value*> TransCache;
    std::set<BasicBlock*> ChoicePoints;
    Chooser* c;

    //Translate and duplicate values for the new profile free version of stuff
    Value* Translate(Value* v);
    //Duplicate an entire function (with out profiling)
    void Duplicate(Function& F, RSProfilers& LI);
    //Called once for each backedge, handle the insertion of choice points and
    //the interconection of the two versions of the code
    void ProcessBackEdge(BasicBlock* src, BasicBlock* dst, Function& F);
    bool runOnFunction(Function& F);
    bool doInitialization(Module &M);
    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
  };
}

static RegisterPass<ProfilerRS>
X("insert-rs-profiling-framework",
  "Insert random sampling instrumentation framework");

char RSProfilers::ID = 0;
char NullProfilerRS::ID = 0;
char ProfilerRS::ID = 0;

//Local utilities
static void ReplacePhiPred(BasicBlock* btarget, 
                           BasicBlock* bold, BasicBlock* bnew);

static void CollapsePhi(BasicBlock* btarget, BasicBlock* bsrc);

template<class T>
static void recBackEdge(BasicBlock* bb, T& BackEdges, 
                        std::map<BasicBlock*, int>& color,
                        std::map<BasicBlock*, int>& depth,
                        std::map<BasicBlock*, int>& finish,
                        int& time);

//find the back edges and where they go to
template<class T>
static void getBackEdges(Function& F, T& BackEdges);


///////////////////////////////////////
// Methods of choosing when to profile
///////////////////////////////////////
  
GlobalRandomCounter::GlobalRandomCounter(Module& M, const IntegerType* t,
                                         uint64_t resetval) : T(t) {
  ConstantInt* Init = M.getContext().getConstantInt(T, resetval); 
  ResetValue = Init;
  Counter = new GlobalVariable(T, false, GlobalValue::InternalLinkage,
                               Init, "RandomSteeringCounter", &M);
}

GlobalRandomCounter::~GlobalRandomCounter() {}

void GlobalRandomCounter::PrepFunction(Function* F) {}

void GlobalRandomCounter::ProcessChoicePoint(BasicBlock* bb) {
  BranchInst* t = cast<BranchInst>(bb->getTerminator());
  LLVMContext *Context = bb->getContext();
  
  //decrement counter
  LoadInst* l = new LoadInst(Counter, "counter", t);
  
  ICmpInst* s = new ICmpInst(ICmpInst::ICMP_EQ, l,
                             Context->getConstantInt(T, 0), 
                             "countercc", t);

  Value* nv = BinaryOperator::CreateSub(l, Context->getConstantInt(T, 1),
                                        "counternew", t);
  new StoreInst(nv, Counter, t);
  t->setCondition(s);
  
  //reset counter
  BasicBlock* oldnext = t->getSuccessor(0);
  BasicBlock* resetblock = BasicBlock::Create("reset", oldnext->getParent(), 
                                              oldnext);
  TerminatorInst* t2 = BranchInst::Create(oldnext, resetblock);
  t->setSuccessor(0, resetblock);
  new StoreInst(ResetValue, Counter, t2);
  ReplacePhiPred(oldnext, bb, resetblock);
}

GlobalRandomCounterOpt::GlobalRandomCounterOpt(Module& M, const IntegerType* t,
                                               uint64_t resetval) 
  : AI(0), T(t) {
  ConstantInt* Init = M.getContext().getConstantInt(T, resetval);
  ResetValue  = Init;
  Counter = new GlobalVariable(T, false, GlobalValue::InternalLinkage,
                               Init, "RandomSteeringCounter", &M);
}

GlobalRandomCounterOpt::~GlobalRandomCounterOpt() {}

void GlobalRandomCounterOpt::PrepFunction(Function* F) {
  //make a local temporary to cache the global
  BasicBlock& bb = F->getEntryBlock();
  BasicBlock::iterator InsertPt = bb.begin();
  AI = new AllocaInst(T, 0, "localcounter", InsertPt);
  LoadInst* l = new LoadInst(Counter, "counterload", InsertPt);
  new StoreInst(l, AI, InsertPt);
  
