aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Transforms/Scalar/CorrelatedExprs.cpp
blob: 545c256d454034512b544925442506f7a06e94ef (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
//===- CorrelatedExprs.cpp - Pass to detect and eliminated c.e.'s ---------===//
//
// Correlated Expression Elimination propagates information from conditional
// branches to blocks dominated by destinations of the branch.  It propagates
// information from the condition check itself into the body of the branch,
// allowing transformations like these for example:
//
//  if (i == 7)
//    ... 4*i;  // constant propagation
//
//  M = i+1; N = j+1;
//  if (i == j)
//    X = M-N;  // = M-M == 0;
//
// This is called Correlated Expression Elimination because we eliminate or
// simplify expressions that are correlated with the direction of a branch.  In
// this way we use static information to give us some information about the
// dynamic value of a variable.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar.h"
#include "llvm/Pass.h"
#include "llvm/Function.h"
#include "llvm/iTerminators.h"
#include "llvm/iPHINode.h"
#include "llvm/iOperators.h"
#include "llvm/ConstantHandling.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Support/ConstantRange.h"
#include "llvm/Support/CFG.h"
#include "Support/Debug.h"
#include "Support/PostOrderIterator.h"
#include "Support/Statistic.h"
#include <algorithm>

namespace {
  Statistic<> NumSetCCRemoved("cee", "Number of setcc instruction eliminated");
  Statistic<> NumOperandsCann("cee", "Number of operands canonicalized");
  Statistic<> BranchRevectors("cee", "Number of branches revectored");

  class ValueInfo;
  class Relation {
    Value *Val;                 // Relation to what value?
    Instruction::BinaryOps Rel; // SetCC relation, or Add if no information
  public:
    Relation(Value *V) : Val(V), Rel(Instruction::Add) {}
    bool operator<(const Relation &R) const { return Val < R.Val; }
    Value *getValue() const { return Val; }
    Instruction::BinaryOps getRelation() const { return Rel; }

    // contradicts - Return true if the relationship specified by the operand
    // contradicts already known information.
    //
    bool contradicts(Instruction::BinaryOps Rel, const ValueInfo &VI) const;

    // incorporate - Incorporate information in the argument into this relation
    // entry.  This assumes that the information doesn't contradict itself.  If
    // any new information is gained, true is returned, otherwise false is
    // returned to indicate that nothing was updated.
    //
    bool incorporate(Instruction::BinaryOps Rel, ValueInfo &VI);

    // KnownResult - Whether or not this condition determines the result of a
    // setcc in the program.  False & True are intentionally 0 & 1 so we can
    // convert to bool by casting after checking for unknown.
    //
    enum KnownResult { KnownFalse = 0, KnownTrue = 1, Unknown = 2 };

    // getImpliedResult - If this relationship between two values implies that
    // the specified relationship is true or false, return that.  If we cannot
    // determine the result required, return Unknown.
    //
    KnownResult getImpliedResult(Instruction::BinaryOps Rel) const;

    // print - Output this relation to the specified stream
    void print(std::ostream &OS) const;
    void dump() const;
  };


  // ValueInfo - One instance of this record exists for every value with
  // relationships between other values.  It keeps track of all of the
  // relationships to other values in the program (specified with Relation) that
  // are known to be valid in a region.
  //
  class ValueInfo {
    // RelationShips - this value is know to have the specified relationships to
    // other values.  There can only be one entry per value, and this list is
    // kept sorted by the Val field.
    std::vector<Relation> Relationships;

    // If information about this value is known or propagated from constant
    // expressions, this range contains the possible values this value may hold.
    ConstantRange Bounds;

    // If we find that this value is equal to another value that has a lower
    // rank, this value is used as it's replacement.
    //
    Value *Replacement;
  public:
    ValueInfo(const Type *Ty)
      : Bounds(Ty->isIntegral() ? Ty : Type::IntTy), Replacement(0) {}

    // getBounds() - Return the constant bounds of the value...
    const ConstantRange &getBounds() const { return Bounds; }
    ConstantRange &getBounds() { return Bounds; }

    const std::vector<Relation> &getRelationships() { return Relationships; }

    // getReplacement - Return the value this value is to be replaced with if it
    // exists, otherwise return null.
    //
    Value *getReplacement() const { return Replacement; }

    // setReplacement - Used by the replacement calculation pass to figure out
    // what to replace this value with, if anything.
    //
    void setReplacement(Value *Repl) { Replacement = Repl; }

    // getRelation - return the relationship entry for the specified value.
    // This can invalidate references to other Relation's, so use it carefully.
    //
    Relation &getRelation(Value *V) {
      // Binary search for V's entry...
      std::vector<Relation>::iterator I =
        std::lower_bound(Relationships.begin(), Relationships.end(), V);

      // If we found the entry, return it...
      if (I != Relationships.end() && I->getValue() == V)
        return *I;

      // Insert and return the new relationship...
      return *Relationships.insert(I, V);
    }

    const Relation *requestRelation(Value *V) const {
      // Binary search for V's entry...
      std::vector<Relation>::const_iterator I =
        std::lower_bound(Relationships.begin(), Relationships.end(), V);
      if (I != Relationships.end() && I->getValue() == V)
        return &*I;
      return 0;
    }

    // print - Output information about this value relation...
    void print(std::ostream &OS, Value *V) const;
    void dump() const;
  };

  // RegionInfo - Keeps track of all of the value relationships for a region.  A
  // region is the are dominated by a basic block.  RegionInfo's keep track of
  // the RegionInfo for their dominator, because anything known in a dominator
  // is known to be true in a dominated block as well.
  //
  class RegionInfo {
    BasicBlock *BB;

    // ValueMap - Tracks the ValueInformation known for this region
    typedef std::map<Value*, ValueInfo> ValueMapTy;
    ValueMapTy ValueMap;
  public:
    RegionInfo(BasicBlock *bb) : BB(bb) {}

    // getEntryBlock - Return the block that dominates all of the members of
    // this region.
    BasicBlock *getEntryBlock() const { return BB; }

    // empty - return true if this region has no information known about it.
    bool empty() const { return ValueMap.empty(); }
    
    const RegionInfo &operator=(const RegionInfo &RI) {
      ValueMap = RI.ValueMap;
      return *this;
    }

    // print - Output information about this region...
    void print(std::ostream &OS) const;
    void dump() const;

    // Allow external access.
    typedef ValueMapTy::iterator iterator;
    iterator begin() { return ValueMap.begin(); }
    iterator end() { return ValueMap.end(); }

