aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Transforms/LevelRaise.cpp
blob: 039bfd20d726be973de60131f43a01fd0c329270 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
//===- LevelRaise.cpp - Code to change LLVM to higher level -----------------=//
//
// This file implements the 'raising' part of the LevelChange API.  This is
// useful because, in general, it makes the LLVM code terser and easier to
// analyze.  Note that it is good to run DCE after doing this transformation.
//
//  Eliminate silly things in the source that do not effect the level, but do
//  clean up the code:
//    * Casts of casts
//    - getelementptr/load & getelementptr/store are folded into a direct
//      load or store
//    - Convert this code (for both alloca and malloc):
//          %reg110 = shl uint %n, ubyte 2          ;;<uint>
//          %reg108 = alloca ubyte, uint %reg110            ;;<ubyte*>
//          %cast76 = cast ubyte* %reg108 to uint*          ;;<uint*>
//      To: %cast76 = alloca uint, uint %n
//   Convert explicit addressing to use getelementptr instruction where possible
//      - ...
//
//   Convert explicit addressing on pointers to use getelementptr instruction.
//    - If a pointer is used by arithmetic operation, insert an array casted
//      version into the source program, only for the following pointer types:
//        * Method argument pointers
//        - Pointers returned by alloca or malloc
//        - Pointers returned by function calls
//    - If a pointer is indexed with a value scaled by a constant size equal
//      to the element size of the array, the expression is replaced with a
//      getelementptr instruction.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/LevelChange.h"
#include "llvm/Method.h"
#include "llvm/Support/STLExtras.h"
#include "llvm/iOther.h"
#include "llvm/iMemory.h"
#include "llvm/ConstPoolVals.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Optimizations/ConstantHandling.h"
#include "llvm/Optimizations/DCE.h"
#include <map>
#include <algorithm>

#include "llvm/Assembly/Writer.h"

//#define DEBUG_PEEPHOLE_INSTS 1

#ifdef DEBUG_PEEPHOLE_INSTS
#define PRINT_PEEPHOLE(ID, NUM, I)            \
  cerr << "Inst P/H " << ID << "[" << NUM << "] " << I;
#else
#define PRINT_PEEPHOLE(ID, NUM, I)
#endif

#define PRINT_PEEPHOLE1(ID, I1) do { PRINT_PEEPHOLE(ID, 0, I1); } while (0)
#define PRINT_PEEPHOLE2(ID, I1, I2) \
  do { PRINT_PEEPHOLE(ID, 0, I1); PRINT_PEEPHOLE(ID, 1, I2); } while (0)
#define PRINT_PEEPHOLE3(ID, I1, I2, I3) \
  do { PRINT_PEEPHOLE(ID, 0, I1); PRINT_PEEPHOLE(ID, 1, I2); \
       PRINT_PEEPHOLE(ID, 2, I3); } while (0)


// TargetData Hack: Eventually we will have annotations given to us by the
// backend so that we know stuff about type size and alignments.  For now
// though, just use this, because it happens to match the model that GCC uses.
//
const TargetData TD("LevelRaise: Should be GCC though!");


// losslessCastableTypes - Return true if the types are bitwise equivalent.
// This predicate returns true if it is possible to cast from one type to
// another without gaining or losing precision, or altering the bits in any way.
//
static bool losslessCastableTypes(const Type *T1, const Type *T2) {
  if (!T1->isPrimitiveType() && !isa<PointerType>(T1)) return false;
  if (!T2->isPrimitiveType() && !isa<PointerType>(T2)) return false;

  if (T1->getPrimitiveID() == T2->getPrimitiveID())
    return true;  // Handles identity cast, and cast of differing pointer types