  //modify all functions and return values to restore the local variable to/from
  //the global variable
  for(Function::iterator fib = F->begin(), fie = F->end();
      fib != fie; ++fib)
    for(BasicBlock::iterator bib = fib->begin(), bie = fib->end();
        bib != bie; ++bib)
      if (isa<CallInst>(bib)) {
        LoadInst* l = new LoadInst(AI, "counter", bib);
        new StoreInst(l, Counter, bib);
        l = new LoadInst(Counter, "counter", ++bib);
        new StoreInst(l, AI, bib--);
      } else if (isa<InvokeInst>(bib)) {
        LoadInst* l = new LoadInst(AI, "counter", bib);
        new StoreInst(l, Counter, bib);
        
        BasicBlock* bb = cast<InvokeInst>(bib)->getNormalDest();
        BasicBlock::iterator i = bb->getFirstNonPHI();
        l = new LoadInst(Counter, "counter", i);
        
        bb = cast<InvokeInst>(bib)->getUnwindDest();
        i = bb->getFirstNonPHI();
        l = new LoadInst(Counter, "counter", i);
        new StoreInst(l, AI, i);
      } else if (isa<UnwindInst>(&*bib) || isa<ReturnInst>(&*bib)) {
        LoadInst* l = new LoadInst(AI, "counter", bib);
        new StoreInst(l, Counter, bib);
      }
}

void GlobalRandomCounterOpt::ProcessChoicePoint(BasicBlock* bb) {
  BranchInst* t = cast<BranchInst>(bb->getTerminator());
  LLVMContext *Context = bb->getContext();
  
  //decrement counter
  LoadInst* l = new LoadInst(AI, "counter", t);
  
  ICmpInst* s = new ICmpInst(ICmpInst::ICMP_EQ, l,
                             Context->getConstantInt(T, 0), 
                             "countercc", t);

  Value* nv = BinaryOperator::CreateSub(l, Context->getConstantInt(T, 1),
                                        "counternew", t);
  new StoreInst(nv, AI, t);
  t->setCondition(s);
  
  //reset counter
  BasicBlock* oldnext = t->getSuccessor(0);
  BasicBlock* resetblock = BasicBlock::Create("reset", oldnext->getParent(), 
                                              oldnext);
  TerminatorInst* t2 = BranchInst::Create(oldnext, resetblock);
  t->setSuccessor(0, resetblock);
  new StoreInst(ResetValue, AI, t2);
  ReplacePhiPred(oldnext, bb, resetblock);
}


CycleCounter::CycleCounter(Module& m, uint64_t resetmask) : rm(resetmask) {
  F = Intrinsic::getDeclaration(&m, Intrinsic::readcyclecounter);
}

CycleCounter::~CycleCounter() {}

void CycleCounter::PrepFunction(Function* F) {}

void CycleCounter::ProcessChoicePoint(BasicBlock* bb) {
  BranchInst* t = cast<BranchInst>(bb->getTerminator());
  LLVMContext *Context = bb->getContext();
  
  CallInst* c = CallInst::Create(F, "rdcc", t);
  BinaryOperator* b = 
    BinaryOperator::CreateAnd(c, Context->getConstantInt(Type::Int64Ty, rm),
                              "mrdcc", t);
  
  ICmpInst *s = new ICmpInst(ICmpInst::ICMP_EQ, b,
                             Context->getConstantInt(Type::Int64Ty, 0), 
                             "mrdccc", t);

  t->setCondition(s);
}

///////////////////////////////////////
// Profiling:
///////////////////////////////////////
bool RSProfilers_std::isProfiling(Value* v) {
  if (profcode.find(v) != profcode.end())
    return true;
  //else
  RSProfilers& LI = getAnalysis<RSProfilers>();
  return LI.isProfiling(v);
}

void RSProfilers_std::IncrementCounterInBlock(BasicBlock *BB, unsigned CounterNum,
                                          GlobalValue *CounterArray) {
  // Insert the increment after any alloca or PHI instructions...
  BasicBlock::iterator InsertPos = BB->getFirstNonPHI();
  while (isa<AllocaInst>(InsertPos))
    ++InsertPos;
  