    ValueInfo &getValueInfo(Value *V) {
      ValueMapTy::iterator I = ValueMap.lower_bound(V);
      if (I != ValueMap.end() && I->first == V) return I->second;
      return ValueMap.insert(I, std::make_pair(V, V->getType()))->second;
    }

    const ValueInfo *requestValueInfo(Value *V) const {
      ValueMapTy::const_iterator I = ValueMap.find(V);
      if (I != ValueMap.end()) return &I->second;
      return 0;
    }
    
    /// removeValueInfo - Remove anything known about V from our records.  This
    /// works whether or not we know anything about V.
    ///
    void removeValueInfo(Value *V) {
      ValueMap.erase(V);
    }
  };

  /// CEE - Correlated Expression Elimination
  class CEE : public FunctionPass {
    std::map<Value*, unsigned> RankMap;
    std::map<BasicBlock*, RegionInfo> RegionInfoMap;
    DominatorSet *DS;
    DominatorTree *DT;
  public:
    virtual bool runOnFunction(Function &F);

    // We don't modify the program, so we preserve all analyses
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.addRequired<DominatorSet>();
      AU.addRequired<DominatorTree>();
      AU.addRequiredID(BreakCriticalEdgesID);
    };

    // print - Implement the standard print form to print out analysis
    // information.
    virtual void print(std::ostream &O, const Module *M) const;

  private:
    RegionInfo &getRegionInfo(BasicBlock *BB) {
      std::map<BasicBlock*, RegionInfo>::iterator I
        = RegionInfoMap.lower_bound(BB);
      if (I != RegionInfoMap.end() && I->first == BB) return I->second;
      return RegionInfoMap.insert(I, std::make_pair(BB, BB))->second;
    }

    void BuildRankMap(Function &F);
    unsigned getRank(Value *V) const {
      if (isa<Constant>(V) || isa<GlobalValue>(V)) return 0;
      std::map<Value*, unsigned>::const_iterator I = RankMap.find(V);
      if (I != RankMap.end()) return I->second;
      return 0; // Must be some other global thing
    }

    bool TransformRegion(BasicBlock *BB, std::set<BasicBlock*> &VisitedBlocks);

    bool ForwardCorrelatedEdgeDestination(TerminatorInst *TI, unsigned SuccNo,
                                          RegionInfo &RI);

    void ForwardSuccessorTo(TerminatorInst *TI, unsigned Succ, BasicBlock *D,
                            RegionInfo &RI);
    void ReplaceUsesOfValueInRegion(Value *Orig, Value *New,
                                    BasicBlock *RegionDominator);
    void CalculateRegionExitBlocks(BasicBlock *BB, BasicBlock *OldSucc,
                                   std::vector<BasicBlock*> &RegionExitBlocks);
    void InsertRegionExitMerges(PHINode *NewPHI, Instruction *OldVal,
                             const std::vector<BasicBlock*> &RegionExitBlocks);

    void PropagateBranchInfo(BranchInst *BI);
    void PropagateEquality(Value *Op0, Value *Op1, RegionInfo &RI);
    void PropagateRelation(Instruction::BinaryOps Opcode, Value *Op0,
                           Value *Op1, RegionInfo &RI);
    void UpdateUsersOfValue(Value *V, RegionInfo &RI);
    void IncorporateInstruction(Instruction *Inst, RegionInfo &RI);
    void ComputeReplacements(RegionInfo &RI);


    // getSetCCResult - Given a setcc instruction, determine if the result is
    // determined by facts we already know about the region under analysis.
    // Return KnownTrue, KnownFalse, or Unknown based on what we can determine.
    //
    Relation::KnownResult getSetCCResult(SetCondInst *SC, const RegionInfo &RI);


    bool SimplifyBasicBlock(BasicBlock &BB, const RegionInfo &RI);
    bool SimplifyInstruction(Instruction *Inst, const RegionInfo &RI);
  }; 
  RegisterOpt<CEE> X("cee", "Correlated Expression Elimination");
}

Pass *createCorrelatedExpressionEliminationPass() { return new CEE(); }


bool CEE::runOnFunction(Function &F) {
  // Build a rank map for the function...
  BuildRankMap(F);

  // Traverse the dominator tree, computing information for each node in the
  // tree.  Note that our traversal will not even touch unreachable basic
  // blocks.
  DS = &getAnalysis<DominatorSet>();
  DT = &getAnalysis<DominatorTree>();
  
  std::set<BasicBlock*> VisitedBlocks;
  bool Changed = TransformRegion(&F.getEntryNode(), VisitedBlocks);

  RegionInfoMap.clear();
  RankMap.clear();
  return Changed;
}

// TransformRegion - Transform the region starting with BB according to the
// calculated region information for the block.  Transforming the region
// involves analyzing any information this block provides to successors,
// propagating the information to successors, and finally transforming
// successors.
//
// This method processes the function in depth first order, which guarantees
// that we process the immediate dominator of a block before the block itself.
// Because we are passing information from immediate dominators down to
// dominatees, we obviously have to process the information source before the
// information consumer.
//
bool CEE::TransformRegion(BasicBlock *BB, std::set<BasicBlock*> &VisitedBlocks){
  // Prevent infinite recursion...
  if (VisitedBlocks.count(BB)) return false;
  VisitedBlocks.insert(BB);

  // Get the computed region information for this block...
  RegionInfo &RI = getRegionInfo(BB);

  // Compute the replacement information for this block...
  ComputeReplacements(RI);

  // If debugging, print computed region information...
  DEBUG(RI.print(std::cerr));

  // Simplify the contents of this block...
  bool Changed = SimplifyBasicBlock(*BB, RI);

  // Get the terminator of this basic block...
  TerminatorInst *TI = BB->getTerminator();

  // Loop over all of the blocks that this block is the immediate dominator for.
  // Because all information known in this region is also known in all of the
  // blocks that are dominated by this one, we can safely propagate the
  // information down now.
  //
  DominatorTree::Node *BBN = (*DT)[BB];
  if (!RI.empty())        // Time opt: only propagate if we can change something
    for (unsigned i = 0, e = BBN->getChildren().size(); i != e; ++i) {
      BasicBlock *Dominated = BBN->getChildren()[i]->getBlock();
      assert(RegionInfoMap.find(Dominated) == RegionInfoMap.end() &&
             "RegionInfo should be calculated in dominanace order!");
      getRegionInfo(Dominated) = RI;
    }

