aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Transforms/Scalar/ADCE.cpp
blob: bd60b519a784608cd2d649d162d9556b8b034be3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
//===- ADCE.cpp - Code to perform agressive dead code elimination ---------===//
//
// This file implements "agressive" dead code elimination.  ADCE is DCe where
// values are assumed to be dead until proven otherwise.  This is similar to 
// SCCP, except applied to the liveness of values.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/DCE.h"
#include "llvm/Instruction.h"
#include "llvm/Type.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/Writer.h"
#include "llvm/iTerminators.h"
#include "llvm/iPHINode.h"
#include "llvm/Support/CFG.h"
#include "Support/STLExtras.h"
#include "Support/DepthFirstIterator.h"
#include <algorithm>
#include <iostream>
using std::cerr;

#define DEBUG_ADCE 1

//===----------------------------------------------------------------------===//
// ADCE Class
//
// This class does all of the work of Agressive Dead Code Elimination.
// It's public interface consists of a constructor and a doADCE() method.
//
class ADCE {
  Function *M;                          // The function that we are working on
  std::vector<Instruction*> WorkList;   // Instructions that just became live
  std::set<Instruction*>    LiveSet;    // The set of live instructions
  bool MadeChanges;

  //===--------------------------------------------------------------------===//
  // The public interface for this class
  //
public:
  // ADCE Ctor - Save the function to operate on...
  inline ADCE(Function *f) : M(f), MadeChanges(false) {}

  // doADCE() - Run the Agressive Dead Code Elimination algorithm, returning
  // true if the function was modified.
  bool doADCE(DominanceFrontier &CDG);

  //===--------------------------------------------------------------------===//
  // The implementation of this class
  //
private:
  inline void markInstructionLive(Instruction *I) {
    if (LiveSet.count(I)) return;
#ifdef DEBUG_ADCE
    cerr << "Insn Live: " << I;
#endif
    LiveSet.insert(I);
    WorkList.push_back(I);
  }

  inline void markTerminatorLive(const BasicBlock *BB) {
#ifdef DEBUG_ADCE
    cerr << "Terminat Live: " << BB->getTerminator();
#endif
    markInstructionLive((Instruction*)BB->getTerminator());
  }

  // fixupCFG - Walk the CFG in depth first order, eliminating references to 
  // dead blocks.
  //
  BasicBlock *fixupCFG(BasicBlock *Head, std::set<BasicBlock*> &VisitedBlocks,
		       const std::set<BasicBlock*> &AliveBlocks);
};



// doADCE() - Run the Agressive Dead Code Elimination algorithm, returning
// true if the function was modified.
//
bool ADCE::doADCE(DominanceFrontier &CDG) {
#ifdef DEBUG_ADCE
  cerr << "Function: " << M;
#endif

  // Iterate over all of the instructions in the function, eliminating trivially
  // dead instructions, and marking instructions live that are known to be 
  // needed.  Perform the walk in depth first order so that we avoid marking any
  // instructions live in basic blocks that are unreachable.  These blocks will
  // be eliminated later, along with the instructions inside.
  //
  for (df_iterator<Function*> BBI = df_begin(M),
                              BBE = df_end(M);
       BBI != BBE; ++BBI) {
    BasicBlock *BB = *BBI;
    for (BasicBlock::iterator II = BB->begin(), EI = BB->end(); II != EI; ) {
      Instruction *I = *II;

      if (I->hasSideEffects() || I->getOpcode() == Instruction::Ret) {
	markInstructionLive(I);
      } else {
	// Check to see if anything is trivially dead
	if (I->use_size() == 0 && I->getType() != Type::VoidTy) {
	  // Remove the instruction from it's basic block...
	  delete BB->getInstList().remove(II);
	  MadeChanges = true;
	  continue;  // Don't increment the iterator past the current slot
	}
      }

      ++II;  // Increment the inst iterator if the inst wasn't deleted
    }
  }

#ifdef DEBUG_ADCE
  cerr << "Processing work list\n";
#endif

  // AliveBlocks - Set of basic blocks that we know have instructions that are
  // alive in them...
  //
  std::set<BasicBlock*> AliveBlocks;

  // Process the work list of instructions that just became live... if they
  // became live, then that means that all of their operands are neccesary as
  // well... make them live as well.
  //
  while (!WorkList.empty()) {
    Instruction *I = WorkList.back(); // Get an instruction that became live...
    WorkList.pop_back();

    BasicBlock *BB = I->getParent();
    if (AliveBlocks.count(BB) == 0) {   // Basic block not alive yet...
      // Mark the basic block as being newly ALIVE... and mark all branches that
      // this block is control dependant on as being alive also...
      //
      AliveBlocks.insert(BB);   // Block is now ALIVE!
      DominanceFrontier::const_iterator It = CDG.find(BB);
      if (It != CDG.end()) {
	// Get the blocks that this node is control dependant on...
	const DominanceFrontier::DomSetType &CDB = It->second;
	for_each(CDB.begin(), CDB.end(),   // Mark all their terminators as live
		 bind_obj(this, &ADCE::markTerminatorLive));
      }

      // If this basic block is live, then the terminator must be as well!
      markTerminatorLive(BB);
    }

    // Loop over all of the operands of the live instruction, making sure that
    // they are known to be alive as well...
    //
    for (unsigned op = 0, End = I->getNumOperands(); op != End; ++op) {
      if (Instruction *Operand = dyn_cast<Instruction>(I->getOperand(op)))
	markInstructionLive(Operand);
    }
  }