  // Now we know that they are two differing primitive or pointer types
  switch (T1->getPrimitiveID()) {
  case Type::UByteTyID:   return T2 == Type::SByteTy;
  case Type::SByteTyID:   return T2 == Type::UByteTy;
  case Type::UShortTyID:  return T2 == Type::ShortTy;
  case Type::ShortTyID:   return T2 == Type::UShortTy;
  case Type::UIntTyID:    return T2 == Type::IntTy;
  case Type::IntTyID:     return T2 == Type::UIntTy;
  case Type::ULongTyID:
  case Type::LongTyID:
  case Type::PointerTyID:
    return T2 == Type::ULongTy || T2 == Type::LongTy ||
           T2->getPrimitiveID() == Type::PointerTyID;
  default:
    return false;  // Other types have no identity values
  }
}


// isReinterpretingCast - Return true if the cast instruction specified will
// cause the operand to be "reinterpreted".  A value is reinterpreted if the
// cast instruction would cause the underlying bits to change.
//
static inline bool isReinterpretingCast(const CastInst *CI) {
  return !losslessCastableTypes(CI->getOperand(0)->getType(), CI->getType());
}


// getPointedToStruct - If the argument is a pointer type, and the pointed to
// value is a struct type, return the struct type, else return null.
//
static const StructType *getPointedToStruct(const Type *Ty) {
  const PointerType *PT = dyn_cast<PointerType>(Ty);
  return PT ? dyn_cast<StructType>(PT->getValueType()) : 0;
}


// getStructOffsetType - Return a vector of offsets that are to be used to index
// into the specified struct type to get as close as possible to index as we
// can.  Note that it is possible that we cannot get exactly to Offset, in which
// case we update offset to be the offset we actually obtained.  The resultant
// leaf type is returned.
//
static const Type *getStructOffsetType(const Type *Ty, unsigned &Offset,
                                       vector<ConstPoolVal*> &Offsets) {
  if (!isa<StructType>(Ty)) {
    Offset = 0;   // Return the offset that we were able to acheive
    return Ty;    // Return the leaf type
  }

  assert(Offset < TD.getTypeSize(Ty) && "Offset not in struct!");
  const StructType *STy = cast<StructType>(Ty);
  const StructLayout *SL = TD.getStructLayout(STy);

  // This loop terminates always on a 0 <= i < MemberOffsets.size()
  unsigned i;
  for (i = 0; i < SL->MemberOffsets.size()-1; ++i)
    if (Offset >= SL->MemberOffsets[i] && Offset <  SL->MemberOffsets[i+1])
      break;
  
  assert(Offset >= SL->MemberOffsets[i] &&
         (i == SL->MemberOffsets.size()-1 || Offset <  SL->MemberOffsets[i+1]));

  // Make sure to save the current index...
  Offsets.push_back(ConstPoolUInt::get(Type::UByteTy, i));

  unsigned SubOffs = Offset - SL->MemberOffsets[i];
  const Type *LeafTy = getStructOffsetType(STy->getElementTypes()[i], SubOffs,
                                           Offsets);
  Offset = SL->MemberOffsets[i] + SubOffs;
  return LeafTy;
}



// ReplaceInstWithValue - Replace all uses of an instruction (specified by BI)
// with a value, then remove and delete the original instruction.
//
static void ReplaceInstWithValue(BasicBlock::InstListType &BIL,
                                 BasicBlock::iterator &BI, Value *V) {
  Instruction *I = *BI;
  // Replaces all of the uses of the instruction with uses of the value
  I->replaceAllUsesWith(V);

  // Remove the unneccesary instruction now...
  BIL.remove(BI);

  // Make sure to propogate a name if there is one already...
  if (I->hasName() && !V->hasName())
    V->setName(I->getName(), BIL.getParent()->getSymbolTable());

  // Remove the dead instruction now...
  delete I;
}


// ReplaceInstWithInst - Replace the instruction specified by BI with the
// instruction specified by I.  The original instruction is deleted and BI is
// updated to point to the new instruction.
//
static void ReplaceInstWithInst(BasicBlock::InstListType &BIL,
                                BasicBlock::iterator &BI, Instruction *I) {
  assert(I->getParent() == 0 &&
         "ReplaceInstWithInst: Instruction already inserted into basic block!");