  // Now that all of our successors have information if they deserve it,
  // propagate any information our terminator instruction finds to our
  // successors.
  if (BranchInst *BI = dyn_cast<BranchInst>(TI))
    if (BI->isConditional())
      PropagateBranchInfo(BI);

  // If this is a branch to a block outside our region that simply performs
  // another conditional branch, one whose outcome is known inside of this
  // region, then vector this outgoing edge directly to the known destination.
  //
  for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
    while (ForwardCorrelatedEdgeDestination(TI, i, RI)) {
      ++BranchRevectors;
      Changed = true;
    }

  // Now that all of our successors have information, recursively process them.
  for (unsigned i = 0, e = BBN->getChildren().size(); i != e; ++i)
    Changed |= TransformRegion(BBN->getChildren()[i]->getBlock(),VisitedBlocks);

  return Changed;
}

// isBlockSimpleEnoughForCheck to see if the block is simple enough for us to
// revector the conditional branch in the bottom of the block, do so now.
//
static bool isBlockSimpleEnough(BasicBlock *BB) {
  assert(isa<BranchInst>(BB->getTerminator()));
  BranchInst *BI = cast<BranchInst>(BB->getTerminator());
  assert(BI->isConditional());

  // Check the common case first: empty block, or block with just a setcc.
  if (BB->size() == 1 ||
      (BB->size() == 2 && &BB->front() == BI->getCondition() &&
       BI->getCondition()->use_size() == 1))
    return true;

  // Check the more complex case now...
  BasicBlock::iterator I = BB->begin();

  // FIXME: This should be reenabled once the regression with SIM is fixed!
#if 0
  // PHI Nodes are ok, just skip over them...
  while (isa<PHINode>(*I)) ++I;
#endif

  // Accept the setcc instruction...
  if (&*I == BI->getCondition())
    ++I;

  // Nothing else is acceptable here yet.  We must not revector... unless we are
  // at the terminator instruction.
  if (&*I == BI)
    return true;

  return false;
}


bool CEE::ForwardCorrelatedEdgeDestination(TerminatorInst *TI, unsigned SuccNo,
                                           RegionInfo &RI) {
  // If this successor is a simple block not in the current region, which
  // contains only a conditional branch, we decide if the outcome of the branch
  // can be determined from information inside of the region.  Instead of going
  // to this block, we can instead go to the destination we know is the right
  // target.
  //

  // Check to see if we dominate the block. If so, this block will get the
  // condition turned to a constant anyway.
  //
  //if (DS->dominates(RI.getEntryBlock(), BB))
  // return 0;

  BasicBlock *BB = TI->getParent();

  // Get the destination block of this edge...
  BasicBlock *OldSucc = TI->getSuccessor(SuccNo);

  // Make sure that the block ends with a conditional branch and is simple
  // enough for use to be able to revector over.
  BranchInst *BI = dyn_cast<BranchInst>(OldSucc->getTerminator());
  if (BI == 0 || !BI->isConditional() || !isBlockSimpleEnough(OldSucc))
    return false;

  // We can only forward the branch over the block if the block ends with a
  // setcc we can determine the outcome for.
  //
  // FIXME: we can make this more generic.  Code below already handles more
  // generic case.
  SetCondInst *SCI = dyn_cast<SetCondInst>(BI->getCondition());
  if (SCI == 0) return false;

  // Make a new RegionInfo structure so that we can simulate the effect of the
  // PHI nodes in the block we are skipping over...
  //
  RegionInfo NewRI(RI);

  // Remove value information for all of the values we are simulating... to make
  // sure we don't have any stale information.
  for (BasicBlock::iterator I = OldSucc->begin(), E = OldSucc->end(); I!=E; ++I)
    if (I->getType() != Type::VoidTy)
      NewRI.removeValueInfo(I);
    
  // Put the newly discovered information into the RegionInfo...
  for (BasicBlock::iterator I = OldSucc->begin(), E = OldSucc->end(); I!=E; ++I)
    if (PHINode *PN = dyn_cast<PHINode>(I)) {
      int OpNum = PN->getBasicBlockIndex(BB);
      assert(OpNum != -1 && "PHI doesn't have incoming edge for predecessor!?");
      PropagateEquality(PN, PN->getIncomingValue(OpNum), NewRI);      
    } else if (SetCondInst *SCI = dyn_cast<SetCondInst>(I)) {
      Relation::KnownResult Res = getSetCCResult(SCI, NewRI);
      if (Res == Relation::Unknown) return false;
      PropagateEquality(SCI, ConstantBool::get(Res), NewRI);
    } else {
      assert(isa<BranchInst>(*I) && "Unexpected instruction type!");
    }
  
  // Compute the facts implied by what we have discovered...
  ComputeReplacements(NewRI);

  ValueInfo &PredicateVI = NewRI.getValueInfo(BI->getCondition());
  if (PredicateVI.getReplacement() &&
      isa<Constant>(PredicateVI.getReplacement())) {
    ConstantBool *CB = cast<ConstantBool>(PredicateVI.getReplacement());

    // Forward to the successor that corresponds to the branch we will take.
    ForwardSuccessorTo(TI, SuccNo, BI->getSuccessor(!CB->getValue()), NewRI);
    return true;
  }
  
  return false;
}

static Value *getReplacementOrValue(Value *V, RegionInfo &RI) {
  if (const ValueInfo *VI = RI.requestValueInfo(V))
    if (Value *Repl = VI->getReplacement())
      return Repl;
  return V;
}

/// ForwardSuccessorTo - We have found that we can forward successor # 'SuccNo'
/// of Terminator 'TI' to the 'Dest' BasicBlock.  This method performs the
/// mechanics of updating SSA information and revectoring the branch.
///
void CEE::ForwardSuccessorTo(TerminatorInst *TI, unsigned SuccNo,
                             BasicBlock *Dest, RegionInfo &RI) {
  // If there are any PHI nodes in the Dest BB, we must duplicate the entry
  // in the PHI node for the old successor to now include an entry from the
  // current basic block.
  //
  BasicBlock *OldSucc = TI->getSuccessor(SuccNo);
  BasicBlock *BB = TI->getParent();

  DEBUG(std::cerr << "Forwarding branch in basic block %" << BB->getName()
        << " from block %" << OldSucc->getName() << " to block %"
        << Dest->getName() << "\n");

  DEBUG(std::cerr << "Before forwarding: " << *BB->getParent());

