aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Transforms/Scalar/GVN.cpp
blob: 636590d5445037eb4b0d67e490eb0da7021c787b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
//===- GVN.cpp - Eliminate redundant values and loads ------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass performs global value numbering to eliminate fully redundant
// instructions.  It also performs simple dead load elimination.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "gvn"
#include "llvm/Transforms/Scalar.h"
#include "llvm/BasicBlock.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Instructions.h"
#include "llvm/ParameterAttributes.h"
#include "llvm/Value.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Target/TargetData.h"
#include <list>
using namespace llvm;

STATISTIC(NumGVNInstr, "Number of instructions deleted");
STATISTIC(NumGVNLoad, "Number of loads deleted");
STATISTIC(NumMemSetInfer, "Number of memsets inferred");

namespace {
  cl::opt<bool>
  FormMemSet("form-memset-from-stores",
             cl::desc("Transform straight-line stores to memsets"),
             cl::init(true), cl::Hidden);
}

//===----------------------------------------------------------------------===//
//                         ValueTable Class
//===----------------------------------------------------------------------===//

/// This class holds the mapping between values and value numbers.  It is used
/// as an efficient mechanism to determine the expression-wise equivalence of
/// two values.
namespace {
  struct VISIBILITY_HIDDEN Expression {
    enum ExpressionOpcode { ADD, SUB, MUL, UDIV, SDIV, FDIV, UREM, SREM, 
                            FREM, SHL, LSHR, ASHR, AND, OR, XOR, ICMPEQ, 
                            ICMPNE, ICMPUGT, ICMPUGE, ICMPULT, ICMPULE, 
                            ICMPSGT, ICMPSGE, ICMPSLT, ICMPSLE, FCMPOEQ, 
                            FCMPOGT, FCMPOGE, FCMPOLT, FCMPOLE, FCMPONE, 
                            FCMPORD, FCMPUNO, FCMPUEQ, FCMPUGT, FCMPUGE, 
                            FCMPULT, FCMPULE, FCMPUNE, EXTRACT, INSERT,
                            SHUFFLE, SELECT, TRUNC, ZEXT, SEXT, FPTOUI,
                            FPTOSI, UITOFP, SITOFP, FPTRUNC, FPEXT, 
                            PTRTOINT, INTTOPTR, BITCAST, GEP, CALL, EMPTY,
                            TOMBSTONE };

    ExpressionOpcode opcode;
    const Type* type;
    uint32_t firstVN;
    uint32_t secondVN;
    uint32_t thirdVN;
    SmallVector<uint32_t, 4> varargs;
    Value* function;
  
    Expression() { }
    Expression(ExpressionOpcode o) : opcode(o) { }
  
    bool operator==(const Expression &other) const {
      if (opcode != other.opcode)
        return false;
      else if (opcode == EMPTY || opcode == TOMBSTONE)
        return true;
      else if (type != other.type)
        return false;
      else if (function != other.function)
        return false;
      else if (firstVN != other.firstVN)
        return false;
      else if (secondVN != other.secondVN)
        return false;
      else if (thirdVN != other.thirdVN)
        return false;
      else {
        if (varargs.size() != other.varargs.size())
          return false;
      
        for (size_t i = 0; i < varargs.size(); ++i)
          if (varargs[i] != other.varargs[i])
            return false;
    
        return true;
      }
    }
  
    bool operator!=(const Expression &other) const {
      if (opcode != other.opcode)
        return true;
      else if (opcode == EMPTY || opcode == TOMBSTONE)
        return false;
      else if (type != other.type)
        return true;
      else if (function != other.function)
        return true;
      else if (firstVN != other.firstVN)
        return true;
      else if (secondVN != other.secondVN)
        return true;
      else if (thirdVN != other.thirdVN)
        return true;
      else {
        if (varargs.size() != other.varargs.size())
          return true;
      
        for (size_t i = 0; i < varargs.size(); ++i)
          if (varargs[i] != other.varargs[i])
            return true;
    
          return false;
      }
    }
  };
  
  class VISIBILITY_HIDDEN ValueTable {
    private:
      DenseMap<Value*, uint32_t> valueNumbering;
      DenseMap<Expression, uint32_t> expressionNumbering;
      AliasAnalysis* AA;
  
      uint32_t nextValueNumber;
    