  // Create the getelementptr constant expression
  std::vector<Constant*> Indices(2);
  Indices[0] = Context->getNullValue(Type::Int32Ty);
  Indices[1] = Context->getConstantInt(Type::Int32Ty, CounterNum);
  Constant *ElementPtr = Context->getConstantExprGetElementPtr(CounterArray,
                                                        &Indices[0], 2);
  
  // Load, increment and store the value back.
  Value *OldVal = new LoadInst(ElementPtr, "OldCounter", InsertPos);
  profcode.insert(OldVal);
  Value *NewVal = BinaryOperator::CreateAdd(OldVal,
                                     Context->getConstantInt(Type::Int32Ty, 1),
                                            "NewCounter", InsertPos);
  profcode.insert(NewVal);
  profcode.insert(new StoreInst(NewVal, ElementPtr, InsertPos));
}

void RSProfilers_std::getAnalysisUsage(AnalysisUsage &AU) const {
  //grab any outstanding profiler, or get the null one
  AU.addRequired<RSProfilers>();
}

///////////////////////////////////////
// RS Framework
///////////////////////////////////////

Value* ProfilerRS::Translate(Value* v) {
  if(TransCache[v])
    return TransCache[v];
  
  if (BasicBlock* bb = dyn_cast<BasicBlock>(v)) {
    if (bb == &bb->getParent()->getEntryBlock())
      TransCache[bb] = bb; //don't translate entry block
    else
      TransCache[bb] = BasicBlock::Create("dup_" + bb->getName(),
                                          bb->getParent(), NULL);
    return TransCache[bb];
  } else if (Instruction* i = dyn_cast<Instruction>(v)) {
    //we have already translated this
    //do not translate entry block allocas
    if(&i->getParent()->getParent()->getEntryBlock() == i->getParent()) {
      TransCache[i] = i;
      return i;
    } else {
      //translate this
      Instruction* i2 = i->clone();
      if (i->hasName())
        i2->setName("dup_" + i->getName());
      TransCache[i] = i2;
      //NumNewInst++;
      for (unsigned x = 0; x < i2->getNumOperands(); ++x)
        i2->setOperand(x, Translate(i2->getOperand(x)));
      return i2;
    }
  } else if (isa<Function>(v) || isa<Constant>(v) || isa<Argument>(v)) {
    TransCache[v] = v;
    return v;
  }
  assert(0 && "Value not handled");
  return 0;
}

void ProfilerRS::Duplicate(Function& F, RSProfilers& LI)
{
  //perform a breadth first search, building up a duplicate of the code
  std::queue<BasicBlock*> worklist;
  std::set<BasicBlock*> seen;
  
  //This loop ensures proper BB order, to help performance
  for (Function::iterator fib = F.begin(), fie = F.end(); fib != fie; ++fib)
    worklist.push(fib);
  while (!worklist.empty()) {
    Translate(worklist.front());
    worklist.pop();
  }
  
  //remember than reg2mem created a new entry block we don't want to duplicate
  worklist.push(F.getEntryBlock().getTerminator()->getSuccessor(0));
  seen.insert(&F.getEntryBlock());
  
  while (!worklist.empty()) {
    BasicBlock* bb = worklist.front();
    worklist.pop();
    if(seen.find(bb) == seen.end()) {
      BasicBlock* bbtarget = cast<BasicBlock>(Translate(bb));
      BasicBlock::InstListType& instlist = bbtarget->getInstList();
      for (BasicBlock::iterator iib = bb->begin(), iie = bb->end(); 
           iib != iie; ++iib) {
        //NumOldInst++;
        if (!LI.isProfiling(&*iib)) {
          Instruction* i = cast<Instruction>(Translate(iib));
          instlist.insert(bbtarget->end(), i);
        }
      }
      //updated search state;
      seen.insert(bb);
      TerminatorInst* ti = bb->getTerminator();
      for (unsigned x = 0; x < ti->getNumSuccessors(); ++x) {
        BasicBlock* bbs = ti->getSuccessor(x);
        if (seen.find(bbs) == seen.end()) {
          worklist.push(bbs);
        }
      }
    }
  }
}