  // Because we know that there cannot be critical edges in the flow graph, and
  // that OldSucc has multiple outgoing edges, this means that Dest cannot have
  // multiple incoming edges.
  //
#ifndef NDEBUG
  pred_iterator DPI = pred_begin(Dest); ++DPI;
  assert(DPI == pred_end(Dest) && "Critical edge found!!");
#endif

  // Loop over any PHI nodes in the destination, eliminating them, because they
  // may only have one input.
  //
  while (PHINode *PN = dyn_cast<PHINode>(&Dest->front())) {
    assert(PN->getNumIncomingValues() == 1 && "Crit edge found!");
    // Eliminate the PHI node
    PN->replaceAllUsesWith(PN->getIncomingValue(0));
    Dest->getInstList().erase(PN);
  }

  // If there are values defined in the "OldSucc" basic block, we need to insert
  // PHI nodes in the regions we are dealing with to emulate them.  This can
  // insert dead phi nodes, but it is more trouble to see if they are used than
  // to just blindly insert them.
  //
  if (DS->dominates(OldSucc, Dest)) {
    // RegionExitBlocks - Find all of the blocks that are not dominated by Dest,
    // but have predecessors that are.  Additionally, prune down the set to only
    // include blocks that are dominated by OldSucc as well.
    //
    std::vector<BasicBlock*> RegionExitBlocks;
    CalculateRegionExitBlocks(Dest, OldSucc, RegionExitBlocks);

    for (BasicBlock::iterator I = OldSucc->begin(), E = OldSucc->end();
         I != E; ++I)
      if (I->getType() != Type::VoidTy) {
        // Create and insert the PHI node into the top of Dest.
        PHINode *NewPN = new PHINode(I->getType(), I->getName()+".fw_merge",
                                     Dest->begin());
        // There is definitely an edge from OldSucc... add the edge now
        NewPN->addIncoming(I, OldSucc);

        // There is also an edge from BB now, add the edge with the calculated
        // value from the RI.
        NewPN->addIncoming(getReplacementOrValue(I, RI), BB);

        // Make everything in the Dest region use the new PHI node now...
        ReplaceUsesOfValueInRegion(I, NewPN, Dest);

        // Make sure that exits out of the region dominated by NewPN get PHI
        // nodes that merge the values as appropriate.
        InsertRegionExitMerges(NewPN, I, RegionExitBlocks);
      }
  }

  // If there were PHI nodes in OldSucc, we need to remove the entry for this
  // edge from the PHI node, and we need to replace any references to the PHI
  // node with a new value.
  //
  for (BasicBlock::iterator I = OldSucc->begin();
       PHINode *PN = dyn_cast<PHINode>(I); ) {

    // Get the value flowing across the old edge and remove the PHI node entry
    // for this edge: we are about to remove the edge!  Don't remove the PHI
    // node yet though if this is the last edge into it.
    Value *EdgeValue = PN->removeIncomingValue(BB, false);

    // Make sure that anything that used to use PN now refers to EdgeValue    
    ReplaceUsesOfValueInRegion(PN, EdgeValue, Dest);

    // If there is only one value left coming into the PHI node, replace the PHI
    // node itself with the one incoming value left.
    //
    if (PN->getNumIncomingValues() == 1) {
      assert(PN->getNumIncomingValues() == 1);
      PN->replaceAllUsesWith(PN->getIncomingValue(0));
      PN->getParent()->getInstList().erase(PN);
      I = OldSucc->begin();
    } else if (PN->getNumIncomingValues() == 0) {  // Nuke the PHI
      // If we removed the last incoming value to this PHI, nuke the PHI node
      // now.
      PN->replaceAllUsesWith(Constant::getNullValue(PN->getType()));
      PN->getParent()->getInstList().erase(PN);
      I = OldSucc->begin();
    } else {
      ++I;  // Otherwise, move on to the next PHI node
    }
  }
  
  // Actually revector the branch now...
  TI->setSuccessor(SuccNo, Dest);

  // If we just introduced a critical edge in the flow graph, make sure to break
  // it right away...
  if (isCriticalEdge(TI, SuccNo))
    SplitCriticalEdge(TI, SuccNo, this);

  // Make sure that we don't introduce critical edges from oldsucc now!
  for (unsigned i = 0, e = OldSucc->getTerminator()->getNumSuccessors();
       i != e; ++i)
    if (isCriticalEdge(OldSucc->getTerminator(), i))
      SplitCriticalEdge(OldSucc->getTerminator(), i, this);

  // Since we invalidated the CFG, recalculate the dominator set so that it is
  // useful for later processing!
  // FIXME: This is much worse than it really should be!
  //DS->recalculate();

  DEBUG(std::cerr << "After forwarding: " << *BB->getParent());
}

/// ReplaceUsesOfValueInRegion - This method replaces all uses of Orig with uses
/// of New.  It only affects instructions that are defined in basic blocks that
/// are dominated by Head.
///
void CEE::ReplaceUsesOfValueInRegion(Value *Orig, Value *New,
                                     BasicBlock *RegionDominator) {
  assert(Orig != New && "Cannot replace value with itself");
  std::vector<Instruction*> InstsToChange;
  std::vector<PHINode*>     PHIsToChange;
  InstsToChange.reserve(Orig->use_size());

  // Loop over instructions adding them to InstsToChange vector, this allows us
  // an easy way to avoid invalidating the use_iterator at a bad time.
  for (Value::use_iterator I = Orig->use_begin(), E = Orig->use_end();
       I != E; ++I)
    if (Instruction *User = dyn_cast<Instruction>(*I))
      if (DS->dominates(RegionDominator, User->getParent()))
        InstsToChange.push_back(User);
      else if (PHINode *PN = dyn_cast<PHINode>(User)) {
        PHIsToChange.push_back(PN);
      }

  // PHIsToChange contains PHI nodes that use Orig that do not live in blocks
  // dominated by orig.  If the block the value flows in from is dominated by
  // RegionDominator, then we rewrite the PHI
  for (unsigned i = 0, e = PHIsToChange.size(); i != e; ++i) {
    PHINode *PN = PHIsToChange[i];
    for (unsigned j = 0, e = PN->getNumIncomingValues(); j != e; ++j)
      if (PN->getIncomingValue(j) == Orig &&
          DS->dominates(RegionDominator, PN->getIncomingBlock(j)))
        PN->setIncomingValue(j, New);
  }