      Expression::ExpressionOpcode getOpcode(BinaryOperator* BO);
      Expression::ExpressionOpcode getOpcode(CmpInst* C);
      Expression::ExpressionOpcode getOpcode(CastInst* C);
      Expression create_expression(BinaryOperator* BO);
      Expression create_expression(CmpInst* C);
      Expression create_expression(ShuffleVectorInst* V);
      Expression create_expression(ExtractElementInst* C);
      Expression create_expression(InsertElementInst* V);
      Expression create_expression(SelectInst* V);
      Expression create_expression(CastInst* C);
      Expression create_expression(GetElementPtrInst* G);
      Expression create_expression(CallInst* C);
    public:
      ValueTable() : nextValueNumber(1) { }
      uint32_t lookup_or_add(Value* V);
      uint32_t lookup(Value* V) const;
      void add(Value* V, uint32_t num);
      void clear();
      void erase(Value* v);
      unsigned size();
      void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
      uint32_t hash_operand(Value* v);
  };
}

namespace llvm {
template <> struct DenseMapInfo<Expression> {
  static inline Expression getEmptyKey() {
    return Expression(Expression::EMPTY);
  }
  
  static inline Expression getTombstoneKey() {
    return Expression(Expression::TOMBSTONE);
  }
  
  static unsigned getHashValue(const Expression e) {
    unsigned hash = e.opcode;
    
    hash = e.firstVN + hash * 37;
    hash = e.secondVN + hash * 37;
    hash = e.thirdVN + hash * 37;
    
    hash = ((unsigned)((uintptr_t)e.type >> 4) ^
            (unsigned)((uintptr_t)e.type >> 9)) +
           hash * 37;
    
    for (SmallVector<uint32_t, 4>::const_iterator I = e.varargs.begin(),
         E = e.varargs.end(); I != E; ++I)
      hash = *I + hash * 37;
    
    hash = ((unsigned)((uintptr_t)e.function >> 4) ^
            (unsigned)((uintptr_t)e.function >> 9)) +
           hash * 37;
    
    return hash;
  }
  static bool isEqual(const Expression &LHS, const Expression &RHS) {
    return LHS == RHS;
  }
  static bool isPod() { return true; }
};
}

//===----------------------------------------------------------------------===//
//                     ValueTable Internal Functions
//===----------------------------------------------------------------------===//
Expression::ExpressionOpcode ValueTable::getOpcode(BinaryOperator* BO) {
  switch(BO->getOpcode()) {
  default: // THIS SHOULD NEVER HAPPEN
    assert(0 && "Binary operator with unknown opcode?");
  case Instruction::Add:  return Expression::ADD;
  case Instruction::Sub:  return Expression::SUB;
  case Instruction::Mul:  return Expression::MUL;
  case Instruction::UDiv: return Expression::UDIV;
  case Instruction::SDiv: return Expression::SDIV;
  case Instruction::FDiv: return Expression::FDIV;
  case Instruction::URem: return Expression::UREM;
  case Instruction::SRem: return Expression::SREM;
  case Instruction::FRem: return Expression::FREM;
  case Instruction::Shl:  return Expression::SHL;
  case Instruction::LShr: return Expression::LSHR;
  case Instruction::AShr: return Expression::ASHR;
  case Instruction::And:  return Expression::AND;
  case Instruction::Or:   return Expression::OR;
  case Instruction::Xor:  return Expression::XOR;
  }
}

Expression::ExpressionOpcode ValueTable::getOpcode(CmpInst* C) {
  if (isa<ICmpInst>(C)) {
    switch (C->getPredicate()) {
    default:  // THIS SHOULD NEVER HAPPEN
      assert(0 && "Comparison with unknown predicate?");
    case ICmpInst::ICMP_EQ:  return Expression::ICMPEQ;
    case ICmpInst::ICMP_NE:  return Expression::ICMPNE;
    case ICmpInst::ICMP_UGT: return Expression::ICMPUGT;
    case ICmpInst::ICMP_UGE: return Expression::ICMPUGE;
    case ICmpInst::ICMP_ULT: return Expression::ICMPULT;
    case ICmpInst::ICMP_ULE: return Expression::ICMPULE;
    case ICmpInst::ICMP_SGT: return Expression::ICMPSGT;
    case ICmpInst::ICMP_SGE: return Expression::ICMPSGE;
    case ICmpInst::ICMP_SLT: return Expression::ICMPSLT;
    case ICmpInst::ICMP_SLE: return Expression::ICMPSLE;
    }
  }
  assert(isa<FCmpInst>(C) && "Unknown compare");
  switch (C->getPredicate()) {
  default: // THIS SHOULD NEVER HAPPEN
    assert(0 && "Comparison with unknown predicate?");
  case FCmpInst::FCMP_OEQ: return Expression::FCMPOEQ;
  case FCmpInst::FCMP_OGT: return Expression::FCMPOGT;
  case FCmpInst::FCMP_OGE: return Expression::FCMPOGE;
  case FCmpInst::FCMP_OLT: return Expression::FCMPOLT;
  case FCmpInst::FCMP_OLE: return Expression::FCMPOLE;
  case FCmpInst::FCMP_ONE: return Expression::FCMPONE;
  case FCmpInst::FCMP_ORD: return Expression::FCMPORD;
  case FCmpInst::FCMP_UNO: return Expression::FCMPUNO;
  case FCmpInst::FCMP_UEQ: return Expression::FCMPUEQ;
  case FCmpInst::FCMP_UGT: return Expression::FCMPUGT;
  case FCmpInst::FCMP_UGE: return Expression::FCMPUGE;
  case FCmpInst::FCMP_ULT: return Expression::FCMPULT;
  case FCmpInst::FCMP_ULE: return Expression::FCMPULE;
  case FCmpInst::FCMP_UNE: return Expression::FCMPUNE;
  }
}