  // Insert the new instruction into the basic block...
  BI = BIL.insert(BI, I)+1;

  // Replace all uses of the old instruction, and delete it.
  ReplaceInstWithValue(BIL, BI, I);

  // Reexamine the instruction just inserted next time around the cleanup pass
  // loop.
  --BI;
}


// ExpressionConvertableToType - Return true if it is possible
static bool ExpressionConvertableToType(Value *V, const Type *Ty) {
  Instruction *I = dyn_cast<Instruction>(V);
  if (I == 0) {
    // It's not an instruction, check to see if it's a constant... all constants
    // can be converted to an equivalent value (except pointers, they can't be
    // const prop'd in general).
    //
    if (isa<ConstPoolVal>(V) &&
        !isa<PointerType>(V->getType()) && !isa<PointerType>(Ty)) return true;

    return false;              // Otherwise, we can't convert!
  }
  if (I->getType() == Ty) return false;  // Expression already correct type!

  switch (I->getOpcode()) {
  case Instruction::Cast:
    // We can convert the expr if the cast destination type is losslessly
    // convertable to the requested type.
    return losslessCastableTypes(Ty, I->getType());

  case Instruction::Add:
  case Instruction::Sub:
    return ExpressionConvertableToType(I->getOperand(0), Ty) &&
           ExpressionConvertableToType(I->getOperand(1), Ty);
  case Instruction::Shl:
  case Instruction::Shr:
    return ExpressionConvertableToType(I->getOperand(0), Ty);
  }
  return false;
}


static Value *ConvertExpressionToType(Value *V, const Type *Ty) {
  assert(ExpressionConvertableToType(V, Ty) && "Value is not convertable!");
  Instruction *I = dyn_cast<Instruction>(V);
  if (I == 0)
    if (ConstPoolVal *CPV = cast<ConstPoolVal>(V)) {
      // Constants are converted by constant folding the cast that is required.
      // We assume here that all casts are implemented for constant prop.
      Value *Result = opt::ConstantFoldCastInstruction(CPV, Ty);
      if (!Result) cerr << "Couldn't fold " << CPV << " to " << Ty << endl;
      assert(Result && "ConstantFoldCastInstruction Failed!!!");
      return Result;
    }


  BasicBlock *BB = I->getParent();
  BasicBlock::InstListType &BIL = BB->getInstList();
  string Name = I->getName();  if (!Name.empty()) I->setName("");
  Instruction *Res;     // Result of conversion

  //cerr << endl << endl << "Type:\t" << Ty << "\nInst: " << I << "BB Before: " << BB << endl;

  switch (I->getOpcode()) {
  case Instruction::Cast:
    Res = new CastInst(I->getOperand(0), Ty, Name);
    break;
    
  case Instruction::Add:
  case Instruction::Sub:
    Res = BinaryOperator::create(cast<BinaryOperator>(I)->getOpcode(),
                                 ConvertExpressionToType(I->getOperand(0), Ty),
                                 ConvertExpressionToType(I->getOperand(1), Ty),
                                 Name);
    break;

  case Instruction::Shl:
  case Instruction::Shr:
    Res = new ShiftInst(cast<ShiftInst>(I)->getOpcode(),
                        ConvertExpressionToType(I->getOperand(0), Ty),
                        I->getOperand(1), Name);
    break;

  default:
    assert(0 && "Expression convertable, but don't know how to convert?");
    return 0;
  }

  BasicBlock::iterator It = find(BIL.begin(), BIL.end(), I);
  assert(It != BIL.end() && "Instruction not in own basic block??");
  BIL.insert(It, Res);