  // Loop over the InstsToChange list, replacing all uses of Orig with uses of
  // New.  This list contains all of the instructions in our region that use
  // Orig.
  for (unsigned i = 0, e = InstsToChange.size(); i != e; ++i)
    if (PHINode *PN = dyn_cast<PHINode>(InstsToChange[i])) {
      // PHINodes must be handled carefully.  If the PHI node itself is in the
      // region, we have to make sure to only do the replacement for incoming
      // values that correspond to basic blocks in the region.
      for (unsigned j = 0, e = PN->getNumIncomingValues(); j != e; ++j)
        if (PN->getIncomingValue(j) == Orig &&
            DS->dominates(RegionDominator, PN->getIncomingBlock(j)))
          PN->setIncomingValue(j, New);

    } else {
      InstsToChange[i]->replaceUsesOfWith(Orig, New);
    }
}

static void CalcRegionExitBlocks(BasicBlock *Header, BasicBlock *BB,
                                 std::set<BasicBlock*> &Visited,
                                 DominatorSet &DS,
                                 std::vector<BasicBlock*> &RegionExitBlocks) {
  if (Visited.count(BB)) return;
  Visited.insert(BB);

  if (DS.dominates(Header, BB)) {  // Block in the region, recursively traverse
    for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
      CalcRegionExitBlocks(Header, *I, Visited, DS, RegionExitBlocks);
  } else {
    // Header does not dominate this block, but we have a predecessor that does
    // dominate us.  Add ourself to the list.
    RegionExitBlocks.push_back(BB);    
  }
}

/// CalculateRegionExitBlocks - Find all of the blocks that are not dominated by
/// BB, but have predecessors that are.  Additionally, prune down the set to
/// only include blocks that are dominated by OldSucc as well.
///
void CEE::CalculateRegionExitBlocks(BasicBlock *BB, BasicBlock *OldSucc,
                                    std::vector<BasicBlock*> &RegionExitBlocks){
  std::set<BasicBlock*> Visited;  // Don't infinite loop

  // Recursively calculate blocks we are interested in...
  CalcRegionExitBlocks(BB, BB, Visited, *DS, RegionExitBlocks);
  
  // Filter out blocks that are not dominated by OldSucc...
  for (unsigned i = 0; i != RegionExitBlocks.size(); ) {
    if (DS->dominates(OldSucc, RegionExitBlocks[i]))
      ++i;  // Block is ok, keep it.
    else {
      // Move to end of list...
      std::swap(RegionExitBlocks[i], RegionExitBlocks.back());
      RegionExitBlocks.pop_back();        // Nuke the end
    }
  }
}

void CEE::InsertRegionExitMerges(PHINode *BBVal, Instruction *OldVal,
                             const std::vector<BasicBlock*> &RegionExitBlocks) {
  assert(BBVal->getType() == OldVal->getType() && "Should be derived values!");
  BasicBlock *BB = BBVal->getParent();
  BasicBlock *OldSucc = OldVal->getParent();

  // Loop over all of the blocks we have to place PHIs in, doing it.
  for (unsigned i = 0, e = RegionExitBlocks.size(); i != e; ++i) {
    BasicBlock *FBlock = RegionExitBlocks[i];  // Block on the frontier

    // Create the new PHI node
    PHINode *NewPN = new PHINode(BBVal->getType(),
                                 OldVal->getName()+".fw_frontier",
                                 FBlock->begin());

    // Add an incoming value for every predecessor of the block...
    for (pred_iterator PI = pred_begin(FBlock), PE = pred_end(FBlock);
         PI != PE; ++PI) {
      // If the incoming edge is from the region dominated by BB, use BBVal,
      // otherwise use OldVal.
      NewPN->addIncoming(DS->dominates(BB, *PI) ? BBVal : OldVal, *PI);
    }
    
    // Now make everyone dominated by this block use this new value!
    ReplaceUsesOfValueInRegion(OldVal, NewPN, FBlock);
  }
}



// BuildRankMap - This method builds the rank map data structure which gives
// each instruction/value in the function a value based on how early it appears
// in the function.  We give constants and globals rank 0, arguments are
// numbered starting at one, and instructions are numbered in reverse post-order
// from where the arguments leave off.  This gives instructions in loops higher
// values than instructions not in loops.
//
void CEE::BuildRankMap(Function &F) {
  unsigned Rank = 1;  // Skip rank zero.

  // Number the arguments...
  for (Function::aiterator I = F.abegin(), E = F.aend(); I != E; ++I)
    RankMap[I] = Rank++;

  // Number the instructions in reverse post order...
  ReversePostOrderTraversal<Function*> RPOT(&F);
  for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
         E = RPOT.end(); I != E; ++I)
    for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end();
         BBI != E; ++BBI)
      if (BBI->getType() != Type::VoidTy)
        RankMap[BBI] = Rank++;
}


// PropagateBranchInfo - When this method is invoked, we need to propagate
// information derived from the branch condition into the true and false
// branches of BI.  Since we know that there aren't any critical edges in the
// flow graph, this can proceed unconditionally.
//
void CEE::PropagateBranchInfo(BranchInst *BI) {
  assert(BI->isConditional() && "Must be a conditional branch!");

  // Propagate information into the true block...
  //
  PropagateEquality(BI->getCondition(), ConstantBool::True,
                    getRegionInfo(BI->getSuccessor(0)));
  
  // Propagate information into the false block...
  //
  PropagateEquality(BI->getCondition(), ConstantBool::False,
                    getRegionInfo(BI->getSuccessor(1)));
}


// PropagateEquality - If we discover that two values are equal to each other in
// a specified region, propagate this knowledge recursively.
//
void CEE::PropagateEquality(Value *Op0, Value *Op1, RegionInfo &RI) {
  if (Op0 == Op1) return;  // Gee whiz. Are these really equal each other?

  if (isa<Constant>(Op0))  // Make sure the constant is always Op1
    std::swap(Op0, Op1);

  // Make sure we don't already know these are equal, to avoid infinite loops...
  ValueInfo &VI = RI.getValueInfo(Op0);

  // Get information about the known relationship between Op0 & Op1
  Relation &KnownRelation = VI.getRelation(Op1);

  // If we already know they're equal, don't reprocess...
  if (KnownRelation.getRelation() == Instruction::SetEQ)
    return;