Expression::ExpressionOpcode ValueTable::getOpcode(CastInst* C) {
  switch(C->getOpcode()) {
  default: // THIS SHOULD NEVER HAPPEN
    assert(0 && "Cast operator with unknown opcode?");
  case Instruction::Trunc:    return Expression::TRUNC;
  case Instruction::ZExt:     return Expression::ZEXT;
  case Instruction::SExt:     return Expression::SEXT;
  case Instruction::FPToUI:   return Expression::FPTOUI;
  case Instruction::FPToSI:   return Expression::FPTOSI;
  case Instruction::UIToFP:   return Expression::UITOFP;
  case Instruction::SIToFP:   return Expression::SITOFP;
  case Instruction::FPTrunc:  return Expression::FPTRUNC;
  case Instruction::FPExt:    return Expression::FPEXT;
  case Instruction::PtrToInt: return Expression::PTRTOINT;
  case Instruction::IntToPtr: return Expression::INTTOPTR;
  case Instruction::BitCast:  return Expression::BITCAST;
  }
}

uint32_t ValueTable::hash_operand(Value* v) {
  if (CallInst* CI = dyn_cast<CallInst>(v))
    if (!AA->doesNotAccessMemory(CI))
      return nextValueNumber++;
  
  return lookup_or_add(v);
}

Expression ValueTable::create_expression(CallInst* C) {
  Expression e;
  
  e.type = C->getType();
  e.firstVN = 0;
  e.secondVN = 0;
  e.thirdVN = 0;
  e.function = C->getCalledFunction();
  e.opcode = Expression::CALL;
  
  for (CallInst::op_iterator I = C->op_begin()+1, E = C->op_end();
       I != E; ++I)
    e.varargs.push_back(hash_operand(*I));
  
  return e;
}

Expression ValueTable::create_expression(BinaryOperator* BO) {
  Expression e;
    
  e.firstVN = hash_operand(BO->getOperand(0));
  e.secondVN = hash_operand(BO->getOperand(1));
  e.thirdVN = 0;
  e.function = 0;
  e.type = BO->getType();
  e.opcode = getOpcode(BO);
  
  return e;
}

Expression ValueTable::create_expression(CmpInst* C) {
  Expression e;
    
  e.firstVN = hash_operand(C->getOperand(0));
  e.secondVN = hash_operand(C->getOperand(1));
  e.thirdVN = 0;
  e.function = 0;
  e.type = C->getType();
  e.opcode = getOpcode(C);
  
  return e;
}

Expression ValueTable::create_expression(CastInst* C) {
  Expression e;
    
  e.firstVN = hash_operand(C->getOperand(0));
  e.secondVN = 0;
  e.thirdVN = 0;
  e.function = 0;
  e.type = C->getType();
  e.opcode = getOpcode(C);
  
  return e;
}

Expression ValueTable::create_expression(ShuffleVectorInst* S) {
  Expression e;
    
  e.firstVN = hash_operand(S->getOperand(0));
  e.secondVN = hash_operand(S->getOperand(1));
  e.thirdVN = hash_operand(S->getOperand(2));
  e.function = 0;
  e.type = S->getType();
  e.opcode = Expression::SHUFFLE;
  
  return e;
}

Expression ValueTable::create_expression(ExtractElementInst* E) {
  Expression e;
    
  e.firstVN = hash_operand(E->getOperand(0));
  e.secondVN = hash_operand(E->getOperand(1));
  e.thirdVN = 0;
  e.function = 0;
  e.type = E->getType();
  e.opcode = Expression::EXTRACT;
  
  return e;
}

Expression ValueTable::create_expression(InsertElementInst* I) {
  Expression e;
    
  e.firstVN = hash_operand(I->getOperand(0));
  e.secondVN = hash_operand(I->getOperand(1));
  e.thirdVN = hash_operand(I->getOperand(2));
  e.function = 0;
  e.type = I->getType();
  e.opcode = Expression::INSERT;
  
  return e;
}

Expression ValueTable::create_expression(SelectInst* I) {
  Expression e;
    
  e.firstVN = hash_operand(I->getCondition());
  e.secondVN = hash_operand(I->getTrueValue());
  e.thirdVN = hash_operand(I->getFalseValue());
  e.function = 0;
  e.type = I->getType();
  e.opcode = Expression::SELECT;
  