  //cerr << "RInst: " << Res << "BB After: " << BB << endl << endl;

  return Res;
}



// DoInsertArrayCast - If the argument value has a pointer type, and if the
// argument value is used as an array, insert a cast before the specified 
// basic block iterator that casts the value to an array pointer.  Return the
// new cast instruction (in the CastResult var), or null if no cast is inserted.
//
static bool DoInsertArrayCast(Method *CurMeth, Value *V, BasicBlock *BB,
			      BasicBlock::iterator &InsertBefore,
			      CastInst *&CastResult) {
  const PointerType *ThePtrType = dyn_cast<PointerType>(V->getType());
  if (!ThePtrType) return false;
  bool InsertCast = false;

  for (Value::use_iterator I = V->use_begin(), E = V->use_end(); I != E; ++I) {
    Instruction *Inst = cast<Instruction>(*I);
    switch (Inst->getOpcode()) {
    default: break;                  // Not an interesting use...
    case Instruction::Add:           // It's being used as an array index!
  //case Instruction::Sub:
      InsertCast = true;
      break;
    case Instruction::Cast:          // There is already a cast instruction!
      if (const PointerType *PT = dyn_cast<const PointerType>(Inst->getType()))
	if (const ArrayType *AT = dyn_cast<const ArrayType>(PT->getValueType()))
	  if (AT->getElementType() == ThePtrType->getValueType()) {
	    // Cast already exists! Return the existing one!
	    CastResult = cast<CastInst>(Inst);
	    return false;       // No changes made to program though...
	  }
      break;
    }
  }

  if (!InsertCast) return false;  // There is no reason to insert a cast!

  // Insert a cast!
  const Type *ElTy = ThePtrType->getValueType();
  const PointerType *DestTy = PointerType::get(ArrayType::get(ElTy));

  CastResult = new CastInst(V, DestTy);
  BB->getInstList().insert(InsertBefore, CastResult);
  //cerr << "Inserted cast: " << CastResult;
  return true;            // Made a change!
}


// DoInsertArrayCasts - Loop over all "incoming" values in the specified method,
// inserting a cast for pointer values that are used as arrays. For our
// purposes, an incoming value is considered to be either a value that is 
// either a method parameter, a value created by alloca or malloc, or a value
// returned from a function call.  All casts are kept attached to their original
// values through the PtrCasts map.
//
static bool DoInsertArrayCasts(Method *M, map<Value*, CastInst*> &PtrCasts) {
  assert(!M->isExternal() && "Can't handle external methods!");

  // Insert casts for all arguments to the function...
  bool Changed = false;
  BasicBlock *CurBB = M->front();
  BasicBlock::iterator It = CurBB->begin();
  for (Method::ArgumentListType::iterator AI = M->getArgumentList().begin(), 
	 AE = M->getArgumentList().end(); AI != AE; ++AI) {
    CastInst *TheCast = 0;
    if (DoInsertArrayCast(M, *AI, CurBB, It, TheCast)) {
      It = CurBB->begin();      // We might have just invalidated the iterator!
      Changed = true;           // Yes we made a change
      ++It;                     // Insert next cast AFTER this one...
    }

    if (TheCast)                // Is there a cast associated with this value?
      PtrCasts[*AI] = TheCast;  // Yes, add it to the map...
  }

  // TODO: insert casts for alloca, malloc, and function call results.  Also, 
  // look for pointers that already have casts, to add to the map.

  return Changed;
}




// DoElminatePointerArithmetic - Loop over each incoming pointer variable,
// replacing indexing arithmetic with getelementptr calls.
//
static bool DoEliminatePointerArithmetic(const pair<Value*, CastInst*> &Val) {
  Value    *V  = Val.first;   // The original pointer
  CastInst *CV = Val.second;  // The array casted version of the pointer...

  for (Value::use_iterator I = V->use_begin(), E = V->use_end(); I != E; ++I) {
    Instruction *Inst = cast<Instruction>(*I);
    if (Inst->getOpcode() != Instruction::Add) 
      continue;   // We only care about add instructions