  // If this is boolean, check to see if one of the operands is a constant.  If
  // it's a constant, then see if the other one is one of a setcc instruction,
  // an AND, OR, or XOR instruction.
  //
  if (ConstantBool *CB = dyn_cast<ConstantBool>(Op1)) {

    if (Instruction *Inst = dyn_cast<Instruction>(Op0)) {
      // If we know that this instruction is an AND instruction, and the result
      // is true, this means that both operands to the OR are known to be true
      // as well.
      //
      if (CB->getValue() && Inst->getOpcode() == Instruction::And) {
        PropagateEquality(Inst->getOperand(0), CB, RI);
        PropagateEquality(Inst->getOperand(1), CB, RI);
      }
      
      // If we know that this instruction is an OR instruction, and the result
      // is false, this means that both operands to the OR are know to be false
      // as well.
      //
      if (!CB->getValue() && Inst->getOpcode() == Instruction::Or) {
        PropagateEquality(Inst->getOperand(0), CB, RI);
        PropagateEquality(Inst->getOperand(1), CB, RI);
      }
      
      // If we know that this instruction is a NOT instruction, we know that the
      // operand is known to be the inverse of whatever the current value is.
      //
      if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(Inst))
        if (BinaryOperator::isNot(BOp))
          PropagateEquality(BinaryOperator::getNotArgument(BOp),
                            ConstantBool::get(!CB->getValue()), RI);

      // If we know the value of a SetCC instruction, propagate the information
      // about the relation into this region as well.
      //
      if (SetCondInst *SCI = dyn_cast<SetCondInst>(Inst)) {
        if (CB->getValue()) {  // If we know the condition is true...
          // Propagate info about the LHS to the RHS & RHS to LHS
          PropagateRelation(SCI->getOpcode(), SCI->getOperand(0),
                            SCI->getOperand(1), RI);
          PropagateRelation(SCI->getSwappedCondition(),
                            SCI->getOperand(1), SCI->getOperand(0), RI);

        } else {               // If we know the condition is false...
          // We know the opposite of the condition is true...
          Instruction::BinaryOps C = SCI->getInverseCondition();
          
          PropagateRelation(C, SCI->getOperand(0), SCI->getOperand(1), RI);
          PropagateRelation(SetCondInst::getSwappedCondition(C),
                            SCI->getOperand(1), SCI->getOperand(0), RI);
        }
      }
    }
  }

  // Propagate information about Op0 to Op1 & visa versa
  PropagateRelation(Instruction::SetEQ, Op0, Op1, RI);
  PropagateRelation(Instruction::SetEQ, Op1, Op0, RI);
}


// PropagateRelation - We know that the specified relation is true in all of the
// blocks in the specified region.  Propagate the information about Op0 and
// anything derived from it into this region.
//
void CEE::PropagateRelation(Instruction::BinaryOps Opcode, Value *Op0,
                            Value *Op1, RegionInfo &RI) {
  assert(Op0->getType() == Op1->getType() && "Equal types expected!");

  // Constants are already pretty well understood.  We will apply information
  // about the constant to Op1 in another call to PropagateRelation.
  //
  if (isa<Constant>(Op0)) return;

  // Get the region information for this block to update...
  ValueInfo &VI = RI.getValueInfo(Op0);

  // Get information about the known relationship between Op0 & Op1
  Relation &Op1R = VI.getRelation(Op1);

  // Quick bailout for common case if we are reprocessing an instruction...
  if (Op1R.getRelation() == Opcode)
    return;

  // If we already have information that contradicts the current information we
  // are propagating, ignore this info.  Something bad must have happened!
  //
  if (Op1R.contradicts(Opcode, VI)) {
    Op1R.contradicts(Opcode, VI);
    std::cerr << "Contradiction found for opcode: "
              << Instruction::getOpcodeName(Opcode) << "\n";
    Op1R.print(std::cerr);
    return;
  }

  // If the information propogted is new, then we want process the uses of this
  // instruction to propagate the information down to them.
  //
  if (Op1R.incorporate(Opcode, VI))
    UpdateUsersOfValue(Op0, RI);
}


// UpdateUsersOfValue - The information about V in this region has been updated.
// Propagate this to all consumers of the value.
//
void CEE::UpdateUsersOfValue(Value *V, RegionInfo &RI) {
  for (Value::use_iterator I = V->use_begin(), E = V->use_end();
       I != E; ++I)
    if (Instruction *Inst = dyn_cast<Instruction>(*I)) {
      // If this is an instruction using a value that we know something about,
      // try to propagate information to the value produced by the
      // instruction.  We can only do this if it is an instruction we can
      // propagate information for (a setcc for example), and we only WANT to
      // do this if the instruction dominates this region.
      //
      // If the instruction doesn't dominate this region, then it cannot be
      // used in this region and we don't care about it.  If the instruction
      // is IN this region, then we will simplify the instruction before we
      // get to uses of it anyway, so there is no reason to bother with it
      // here.  This check is also effectively checking to make sure that Inst
      // is in the same function as our region (in case V is a global f.e.).
      //
      if (DS->properlyDominates(Inst->getParent(), RI.getEntryBlock()))
        IncorporateInstruction(Inst, RI);
    }
}

// IncorporateInstruction - We just updated the information about one of the
// operands to the specified instruction.  Update the information about the
// value produced by this instruction
//
void CEE::IncorporateInstruction(Instruction *Inst, RegionInfo &RI) {
  if (SetCondInst *SCI = dyn_cast<SetCondInst>(Inst)) {
    // See if we can figure out a result for this instruction...
    Relation::KnownResult Result = getSetCCResult(SCI, RI);
    if (Result != Relation::Unknown) {
      PropagateEquality(SCI, Result ? ConstantBool::True : ConstantBool::False,
                        RI);
    }
  }
}


// ComputeReplacements - Some values are known to be equal to other values in a
// region.  For example if there is a comparison of equality between a variable
// X and a constant C, we can replace all uses of X with C in the region we are
// interested in.  We generalize this replacement to replace variables with
// other variables if they are equal and there is a variable with lower rank
// than the current one.  This offers a canonicalizing property that exposes
// more redundancies for later transformations to take advantage of.
//
void CEE::ComputeReplacements(RegionInfo &RI) {
  // Loop over all of the values in the region info map...
  for (RegionInfo::iterator I = RI.begin(), E = RI.end(); I != E; ++I) {
    ValueInfo &VI = I->second;

    // If we know that this value is a particular constant, set Replacement to
    // the constant...
    Value *Replacement = VI.getBounds().getSingleElement();

    // If this value is not known to be some constant, figure out the lowest
    // rank value that it is known to be equal to (if anything).
    //
    if (Replacement == 0) {
      // Find out if there are any equality relationships with values of lower
      // rank than VI itself...
      unsigned MinRank = getRank(I->first);