  return e;
}

Expression ValueTable::create_expression(GetElementPtrInst* G) {
  Expression e;
    
  e.firstVN = hash_operand(G->getPointerOperand());
  e.secondVN = 0;
  e.thirdVN = 0;
  e.function = 0;
  e.type = G->getType();
  e.opcode = Expression::GEP;
  
  for (GetElementPtrInst::op_iterator I = G->idx_begin(), E = G->idx_end();
       I != E; ++I)
    e.varargs.push_back(hash_operand(*I));
  
  return e;
}

//===----------------------------------------------------------------------===//
//                     ValueTable External Functions
//===----------------------------------------------------------------------===//

/// lookup_or_add - Returns the value number for the specified value, assigning
/// it a new number if it did not have one before.
uint32_t ValueTable::lookup_or_add(Value* V) {
  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
  if (VI != valueNumbering.end())
    return VI->second;
  
  if (CallInst* C = dyn_cast<CallInst>(V)) {
    if (AA->onlyReadsMemory(C)) { // includes doesNotAccessMemory
      Expression e = create_expression(C);
    
      DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
      if (EI != expressionNumbering.end()) {
        valueNumbering.insert(std::make_pair(V, EI->second));
        return EI->second;
      } else {
        expressionNumbering.insert(std::make_pair(e, nextValueNumber));
        valueNumbering.insert(std::make_pair(V, nextValueNumber));
      
        return nextValueNumber++;
      }
    } else {
      valueNumbering.insert(std::make_pair(V, nextValueNumber));
      return nextValueNumber++;
    }
  } else if (BinaryOperator* BO = dyn_cast<BinaryOperator>(V)) {
    Expression e = create_expression(BO);
    
    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
    if (EI != expressionNumbering.end()) {
      valueNumbering.insert(std::make_pair(V, EI->second));
      return EI->second;
    } else {
      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
      valueNumbering.insert(std::make_pair(V, nextValueNumber));
      
      return nextValueNumber++;
    }
  } else if (CmpInst* C = dyn_cast<CmpInst>(V)) {
    Expression e = create_expression(C);
    
    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
    if (EI != expressionNumbering.end()) {
      valueNumbering.insert(std::make_pair(V, EI->second));
      return EI->second;
    } else {
      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
      valueNumbering.insert(std::make_pair(V, nextValueNumber));
      
      return nextValueNumber++;
    }
  } else if (ShuffleVectorInst* U = dyn_cast<ShuffleVectorInst>(V)) {
    Expression e = create_expression(U);
    
    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
    if (EI != expressionNumbering.end()) {
      valueNumbering.insert(std::make_pair(V, EI->second));
      return EI->second;
    } else {
      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
      valueNumbering.insert(std::make_pair(V, nextValueNumber));
      
      return nextValueNumber++;
    }
  } else if (ExtractElementInst* U = dyn_cast<ExtractElementInst>(V)) {
    Expression e = create_expression(U);
    
    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
    if (EI != expressionNumbering.end()) {
      valueNumbering.insert(std::make_pair(V, EI->second));
      return EI->second;
    } else {
      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
      valueNumbering.insert(std::make_pair(V, nextValueNumber));
      
      return nextValueNumber++;
    }
  } else if (InsertElementInst* U = dyn_cast<InsertElementInst>(V)) {
    Expression e = create_expression(U);
    
    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
    if (EI != expressionNumbering.end()) {
      valueNumbering.insert(std::make_pair(V, EI->second));
      return EI->second;
    } else {
      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
      valueNumbering.insert(std::make_pair(V, nextValueNumber));
      
      return nextValueNumber++;
    }
  } else if (SelectInst* U = dyn_cast<SelectInst>(V)) {
    Expression e = create_expression(U);
    
    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
    if (EI != expressionNumbering.end()) {
      valueNumbering.insert(std::make_pair(V, EI->second));
      return EI->second;
    } else {
      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
      valueNumbering.insert(std::make_pair(V, nextValueNumber));
      
      return nextValueNumber++;
    }
  } else if (CastInst* U = dyn_cast<CastInst>(V)) {
    Expression e = create_expression(U);
    
    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
    if (EI != expressionNumbering.end()) {
      valueNumbering.insert(std::make_pair(V, EI->second));
      return EI->second;
    } else {
      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
      valueNumbering.insert(std::make_pair(V, nextValueNumber));
      
      return nextValueNumber++;
    }
  } else if (GetElementPtrInst* U = dyn_cast<GetElementPtrInst>(V)) {
    Expression e = create_expression(U);
    
    DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
    if (EI != expressionNumbering.end()) {
      valueNumbering.insert(std::make_pair(V, EI->second));
      return EI->second;
    } else {
      expressionNumbering.insert(std::make_pair(e, nextValueNumber));
      valueNumbering.insert(std::make_pair(V, nextValueNumber));
      
      return nextValueNumber++;
    }
  } else {
    valueNumbering.insert(std::make_pair(V, nextValueNumber));
    return nextValueNumber++;
  }
}

/// lookup - Returns the value number of the specified value. Fails if
/// the value has not yet been numbered.
uint32_t ValueTable::lookup(Value* V) const {
  DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
  assert(VI != valueNumbering.end() && "Value not numbered?");
  return VI->second;
}

/// clear - Remove all entries from the ValueTable
void ValueTable::clear() {
  valueNumbering.clear();
  expressionNumbering.clear();
  nextValueNumber = 1;
}

/// erase - Remove a value from the value numbering
void ValueTable::erase(Value* V) {
  valueNumbering.erase(V);
}

//===----------------------------------------------------------------------===//
//                       ValueNumberedSet Class
//===----------------------------------------------------------------------===//
namespace {
class VISIBILITY_HIDDEN ValueNumberedSet {
  private:
    SmallPtrSet<Value*, 8> contents;
    BitVector numbers;
  public:
    ValueNumberedSet() { numbers.resize(1); }
    ValueNumberedSet(const ValueNumberedSet& other) {
      numbers = other.numbers;
      contents = other.contents;
    }
    
    typedef SmallPtrSet<Value*, 8>::iterator iterator;
    
    iterator begin() { return contents.begin(); }
    iterator end() { return contents.end(); }
    
    bool insert(Value* v) { return contents.insert(v); }
    void insert(iterator I, iterator E) { contents.insert(I, E); }
    void erase(Value* v) { contents.erase(v); }
    unsigned count(Value* v) { return contents.count(v); }
    size_t size() { return contents.size(); }
    
    void set(unsigned i)  {
      if (i >= numbers.size())
        numbers.resize(i+1);
      
      numbers.set(i);
    }
    
    void operator=(const ValueNumberedSet& other) {
      contents = other.contents;
      numbers = other.numbers;
    }
    
    void reset(unsigned i)  {
      if (i < numbers.size())
        numbers.reset(i);
    }
    
    bool test(unsigned i)  {
      if (i >= numbers.size())
        return false;
      
      return numbers.test(i);
    }
    
    void clear() {
      contents.clear();
      numbers.clear();
    }
};
}

//===----------------------------------------------------------------------===//
//                         GVN Pass
//===----------------------------------------------------------------------===//

namespace {

  class VISIBILITY_HIDDEN GVN : public FunctionPass {
    bool runOnFunction(Function &F);
  public:
    static char ID; // Pass identification, replacement for typeid
    GVN() : FunctionPass((intptr_t)&ID) { }

  private:
    ValueTable VN;
    
    DenseMap<BasicBlock*, ValueNumberedSet> availableOut;
    
    typedef DenseMap<Value*, SmallPtrSet<Instruction*, 4> > PhiMapType;
    PhiMapType phiMap;
    
    
    // This transformation requires dominator postdominator info
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.setPreservesCFG();
      AU.addRequired<DominatorTree>();
      AU.addRequired<MemoryDependenceAnalysis>();
      AU.addRequired<AliasAnalysis>();
      AU.addRequired<TargetData>();
      AU.addPreserved<AliasAnalysis>();
      AU.addPreserved<MemoryDependenceAnalysis>();
      AU.addPreserved<TargetData>();
    }
  
    // Helper fuctions
    // FIXME: eliminate or document these better
    Value* find_leader(ValueNumberedSet& vals, uint32_t v) ;
    void val_insert(ValueNumberedSet& s, Value* v);
    bool processLoad(LoadInst* L,
                     DenseMap<Value*, LoadInst*> &lastLoad,
                     SmallVectorImpl<Instruction*> &toErase);
    bool processStore(StoreInst *SI, SmallVectorImpl<Instruction*> &toErase);
    bool processInstruction(Instruction* I,
                            ValueNumberedSet& currAvail,
                            DenseMap<Value*, LoadInst*>& lastSeenLoad,
                            SmallVectorImpl<Instruction*> &toErase);
    bool processNonLocalLoad(LoadInst* L,
                             SmallVectorImpl<Instruction*> &toErase);
    bool processMemCpy(MemCpyInst* M, MemCpyInst* MDep,
                       SmallVectorImpl<Instruction*> &toErase);
    bool performCallSlotOptzn(MemCpyInst* cpy, CallInst* C,
                              SmallVectorImpl<Instruction*> &toErase);
    Value *GetValueForBlock(BasicBlock *BB, LoadInst* orig,
                            DenseMap<BasicBlock*, Value*> &Phis,
                            bool top_level = false);
    void dump(DenseMap<BasicBlock*, Value*>& d);
    bool iterateOnFunction(Function &F);
    Value* CollapsePhi(PHINode* p);
    bool isSafeReplacement(PHINode* p, Instruction* inst);
  };
  
  char GVN::ID = 0;
}

// createGVNPass - The public interface to this file...
FunctionPass *llvm::createGVNPass() { return new GVN(); }

static RegisterPass<GVN> X("gvn",
                           "Global Value Numbering");