    BinaryOperator *Add = cast<BinaryOperator>(Inst);

    // Make sure the array is the first operand of the add expression...
    if (Add->getOperand(0) != V)
      Add->swapOperands();

    // Get the amount added to the pointer value...
    Value *AddAmount = Add->getOperand(1);

    
  }
  return false;
}


// Peephole Malloc instructions: we take a look at the use chain of the
// malloc instruction, and try to find out if the following conditions hold:
//   1. The malloc is of the form: 'malloc [sbyte], uint <constant>'
//   2. The only users of the malloc are cast instructions
//   3. Of the cast instructions, there is only one destination pointer type
//      [RTy] where the size of the pointed to object is equal to the number
//      of bytes allocated.
//
// If these conditions hold, we convert the malloc to allocate an [RTy]
// element.  This should be extended in the future to handle arrays. TODO
//
static bool PeepholeMallocInst(BasicBlock *BB, BasicBlock::iterator &BI) {
  MallocInst *MI = cast<MallocInst>(*BI);
  if (!MI->isArrayAllocation()) return false;    // No array allocation?

  ConstPoolUInt *Amt = dyn_cast<ConstPoolUInt>(MI->getArraySize());
  if (Amt == 0 || MI->getAllocatedType() != ArrayType::get(Type::SByteTy))
    return false;

  // Get the number of bytes allocated...
  unsigned Size = Amt->getValue();
  const Type *ResultTy = 0;

  // Loop over all of the uses of the malloc instruction, inspecting casts.
  for (Value::use_iterator I = MI->use_begin(), E = MI->use_end();
       I != E; ++I) {
    if (!isa<CastInst>(*I)) {
      //cerr << "\tnon" << *I;
      return false;  // A non cast user?
    }
    CastInst *CI = cast<CastInst>(*I);
    //cerr << "\t" << CI;
    
    // We only work on casts to pointer types for sure, be conservative
    if (!isa<PointerType>(CI->getType())) {
      cerr << "Found cast of malloc value to non pointer type:\n" << CI;
      return false;
    }

    const Type *DestTy = cast<PointerType>(CI->getType())->getValueType();
    if (TD.getTypeSize(DestTy) == Size && DestTy != ResultTy) {
      // Does the size of the allocated type match the number of bytes
      // allocated?
      //
      if (ResultTy == 0) {
        ResultTy = DestTy;   // Keep note of this for future uses...
      } else {
        // It's overdefined!  We don't know which type to convert to!
        return false;
      }
    }
  }

  // If we get this far, we have either found, or not, a type that is cast to
  // that is of the same size as the malloc instruction.
  if (!ResultTy) return false;

  PRINT_PEEPHOLE1("mall-refine:in ", MI);
  ReplaceInstWithInst(BB->getInstList(), BI, 
                      MI = new MallocInst(PointerType::get(ResultTy)));
  PRINT_PEEPHOLE1("mall-refine:out", MI);
  return true;
}



static bool PeepholeOptimize(BasicBlock *BB, BasicBlock::iterator &BI) {
  Instruction *I = *BI;

  if (CastInst *CI = dyn_cast<CastInst>(I)) {
    Value       *Src    = CI->getOperand(0);
    Instruction *SrcI   = dyn_cast<Instruction>(Src); // Nonnull if instr source
    const Type  *DestTy = CI->getType();

    // Peephole optimize the following instruction:
    // %V2 = cast <ty> %V to <ty>
    //
    // Into: <nothing>
    //
    if (DestTy == Src->getType()) {   // Check for a cast to same type as src!!
      PRINT_PEEPHOLE1("cast-of-self-ty", CI);
      CI->replaceAllUsesWith(Src);
      if (!Src->hasName() && CI->hasName()) {
        string Name = CI->getName();
        CI->setName(""); Src->setName(Name, 
                                      BB->getParent()->getSymbolTable());
      }
      return true;
    }