void ProfilerRS::ProcessBackEdge(BasicBlock* src, BasicBlock* dst, Function& F) {
  //given a backedge from B -> A, and translations A' and B',
  //a: insert C and C'
  //b: add branches in C to A and A' and in C' to A and A'
  //c: mod terminators@B, replace A with C
  //d: mod terminators@B', replace A' with C'
  //e: mod phis@A for pred B to be pred C
  //       if multiple entries, simplify to one
  //f: mod phis@A' for pred B' to be pred C'
  //       if multiple entries, simplify to one
  //g: for all phis@A with pred C using x
  //       add in edge from C' using x'
  //       add in edge from C using x in A'
  
  //a:
  Function::iterator BBN = src; ++BBN;
  BasicBlock* bbC = BasicBlock::Create("choice", &F, BBN);
  //ChoicePoints.insert(bbC);
  BBN = cast<BasicBlock>(Translate(src));
  BasicBlock* bbCp = BasicBlock::Create("choice", &F, ++BBN);
  ChoicePoints.insert(bbCp);
  
  //b:
  BranchInst::Create(cast<BasicBlock>(Translate(dst)), bbC);
  BranchInst::Create(dst, cast<BasicBlock>(Translate(dst)), 
                     Context->getConstantInt(Type::Int1Ty, true), bbCp);
  //c:
  {
    TerminatorInst* iB = src->getTerminator();
    for (unsigned x = 0; x < iB->getNumSuccessors(); ++x)
      if (iB->getSuccessor(x) == dst)
        iB->setSuccessor(x, bbC);
  }
  //d:
  {
    TerminatorInst* iBp = cast<TerminatorInst>(Translate(src->getTerminator()));
    for (unsigned x = 0; x < iBp->getNumSuccessors(); ++x)
      if (iBp->getSuccessor(x) == cast<BasicBlock>(Translate(dst)))
        iBp->setSuccessor(x, bbCp);
  }
  //e:
  ReplacePhiPred(dst, src, bbC);
  //src could be a switch, in which case we are replacing several edges with one
  //thus collapse those edges int the Phi
  CollapsePhi(dst, bbC);
  //f:
  ReplacePhiPred(cast<BasicBlock>(Translate(dst)),
                 cast<BasicBlock>(Translate(src)),bbCp);
  CollapsePhi(cast<BasicBlock>(Translate(dst)), bbCp);
  //g:
  for(BasicBlock::iterator ib = dst->begin(), ie = dst->end(); ib != ie;
      ++ib)
    if (PHINode* phi = dyn_cast<PHINode>(&*ib)) {
      for(unsigned x = 0; x < phi->getNumIncomingValues(); ++x)
        if(bbC == phi->getIncomingBlock(x)) {
          phi->addIncoming(Translate(phi->getIncomingValue(x)), bbCp);
          cast<PHINode>(Translate(phi))->addIncoming(phi->getIncomingValue(x), 
                                                     bbC);
        }
      phi->removeIncomingValue(bbC);
    }
}

bool ProfilerRS::runOnFunction(Function& F) {
  if (!F.isDeclaration()) {
    std::set<std::pair<BasicBlock*, BasicBlock*> > BackEdges;
    RSProfilers& LI = getAnalysis<RSProfilers>();
    
    getBackEdges(F, BackEdges);
    Duplicate(F, LI);
    //assume that stuff worked.  now connect the duplicated basic blocks 
    //with the originals in such a way as to preserve ssa.  yuk!
    for (std::set<std::pair<BasicBlock*, BasicBlock*> >::iterator 
           ib = BackEdges.begin(), ie = BackEdges.end(); ib != ie; ++ib)
      ProcessBackEdge(ib->first, ib->second, F);
    
    //oh, and add the edge from the reg2mem created entry node to the 
    //duplicated second node
    TerminatorInst* T = F.getEntryBlock().getTerminator();
    ReplaceInstWithInst(T, BranchInst::Create(T->getSuccessor(0),
                                              cast<BasicBlock>(
                                                Translate(T->getSuccessor(0))),
                                          Context->getConstantInt(Type::Int1Ty,
                                                               true)));
    