      // Loop over the relationships known about Op0.
      const std::vector<Relation> &Relationships = VI.getRelationships();
      for (unsigned i = 0, e = Relationships.size(); i != e; ++i)
        if (Relationships[i].getRelation() == Instruction::SetEQ) {
          unsigned R = getRank(Relationships[i].getValue());
          if (R < MinRank) {
            MinRank = R;
            Replacement = Relationships[i].getValue();
          }
        }
    }

    // If we found something to replace this value with, keep track of it.
    if (Replacement)
      VI.setReplacement(Replacement);
  }
}

// SimplifyBasicBlock - Given information about values in region RI, simplify
// the instructions in the specified basic block.
//
bool CEE::SimplifyBasicBlock(BasicBlock &BB, const RegionInfo &RI) {
  bool Changed = false;
  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) {
    Instruction *Inst = I++;

    // Convert instruction arguments to canonical forms...
    Changed |= SimplifyInstruction(Inst, RI);

    if (SetCondInst *SCI = dyn_cast<SetCondInst>(Inst)) {
      // Try to simplify a setcc instruction based on inherited information
      Relation::KnownResult Result = getSetCCResult(SCI, RI);
      if (Result != Relation::Unknown) {
        DEBUG(std::cerr << "Replacing setcc with " << Result
                        << " constant: " << SCI);

        SCI->replaceAllUsesWith(ConstantBool::get((bool)Result));
        // The instruction is now dead, remove it from the program.
        SCI->getParent()->getInstList().erase(SCI);
        ++NumSetCCRemoved;
        Changed = true;
      }
    }
  }

  return Changed;
}

// SimplifyInstruction - Inspect the operands of the instruction, converting
// them to their canonical form if possible.  This takes care of, for example,
// replacing a value 'X' with a constant 'C' if the instruction in question is
// dominated by a true seteq 'X', 'C'.
//
bool CEE::SimplifyInstruction(Instruction *I, const RegionInfo &RI) {
  bool Changed = false;

  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
    if (const ValueInfo *VI = RI.requestValueInfo(I->getOperand(i)))
      if (Value *Repl = VI->getReplacement()) {
        // If we know if a replacement with lower rank than Op0, make the
        // replacement now.
        DEBUG(std::cerr << "In Inst: " << I << "  Replacing operand #" << i
                        << " with " << Repl << "\n");
        I->setOperand(i, Repl);
        Changed = true;
        ++NumOperandsCann;
      }

  return Changed;
}


// getSetCCResult - Try to simplify a setcc instruction based on information
// inherited from a dominating setcc instruction.  V is one of the operands to
// the setcc instruction, and VI is the set of information known about it.  We
// take two cases into consideration here.  If the comparison is against a
// constant value, we can use the constant range to see if the comparison is
// possible to succeed.  If it is not a comparison against a constant, we check
// to see if there is a known relationship between the two values.  If so, we
// may be able to eliminate the check.
//
Relation::KnownResult CEE::getSetCCResult(SetCondInst *SCI,
                                          const RegionInfo &RI) {
  Value *Op0 = SCI->getOperand(0), *Op1 = SCI->getOperand(1);
  Instruction::BinaryOps Opcode = SCI->getOpcode();
  
  if (isa<Constant>(Op0)) {
    if (isa<Constant>(Op1)) {
      if (Constant *Result = ConstantFoldInstruction(SCI)) {
        // Wow, this is easy, directly eliminate the SetCondInst.
        DEBUG(std::cerr << "Replacing setcc with constant fold: " << SCI);
        return cast<ConstantBool>(Result)->getValue()
          ? Relation::KnownTrue : Relation::KnownFalse;
      }
    } else {
      // We want to swap this instruction so that operand #0 is the constant.
      std::swap(Op0, Op1);
      Opcode = SCI->getSwappedCondition();
    }
  }

  // Try to figure out what the result of this comparison will be...
  Relation::KnownResult Result = Relation::Unknown;

  // We have to know something about the relationship to prove anything...
  if (const ValueInfo *Op0VI = RI.requestValueInfo(Op0)) {

    // At this point, we know that if we have a constant argument that it is in
    // Op1.  Check to see if we know anything about comparing value with a
    // constant, and if we can use this info to fold the setcc.
    //
    if (ConstantIntegral *C = dyn_cast<ConstantIntegral>(Op1)) {
      // Check to see if we already know the result of this comparison...
      ConstantRange R = ConstantRange(Opcode, C);
      ConstantRange Int = R.intersectWith(Op0VI->getBounds());

      // If the intersection of the two ranges is empty, then the condition
      // could never be true!
      // 
      if (Int.isEmptySet()) {
        Result = Relation::KnownFalse;

      // Otherwise, if VI.getBounds() (the possible values) is a subset of R
      // (the allowed values) then we know that the condition must always be
      // true!
      //
      } else if (Int == Op0VI->getBounds()) {
        Result = Relation::KnownTrue;
      }
    } else {
      // If we are here, we know that the second argument is not a constant
      // integral.  See if we know anything about Op0 & Op1 that allows us to
      // fold this anyway.
      //
      // Do we have value information about Op0 and a relation to Op1?
      if (const Relation *Op2R = Op0VI->requestRelation(Op1))
        Result = Op2R->getImpliedResult(Opcode);
    }
  }
  return Result;
}

//===----------------------------------------------------------------------===//
//  Relation Implementation
//===----------------------------------------------------------------------===//

// CheckCondition - Return true if the specified condition is false.  Bound may
// be null.
static bool CheckCondition(Constant *Bound, Constant *C,
                           Instruction::BinaryOps BO) {
  assert(C != 0 && "C is not specified!");
  if (Bound == 0) return false;

  ConstantBool *Val;
  switch (BO) {
  default: assert(0 && "Unknown Condition code!");
  case Instruction::SetEQ: Val = *Bound == *C; break;
  case Instruction::SetNE: Val = *Bound != *C; break;
  case Instruction::SetLT: Val = *Bound <  *C; break;
  case Instruction::SetGT: Val = *Bound >  *C; break;
  case Instruction::SetLE: Val = *Bound <= *C; break;
  case Instruction::SetGE: Val = *Bound >= *C; break;
  }

  // ConstantHandling code may not succeed in the comparison...
  if (Val == 0) return false;
  return !Val->getValue();  // Return true if the condition is false...
}