    // Peephole optimize the following instructions:
    // %tmp = cast <ty> %V to <ty2>
    // %V  = cast <ty2> %tmp to <ty3>     ; Where ty & ty2 are same size
    //
    // Into: cast <ty> %V to <ty3>
    //
    if (SrcI)
      if (CastInst *CSrc = dyn_cast<CastInst>(SrcI))
        if (isReinterpretingCast(CI) + isReinterpretingCast(CSrc) < 2) {
          // We can only do c-c elimination if, at most, one cast does a
          // reinterpretation of the input data.
          //
          // If legal, make this cast refer the the original casts argument!
          //
          PRINT_PEEPHOLE2("cast-cast:in ", CI, CSrc);
          CI->setOperand(0, CSrc->getOperand(0));
          PRINT_PEEPHOLE1("cast-cast:out", CI);
          return true;
        }

    // Check to see if it's a cast of an instruction that does not depend on the
    // specific type of the operands to do it's job.
    if (!isReinterpretingCast(CI) && 
        ExpressionConvertableToType(Src, DestTy)) {
      PRINT_PEEPHOLE2("EXPR-CONV:in ", CI, Src);
      CI->setOperand(0, ConvertExpressionToType(Src, DestTy));
      BI = BB->begin();  // Rescan basic block.  BI might be invalidated.
      PRINT_PEEPHOLE2("EXPR-CONV:out", CI, CI->getOperand(0));
      return true;
    }

    // Check to see if we are casting from a structure pointer to a pointer to
    // the first element of the structure... to avoid munching other peepholes,
    // we only let this happen if there are no add uses of the cast.
    //
    // Peephole optimize the following instructions:
    // %t1 = cast {<...>} * %StructPtr to <ty> *
    //
    // Into: %t2 = getelementptr {<...>} * %StructPtr, <0, 0, 0, ...>
    //       %t1 = cast <eltype> * %t1 to <ty> *
    //
    if (const StructType *STy = getPointedToStruct(Src->getType()))
      if (const PointerType *DestPTy = dyn_cast<PointerType>(DestTy)) {

        // Loop over uses of the cast, checking for add instructions.  If an add
        // exists, this is probably a part of a more complex GEP, so we don't
        // want to mess around with the cast.
        //
        bool HasAddUse = false;
        for (Value::use_iterator I = CI->use_begin(), E = CI->use_end();
             I != E; ++I)
          if (isa<Instruction>(*I) &&
              cast<Instruction>(*I)->getOpcode() == Instruction::Add) {
            HasAddUse = true; break;
          }

        // If it doesn't have an add use, check to see if the dest type is
        // losslessly convertable to one of the types in the start of the struct
        // type.
        //
        if (!HasAddUse) {
          const Type *DestPointedTy = DestPTy->getValueType();
          unsigned Depth = 1;
          const StructType *CurSTy = STy;
          const Type *ElTy = 0;
          while (CurSTy) {
            
            // Check for a zero element struct type... if we have one, bail.
            if (CurSTy->getElementTypes().size() == 0) break;
            
            // Grab the first element of the struct type, which must lie at
            // offset zero in the struct.
            //
            ElTy = CurSTy->getElementTypes()[0];

            // Did we find what we're looking for?
            if (losslessCastableTypes(ElTy, DestPointedTy)) break;
            
            // Nope, go a level deeper.
            ++Depth;
            CurSTy = dyn_cast<StructType>(ElTy);
            ElTy = 0;
          }
          
          // Did we find what we were looking for? If so, do the transformation
          if (ElTy) {
            PRINT_PEEPHOLE1("cast-for-first:in", CI);

            // Build the index vector, full of all zeros
            vector<ConstPoolVal *> Indices(Depth,
                                           ConstPoolUInt::get(Type::UByteTy,0));