/// find_leader - Given a set and a value number, return the first
/// element of the set with that value number, or 0 if no such element
/// is present
Value* GVN::find_leader(ValueNumberedSet& vals, uint32_t v) {
  if (!vals.test(v))
    return 0;
  
  for (ValueNumberedSet::iterator I = vals.begin(), E = vals.end();
       I != E; ++I)
    if (v == VN.lookup(*I))
      return *I;
  
  assert(0 && "No leader found, but present bit is set?");
  return 0;
}

/// val_insert - Insert a value into a set only if there is not a value
/// with the same value number already in the set
void GVN::val_insert(ValueNumberedSet& s, Value* v) {
  uint32_t num = VN.lookup(v);
  if (!s.test(num))
    s.insert(v);
}

void GVN::dump(DenseMap<BasicBlock*, Value*>& d) {
  printf("{\n");
  for (DenseMap<BasicBlock*, Value*>::iterator I = d.begin(),
       E = d.end(); I != E; ++I) {
    if (I->second == MemoryDependenceAnalysis::None)
      printf("None\n");
    else
      I->second->dump();
  }
  printf("}\n");
}

Value* GVN::CollapsePhi(PHINode* p) {
  DominatorTree &DT = getAnalysis<DominatorTree>();
  Value* constVal = p->hasConstantValue();
  
  if (!constVal) return 0;
  
  Instruction* inst = dyn_cast<Instruction>(constVal);
  if (!inst)
    return constVal;
    
  if (DT.dominates(inst, p))
    if (isSafeReplacement(p, inst))
      return inst;
  return 0;
}

bool GVN::isSafeReplacement(PHINode* p, Instruction* inst) {
  if (!isa<PHINode>(inst))
    return true;
  
  for (Instruction::use_iterator UI = p->use_begin(), E = p->use_end();
       UI != E; ++UI)
    if (PHINode* use_phi = dyn_cast<PHINode>(UI))
      if (use_phi->getParent() == inst->getParent())
        return false;
  
  return true;
}

/// GetValueForBlock - Get the value to use within the specified basic block.
/// available values are in Phis.
Value *GVN::GetValueForBlock(BasicBlock *BB, LoadInst* orig,
                             DenseMap<BasicBlock*, Value*> &Phis,
                             bool top_level) { 
                                 
  // If we have already computed this value, return the previously computed val.
  DenseMap<BasicBlock*, Value*>::iterator V = Phis.find(BB);
  if (V != Phis.end() && !top_level) return V->second;
  
  BasicBlock* singlePred = BB->getSinglePredecessor();
  if (singlePred) {
    Value *ret = GetValueForBlock(singlePred, orig, Phis);
    Phis[BB] = ret;
    return ret;
  }
  
  // Otherwise, the idom is the loop, so we need to insert a PHI node.  Do so
  // now, then get values to fill in the incoming values for the PHI.
  PHINode *PN = new PHINode(orig->getType(), orig->getName()+".rle",
                            BB->begin());
  PN->reserveOperandSpace(std::distance(pred_begin(BB), pred_end(BB)));
  
  if (Phis.count(BB) == 0)
    Phis.insert(std::make_pair(BB, PN));
  
  // Fill in the incoming values for the block.
  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
    Value* val = GetValueForBlock(*PI, orig, Phis);
    PN->addIncoming(val, *PI);
  }
  
  AliasAnalysis& AA = getAnalysis<AliasAnalysis>();
  AA.copyValue(orig, PN);
  
  // Attempt to collapse PHI nodes that are trivially redundant
  Value* v = CollapsePhi(PN);
  if (!v) {
    // Cache our phi construction results
    phiMap[orig->getPointerOperand()].insert(PN);
    return PN;
  }
    
  MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>();

  MD.removeInstruction(PN);
  PN->replaceAllUsesWith(v);

  for (DenseMap<BasicBlock*, Value*>::iterator I = Phis.begin(),
       E = Phis.end(); I != E; ++I)
    if (I->second == PN)
      I->second = v;

  PN->eraseFromParent();

  Phis[BB] = v;
  return v;
}

/// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
/// non-local by performing PHI construction.
bool GVN::processNonLocalLoad(LoadInst* L,
                              SmallVectorImpl<Instruction*> &toErase) {
  MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>();
  