// contradicts - Return true if the relationship specified by the operand
// contradicts already known information.
//
bool Relation::contradicts(Instruction::BinaryOps Op,
                           const ValueInfo &VI) const {
  assert (Op != Instruction::Add && "Invalid relation argument!");

  // If this is a relationship with a constant, make sure that this relationship
  // does not contradict properties known about the bounds of the constant.
  //
  if (ConstantIntegral *C = dyn_cast<ConstantIntegral>(Val))
    if (ConstantRange(Op, C).intersectWith(VI.getBounds()).isEmptySet())
      return true;

  switch (Rel) {
  default: assert(0 && "Unknown Relationship code!");
  case Instruction::Add: return false;  // Nothing known, nothing contradicts
  case Instruction::SetEQ:
    return Op == Instruction::SetLT || Op == Instruction::SetGT ||
           Op == Instruction::SetNE;
  case Instruction::SetNE: return Op == Instruction::SetEQ;
  case Instruction::SetLE: return Op == Instruction::SetGT;
  case Instruction::SetGE: return Op == Instruction::SetLT;
  case Instruction::SetLT:
    return Op == Instruction::SetEQ || Op == Instruction::SetGT ||
           Op == Instruction::SetGE;
  case Instruction::SetGT:
    return Op == Instruction::SetEQ || Op == Instruction::SetLT ||
           Op == Instruction::SetLE;
  }
}

// incorporate - Incorporate information in the argument into this relation
// entry.  This assumes that the information doesn't contradict itself.  If any
// new information is gained, true is returned, otherwise false is returned to
// indicate that nothing was updated.
//
bool Relation::incorporate(Instruction::BinaryOps Op, ValueInfo &VI) {
  assert(!contradicts(Op, VI) &&
         "Cannot incorporate contradictory information!");

  // If this is a relationship with a constant, make sure that we update the
  // range that is possible for the value to have...
  //
  if (ConstantIntegral *C = dyn_cast<ConstantIntegral>(Val))
    VI.getBounds() = ConstantRange(Op, C).intersectWith(VI.getBounds());

  switch (Rel) {
  default: assert(0 && "Unknown prior value!");
  case Instruction::Add:   Rel = Op; return true;
  case Instruction::SetEQ: return false;  // Nothing is more precise
  case Instruction::SetNE: return false;  // Nothing is more precise
  case Instruction::SetLT: return false;  // Nothing is more precise
  case Instruction::SetGT: return false;  // Nothing is more precise
  case Instruction::SetLE:
    if (Op == Instruction::SetEQ || Op == Instruction::SetLT) {
      Rel = Op;
      return true;
    } else if (Op == Instruction::SetNE) {
      Rel = Instruction::SetLT;
      return true;
    }
    return false;
  case Instruction::SetGE: return Op == Instruction::SetLT;
    if (Op == Instruction::SetEQ || Op == Instruction::SetGT) {
      Rel = Op;
      return true;
    } else if (Op == Instruction::SetNE) {
      Rel = Instruction::SetGT;
      return true;
    }
    return false;
  }
}

// getImpliedResult - If this relationship between two values implies that
// the specified relationship is true or false, return that.  If we cannot
// determine the result required, return Unknown.
//
Relation::KnownResult
Relation::getImpliedResult(Instruction::BinaryOps Op) const {
  if (Rel == Op) return KnownTrue;
  if (Rel == SetCondInst::getInverseCondition(Op)) return KnownFalse;

  switch (Rel) {
  default: assert(0 && "Unknown prior value!");
  case Instruction::SetEQ:
    if (Op == Instruction::SetLE || Op == Instruction::SetGE) return KnownTrue;
    if (Op == Instruction::SetLT || Op == Instruction::SetGT) return KnownFalse;
    break;
  case Instruction::SetLT:
    if (Op == Instruction::SetNE || Op == Instruction::SetLE) return KnownTrue;
    if (Op == Instruction::SetEQ) return KnownFalse;
    break;
  case Instruction::SetGT:
    if (Op == Instruction::SetNE || Op == Instruction::SetGE) return KnownTrue;
    if (Op == Instruction::SetEQ) return KnownFalse;
    break;
  case Instruction::SetNE:
  case Instruction::SetLE:
  case Instruction::SetGE:
  case Instruction::Add:
    break;
  }
  return Unknown;
}


//===----------------------------------------------------------------------===//
// Printing Support...
//===----------------------------------------------------------------------===//

// print - Implement the standard print form to print out analysis information.
void CEE::print(std::ostream &O, const Module *M) const {
  O << "\nPrinting Correlated Expression Info:\n";
  for (std::map<BasicBlock*, RegionInfo>::const_iterator I = 
         RegionInfoMap.begin(), E = RegionInfoMap.end(); I != E; ++I)
    I->second.print(O);
}

// print - Output information about this region...
void RegionInfo::print(std::ostream &OS) const {
  if (ValueMap.empty()) return;

  OS << " RegionInfo for basic block: " << BB->getName() << "\n";
  for (std::map<Value*, ValueInfo>::const_iterator
         I = ValueMap.begin(), E = ValueMap.end(); I != E; ++I)
    I->second.print(OS, I->first);
  OS << "\n";
}

// print - Output information about this value relation...
void ValueInfo::print(std::ostream &OS, Value *V) const {
  if (Relationships.empty()) return;

  if (V) {
    OS << "  ValueInfo for: ";
    WriteAsOperand(OS, V);
  }
  OS << "\n    Bounds = " << Bounds << "\n";
  if (Replacement) {
    OS << "    Replacement = ";
    WriteAsOperand(OS, Replacement);
    OS << "\n";
  }
  for (unsigned i = 0, e = Relationships.size(); i != e; ++i)
    Relationships[i].print(OS);
}

// print - Output this relation to the specified stream
void Relation::print(std::ostream &OS) const {
  OS << "    is ";
  switch (Rel) {
  default:           OS << "*UNKNOWN*"; break;
  case Instruction::SetEQ: OS << "== "; break;
  case Instruction::SetNE: OS << "!= "; break;
  case Instruction::SetLT: OS << "< "; break;
  case Instruction::SetGT: OS << "> "; break;
  case Instruction::SetLE: OS << "<= "; break;
  case Instruction::SetGE: OS << ">= "; break;
  }

  WriteAsOperand(OS, Val);
  OS << "\n";
}

// Don't inline these methods or else we won't be able to call them from GDB!
void Relation::dump() const { print(std::cerr); }
void ValueInfo::dump() const { print(std::cerr, 0); }
void RegionInfo::dump() const { print(std::cerr); }