            // Insert the new T cast instruction... stealing old T's name
            GetElementPtrInst *GEP = new GetElementPtrInst(Src, Indices,
                                                           CI->getName());
            CI->setName("");
            BI = BB->getInstList().insert(BI, GEP)+1;

            // Make the old cast instruction reference the new GEP instead of
            // the old src value.
            //
            CI->setOperand(0, GEP);
            
            PRINT_PEEPHOLE2("cast-for-first:out", GEP, CI);
            return true;
          }
        }
      }


  } else if (MallocInst *MI = dyn_cast<MallocInst>(I)) {
    if (PeepholeMallocInst(BB, BI)) return true;

  } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
    Value *Val     = SI->getOperand(0);
    Value *Pointer = SI->getPtrOperand();
    
    // Peephole optimize the following instructions:
    // %t1 = getelementptr {<...>} * %StructPtr, <element indices>
    // store <elementty> %v, <elementty> * %t1
    //
    // Into: store <elementty> %v, {<...>} * %StructPtr, <element indices>
    //
    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Pointer)) {
      PRINT_PEEPHOLE2("gep-store:in", GEP, SI);
      ReplaceInstWithInst(BB->getInstList(), BI,
                          SI = new StoreInst(Val, GEP->getPtrOperand(),
                                             GEP->getIndexVec()));
      PRINT_PEEPHOLE1("gep-store:out", SI);
      return true;
    }
    
    // Peephole optimize the following instructions:
    // %t = cast <T1>* %P to <T2> * ;; If T1 is losslessly convertable to T2
    // store <T2> %V, <T2>* %t
    //
    // Into: 
    // %t = cast <T2> %V to <T1>
    // store <T1> %t2, <T1>* %P
    //
    if (CastInst *CI = dyn_cast<CastInst>(Pointer))
      if (Value *CastSrc = CI->getOperand(0)) // CSPT = CastSrcPointerType
        if (PointerType *CSPT = dyn_cast<PointerType>(CastSrc->getType()))
          if (losslessCastableTypes(Val->getType(), // convertable types!
                                    CSPT->getValueType()) &&
              !SI->hasIndices()) {      // No subscripts yet!
            PRINT_PEEPHOLE3("st-src-cast:in ", Pointer, Val, SI);

            // Insert the new T cast instruction... stealing old T's name
            CastInst *NCI = new CastInst(Val, CSPT->getValueType(),
                                         CI->getName());
            CI->setName("");
            BI = BB->getInstList().insert(BI, NCI)+1;

            // Replace the old store with a new one!
            ReplaceInstWithInst(BB->getInstList(), BI,
                                SI = new StoreInst(NCI, CastSrc));
            PRINT_PEEPHOLE3("st-src-cast:out", NCI, CastSrc, SI);
            return true;
          }


  } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
    Value *Pointer = LI->getPtrOperand();
    
    // Peephole optimize the following instructions:
    // %t1 = getelementptr {<...>} * %StructPtr, <element indices>
    // %V  = load <elementty> * %t1
    //
    // Into: load {<...>} * %StructPtr, <element indices>
    //
    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Pointer)) {
      PRINT_PEEPHOLE2("gep-load:in", GEP, LI);
      ReplaceInstWithInst(BB->getInstList(), BI,
                          LI = new LoadInst(GEP->getPtrOperand(),
                                            GEP->getIndexVec()));
      PRINT_PEEPHOLE1("gep-load:out", LI);
      return true;
    }
  } else if (I->getOpcode() == Instruction::Add &&
             isa<CastInst>(I->getOperand(1))) {