    //do whatever is needed now that the function is duplicated
    c->PrepFunction(&F);
    
    //add entry node to choice points
    ChoicePoints.insert(&F.getEntryBlock());
    
    for (std::set<BasicBlock*>::iterator 
           ii = ChoicePoints.begin(), ie = ChoicePoints.end(); ii != ie; ++ii)
      c->ProcessChoicePoint(*ii);
    
    ChoicePoints.clear();
    TransCache.clear();
    
    return true;
  }
  return false;
}

bool ProfilerRS::doInitialization(Module &M) {
  switch (RandomMethod) {
  case GBV:
    c = new GlobalRandomCounter(M, Type::Int32Ty, (1 << 14) - 1);
    break;
  case GBVO:
    c = new GlobalRandomCounterOpt(M, Type::Int32Ty, (1 << 14) - 1);
    break;
  case HOSTCC:
    c = new CycleCounter(M, (1 << 14) - 1);
    break;
  };
  return true;
}

void ProfilerRS::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.addRequired<RSProfilers>();
  AU.addRequiredID(DemoteRegisterToMemoryID);
}

///////////////////////////////////////
// Utilities:
///////////////////////////////////////
static void ReplacePhiPred(BasicBlock* btarget, 
                           BasicBlock* bold, BasicBlock* bnew) {
  for(BasicBlock::iterator ib = btarget->begin(), ie = btarget->end();
      ib != ie; ++ib)
    if (PHINode* phi = dyn_cast<PHINode>(&*ib)) {
      for(unsigned x = 0; x < phi->getNumIncomingValues(); ++x)
        if(bold == phi->getIncomingBlock(x))
          phi->setIncomingBlock(x, bnew);
    }
}

static void CollapsePhi(BasicBlock* btarget, BasicBlock* bsrc) {
  for(BasicBlock::iterator ib = btarget->begin(), ie = btarget->end();
      ib != ie; ++ib)
    if (PHINode* phi = dyn_cast<PHINode>(&*ib)) {
      std::map<BasicBlock*, Value*> counter;
      for(unsigned i = 0; i < phi->getNumIncomingValues(); ) {
        if (counter[phi->getIncomingBlock(i)]) {
          assert(phi->getIncomingValue(i) == counter[phi->getIncomingBlock(i)]);
          phi->removeIncomingValue(i, false);
        } else {
          counter[phi->getIncomingBlock(i)] = phi->getIncomingValue(i);
          ++i;
        }
      }
    } 
}

template<class T>
static void recBackEdge(BasicBlock* bb, T& BackEdges, 
                        std::map<BasicBlock*, int>& color,
                        std::map<BasicBlock*, int>& depth,
                        std::map<BasicBlock*, int>& finish,
                        int& time)
{
  color[bb] = 1;
  ++time;
  depth[bb] = time;
  TerminatorInst* t= bb->getTerminator();
  for(unsigned i = 0; i < t->getNumSuccessors(); ++i) {
    BasicBlock* bbnew = t->getSuccessor(i);
    if (color[bbnew] == 0)
      recBackEdge(bbnew, BackEdges, color, depth, finish, time);
    else if (color[bbnew] == 1) {
      BackEdges.insert(std::make_pair(bb, bbnew));
      //NumBackEdges++;
    }
  }
  color[bb] = 2;
  ++time;
  finish[bb] = time;
}



//find the back edges and where they go to
template<class T>
static void getBackEdges(Function& F, T& BackEdges) {
  std::map<BasicBlock*, int> color;
  std::map<BasicBlock*, int> depth;
  std::map<BasicBlock*, int> finish;
  int time = 0;
  recBackEdge(&F.getEntryBlock(), BackEdges, color, depth, finish, time);
  DOUT << F.getName() << " " << BackEdges.size() << "\n";
}


//Creation functions
ModulePass* llvm::createNullProfilerRSPass() {
  return new NullProfilerRS();
}

FunctionPass* llvm::createRSProfilingPass() {
  return new ProfilerRS();
}