#ifdef DEBUG_ADCE
  cerr << "Current Function: X = Live\n";
  for (Function::iterator I = M->begin(), E = M->end(); I != E; ++I)
    for (BasicBlock::iterator BI = (*I)->begin(), BE = (*I)->end();
         BI != BE; ++BI) {
      if (LiveSet.count(*BI)) cerr << "X ";
      cerr << *BI;
    }
#endif

  // After the worklist is processed, recursively walk the CFG in depth first
  // order, patching up references to dead blocks...
  //
  std::set<BasicBlock*> VisitedBlocks;
  BasicBlock *EntryBlock = fixupCFG(M->front(), VisitedBlocks, AliveBlocks);
  if (EntryBlock && EntryBlock != M->front()) {
    if (isa<PHINode>(EntryBlock->front())) {
      // Cannot make the first block be a block with a PHI node in it! Instead,
      // strip the first basic block of the function to contain no instructions,
      // then add a simple branch to the "real" entry node...
      //
      BasicBlock *E = M->front();
      if (!isa<TerminatorInst>(E->front()) || // Check for an actual change...
	  cast<TerminatorInst>(E->front())->getNumSuccessors() != 1 ||
	  cast<TerminatorInst>(E->front())->getSuccessor(0) != EntryBlock) {
	E->getInstList().delete_all();      // Delete all instructions in block
	E->getInstList().push_back(new BranchInst(EntryBlock));
	MadeChanges = true;
      }
      AliveBlocks.insert(E);

      // Next we need to change any PHI nodes in the entry block to refer to the
      // new predecessor node...


    } else {
      // We need to move the new entry block to be the first bb of the function
      Function::iterator EBI = find(M->begin(), M->end(), EntryBlock);
      std::swap(*EBI, *M->begin());  // Exchange old location with start of fn
      MadeChanges = true;
    }
  }

  // Now go through and tell dead blocks to drop all of their references so they
  // can be safely deleted.
  //
  for (Function::iterator BI = M->begin(), BE = M->end(); BI != BE; ++BI) {
    BasicBlock *BB = *BI;
    if (!AliveBlocks.count(BB)) {
      BB->dropAllReferences();
    }
  }

  // Now loop through all of the blocks and delete them.  We can safely do this
  // now because we know that there are no references to dead blocks (because
  // they have dropped all of their references...
  //
  for (Function::iterator BI = M->begin(); BI != M->end();) {
    if (!AliveBlocks.count(*BI)) {
      delete M->getBasicBlocks().remove(BI);
      MadeChanges = true;
      continue;                                     // Don't increment iterator
    }
    ++BI;                                           // Increment iterator...
  }

  return MadeChanges;
}


// fixupCFG - Walk the CFG in depth first order, eliminating references to 
// dead blocks:
//  If the BB is alive (in AliveBlocks):
//   1. Eliminate all dead instructions in the BB
//   2. Recursively traverse all of the successors of the BB:
//      - If the returned successor is non-null, update our terminator to
//         reference the returned BB
//   3. Return 0 (no update needed)
//
//  If the BB is dead (not in AliveBlocks):
//   1. Add the BB to the dead set
//   2. Recursively traverse all of the successors of the block:
//      - Only one shall return a nonnull value (or else this block should have
//        been in the alive set).
//   3. Return the nonnull child, or 0 if no non-null children.
//
BasicBlock *ADCE::fixupCFG(BasicBlock *BB, std::set<BasicBlock*> &VisitedBlocks,
			   const std::set<BasicBlock*> &AliveBlocks) {
  if (VisitedBlocks.count(BB)) return 0;   // Revisiting a node? No update.
  VisitedBlocks.insert(BB);                // We have now visited this node!

#ifdef DEBUG_ADCE
  cerr << "Fixing up BB: " << BB;
#endif

  if (AliveBlocks.count(BB)) {             // Is the block alive?
    // Yes it's alive: loop through and eliminate all dead instructions in block
    for (BasicBlock::iterator II = BB->begin(); II != BB->end()-1; ) {
      Instruction *I = *II;
      if (!LiveSet.count(I)) {             // Is this instruction alive?
	// Nope... remove the instruction from it's basic block...
	delete BB->getInstList().remove(II);
	MadeChanges = true;
	continue;                          // Don't increment II
      }
      ++II;
    }

    // Recursively traverse successors of this basic block.  
    for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) {
      BasicBlock *Succ = *SI;
      BasicBlock *Repl = fixupCFG(Succ, VisitedBlocks, AliveBlocks);
      if (Repl && Repl != Succ) {          // We have to replace the successor
	Succ->replaceAllUsesWith(Repl);
	MadeChanges = true;
      }
    }
    return BB;
  } else {                                 // Otherwise the block is dead...
    BasicBlock *ReturnBB = 0;              // Default to nothing live down here
    
    // Recursively traverse successors of this basic block.  
    for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) {
      BasicBlock *RetBB = fixupCFG(*SI, VisitedBlocks, AliveBlocks);
      if (RetBB) {
	assert(ReturnBB == 0 && "One one live child allowed!");
	ReturnBB = RetBB;
      }
    }
    return ReturnBB;                       // Return the result of traversal
  }
}

namespace {
  struct AgressiveDCE : public FunctionPass {
    const char *getPassName() const {return "Aggressive Dead Code Elimination";}

    // doADCE - Execute the Agressive Dead Code Elimination Algorithm
    //
    virtual bool runOnFunction(Function *F) {
      return ADCE(F).doADCE(
                  getAnalysis<DominanceFrontier>(DominanceFrontier::PostDomID));
    }
    // getAnalysisUsage - We require post dominance frontiers (aka Control
    // Dependence Graph)
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.addRequired(DominanceFrontier::PostDomID);
    }
  };
}

Pass *createAgressiveDCEPass() {
  return new AgressiveDCE();
}