  // Find the non-local dependencies of the load
  DenseMap<BasicBlock*, Value*> deps;
  MD.getNonLocalDependency(L, deps);
  
  DenseMap<BasicBlock*, Value*> repl;
  
  // Filter out useless results (non-locals, etc)
  for (DenseMap<BasicBlock*, Value*>::iterator I = deps.begin(), E = deps.end();
       I != E; ++I) {
    if (I->second == MemoryDependenceAnalysis::None)
      return false;
  
    if (I->second == MemoryDependenceAnalysis::NonLocal)
      continue;
  
    if (StoreInst* S = dyn_cast<StoreInst>(I->second)) {
      if (S->getPointerOperand() != L->getPointerOperand())
        return false;
      repl[I->first] = S->getOperand(0);
    } else if (LoadInst* LD = dyn_cast<LoadInst>(I->second)) {
      if (LD->getPointerOperand() != L->getPointerOperand())
        return false;
      repl[I->first] = LD;
    } else {
      return false;
    }
  }
  
  // Use cached PHI construction information from previous runs
  SmallPtrSet<Instruction*, 4>& p = phiMap[L->getPointerOperand()];
  for (SmallPtrSet<Instruction*, 4>::iterator I = p.begin(), E = p.end();
       I != E; ++I) {
    if ((*I)->getParent() == L->getParent()) {
      MD.removeInstruction(L);
      L->replaceAllUsesWith(*I);
      toErase.push_back(L);
      NumGVNLoad++;
      return true;
    }
    
    repl.insert(std::make_pair((*I)->getParent(), *I));
  }
  
  // Perform PHI construction
  SmallPtrSet<BasicBlock*, 4> visited;
  Value* v = GetValueForBlock(L->getParent(), L, repl, true);
  
  MD.removeInstruction(L);
  L->replaceAllUsesWith(v);
  toErase.push_back(L);
  NumGVNLoad++;

  return true;
}

/// processLoad - Attempt to eliminate a load, first by eliminating it
/// locally, and then attempting non-local elimination if that fails.
bool GVN::processLoad(LoadInst *L, DenseMap<Value*, LoadInst*> &lastLoad,
                      SmallVectorImpl<Instruction*> &toErase) {
  if (L->isVolatile()) {
    lastLoad[L->getPointerOperand()] = L;
    return false;
  }
  
  Value* pointer = L->getPointerOperand();
  LoadInst*& last = lastLoad[pointer];
  
  // ... to a pointer that has been loaded from before...
  MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>();
  bool removedNonLocal = false;
  Instruction* dep = MD.getDependency(L);
  if (dep == MemoryDependenceAnalysis::NonLocal &&
      L->getParent() != &L->getParent()->getParent()->getEntryBlock()) {
    removedNonLocal = processNonLocalLoad(L, toErase);
    
    if (!removedNonLocal)
      last = L;
    
    return removedNonLocal;
  }
  
  
  bool deletedLoad = false;
  
  // Walk up the dependency chain until we either find
  // a dependency we can use, or we can't walk any further
  while (dep != MemoryDependenceAnalysis::None &&
         dep != MemoryDependenceAnalysis::NonLocal &&
         (isa<LoadInst>(dep) || isa<StoreInst>(dep))) {
    // ... that depends on a store ...
    if (StoreInst* S = dyn_cast<StoreInst>(dep)) {
      if (S->getPointerOperand() == pointer) {
        // Remove it!
        MD.removeInstruction(L);
        
        L->replaceAllUsesWith(S->getOperand(0));
        toErase.push_back(L);
        deletedLoad = true;
        NumGVNLoad++;
      }
      
      // Whether we removed it or not, we can't
      // go any further
      break;
    } else if (!last) {
      // If we don't depend on a store, and we haven't
      // been loaded before, bail.
      break;
    } else if (dep == last) {
      // Remove it!
      MD.removeInstruction(L);
      
      L->replaceAllUsesWith(last);
      toErase.push_back(L);
      deletedLoad = true;
      NumGVNLoad++;
        
      break;
    } else {
      dep = MD.getDependency(L, dep);
    }
  }

  if (dep != MemoryDependenceAnalysis::None &&
      dep != MemoryDependenceAnalysis::NonLocal &&
      isa<AllocationInst>(dep)) {
    // Check that this load is actually from the
    // allocation we found
    Value* v = L->getOperand(0);
    while (true) {
      if (BitCastInst *BC = dyn_cast<BitCastInst>(v))
        v = BC->getOperand(0);
      else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(v))
        v = GEP->getOperand(0);
      else
        break;
    }
    if (v == dep) {
      // If this load depends directly on an allocation, there isn't
      // anything stored there; therefore, we can optimize this load
      // to undef.
      MD.removeInstruction(L);