    // Peephole optimize the following instructions:
    // %t1 = cast ulong <const int> to {<...>} *
    // %t2 = add {<...>} * %SP, %t1              ;; Constant must be 2nd operand
    //
    //    or
    // %t1 = cast {<...>}* %SP to int*
    // %t5 = cast ulong <const int> to int*
    // %t2 = add int* %t1, %t5                   ;; int is same size as field
    //
    // Into: %t3 = getelementptr {<...>} * %SP, <element indices>
    //       %t2 = cast <eltype> * %t3 to {<...>}*
    //
    Value            *AddOp1  = I->getOperand(0);
    CastInst         *AddOp2  = cast<CastInst>(I->getOperand(1));
    ConstPoolUInt    *OffsetV = dyn_cast<ConstPoolUInt>(AddOp2->getOperand(0));
    unsigned          Offset  = OffsetV ? OffsetV->getValue() : 0;
    Value            *SrcPtr;  // Of type pointer to struct...
    const StructType *StructTy;

    if ((StructTy = getPointedToStruct(AddOp1->getType()))) {
      SrcPtr = AddOp1;                      // Handle the first case...
    } else if (CastInst *AddOp1c = dyn_cast<CastInst>(AddOp1)) {
      SrcPtr = AddOp1c->getOperand(0);      // Handle the second case...
      StructTy = getPointedToStruct(SrcPtr->getType());
    }
    
    // Only proceed if we have detected all of our conditions successfully...
    if (Offset && StructTy && SrcPtr && Offset < TD.getTypeSize(StructTy)) {
      const StructLayout *SL = TD.getStructLayout(StructTy);
      vector<ConstPoolVal*> Offsets;
      unsigned ActualOffset = Offset;
      const Type *ElTy = getStructOffsetType(StructTy, ActualOffset, Offsets);

      if (getPointedToStruct(AddOp1->getType())) {  // case 1
        PRINT_PEEPHOLE2("add-to-gep1:in", AddOp2, I);
      } else {
        PRINT_PEEPHOLE3("add-to-gep2:in", AddOp1, AddOp2, I);
      }

      GetElementPtrInst *GEP = new GetElementPtrInst(SrcPtr, Offsets);
      BI = BB->getInstList().insert(BI, GEP)+1;

      assert(Offset-ActualOffset == 0  &&
             "GEP to middle of element not implemented yet!");

      ReplaceInstWithInst(BB->getInstList(), BI, 
                          I = new CastInst(GEP, I->getType()));
      PRINT_PEEPHOLE2("add-to-gep:out", GEP, I);
      return true;
    }
  }

  return false;
}




static bool DoRaisePass(Method *M) {
  bool Changed = false;
  for (Method::iterator MI = M->begin(), ME = M->end(); MI != ME; ++MI) {
    BasicBlock *BB = *MI;
    BasicBlock::InstListType &BIL = BB->getInstList();

    for (BasicBlock::iterator BI = BB->begin(); BI != BB->end();) {
      if (opt::DeadCodeElimination::dceInstruction(BIL, BI) ||
          PeepholeOptimize(BB, BI))
        Changed = true;
      else
        ++BI;
    }
  }
  return Changed;
}


// RaisePointerReferences::doit - Raise a method representation to a higher
// level.
//
bool RaisePointerReferences::doit(Method *M) {
  if (M->isExternal()) return false;
  bool Changed = false;

#ifdef DEBUG_PEEPHOLE_INSTS
  cerr << "\n\n\nStarting to work on Method '" << M->getName() << "'\n";
#endif

  while (DoRaisePass(M)) Changed = true;

  // PtrCasts - Keep a mapping between the pointer values (the key of the 
  // map), and the cast to array pointer (the value) in this map.  This is
  // used when converting pointer math into array addressing.
  // 
  map<Value*, CastInst*> PtrCasts;

  // Insert casts for all incoming pointer values.  Keep track of those casts
  // and the identified incoming values in the PtrCasts map.
  //
  Changed |= DoInsertArrayCasts(M, PtrCasts);

  // Loop over each incoming pointer variable, replacing indexing arithmetic
  // with getelementptr calls.
  //
  Changed |= reduce_apply_bool(PtrCasts.begin(), PtrCasts.end(), 
                               ptr_fun(DoEliminatePointerArithmetic));

  return Changed;
}