      L->replaceAllUsesWith(UndefValue::get(L->getType()));
      toErase.push_back(L);
      deletedLoad = true;
      NumGVNLoad++;
    }
  }

  if (!deletedLoad)
    last = L;
  
  return deletedLoad;
}

/// isBytewiseValue - If the specified value can be set by repeating the same
/// byte in memory, return the i8 value that it is represented with.  This is
/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
/// i16 0xF0F0, double 0.0 etc.  If the value can't be handled with a repeated
/// byte store (e.g. i16 0x1234), return null.
static Value *isBytewiseValue(Value *V) {
  // All byte-wide stores are splatable, even of arbitrary variables.
  if (V->getType() == Type::Int8Ty) return V;
  
  // Constant float and double values can be handled as integer values if the
  // corresponding integer value is "byteable".  An important case is 0.0. 
  if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
    if (CFP->getType() == Type::FloatTy)
      V = ConstantExpr::getBitCast(CFP, Type::Int32Ty);
    if (CFP->getType() == Type::DoubleTy)
      V = ConstantExpr::getBitCast(CFP, Type::Int64Ty);
    // Don't handle long double formats, which have strange constraints.
  }
  
  // We can handle constant integers that are power of two in size and a 
  // multiple of 8 bits.
  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
    unsigned Width = CI->getBitWidth();
    if (isPowerOf2_32(Width) && Width > 8) {
      // We can handle this value if the recursive binary decomposition is the
      // same at all levels.
      APInt Val = CI->getValue();
      APInt Val2;
      while (Val.getBitWidth() != 8) {
        unsigned NextWidth = Val.getBitWidth()/2;
        Val2  = Val.lshr(NextWidth);
        Val2.trunc(Val.getBitWidth()/2);
        Val.trunc(Val.getBitWidth()/2);

        // If the top/bottom halves aren't the same, reject it.
        if (Val != Val2)
          return 0;
      }
      return ConstantInt::get(Val);
    }
  }
  
  // Conceptually, we could handle things like:
  //   %a = zext i8 %X to i16
  //   %b = shl i16 %a, 8
  //   %c = or i16 %a, %b
  // but until there is an example that actually needs this, it doesn't seem
  // worth worrying about.
  return 0;
}

static int64_t GetOffsetFromIndex(const GetElementPtrInst *GEP, unsigned Idx,
                                  bool &VariableIdxFound, TargetData &TD) {
  // Skip over the first indices.
  gep_type_iterator GTI = gep_type_begin(GEP);
  for (unsigned i = 1; i != Idx; ++i, ++GTI)
    /*skip along*/;
  
  // Compute the offset implied by the rest of the indices.
  int64_t Offset = 0;
  for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
    ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
    if (OpC == 0)
      return VariableIdxFound = true;
    if (OpC->isZero()) continue;  // No offset.

    // Handle struct indices, which add their field offset to the pointer.
    if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
      Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
      continue;
    }
    
    // Otherwise, we have a sequential type like an array or vector.  Multiply
    // the index by the ElementSize.
    uint64_t Size = TD.getABITypeSize(GTI.getIndexedType());
    Offset += Size*OpC->getSExtValue();
  }

  return Offset;
}

/// IsPointerOffset - Return true if Ptr1 is provably equal to Ptr2 plus a
/// constant offset, and return that constant offset.  For example, Ptr1 might
/// be &A[42], and Ptr2 might be &A[40].  In this case offset would be -8.
static bool IsPointerOffset(Value *Ptr1, Value *Ptr2, int64_t &Offset,
                            TargetData &TD) {
  // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
  // base.  After that base, they may have some number of common (and
  // potentially variable) indices.  After that they handle some constant
  // offset, which determines their offset from each other.  At this point, we
  // handle no other case.
  GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(Ptr1);
  GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(Ptr2);
  if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
    return false;
  
  // Skip any common indices and track the GEP types.
  unsigned Idx = 1;
  for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
    if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
      break;

  bool VariableIdxFound = false;
  int64_t Offset1 = GetOffsetFromIndex(GEP1, Idx, VariableIdxFound, TD);
  int64_t Offset2 = GetOffsetFromIndex(GEP2, Idx, VariableIdxFound, TD);
  if (VariableIdxFound) return false;
  
  Offset = Offset2-Offset1;
  return true;
}


/// MemsetRange - Represents a range of memset'd bytes with the ByteVal value.
/// This allows us to analyze stores like:
///   store 0 -> P+1
///   store 0 -> P+0
///   store 0 -> P+3
///   store 0 -> P+2
/// which sometimes happens with stores to arrays of structs etc.  When we see
/// the first store, we make a range [1, 2).  The second store extends the range
/// to [0, 2).  The third makes a new range [2, 3).  The fourth store joins the
/// two ranges into [0, 3) which is memset'able.
namespace {
struct MemsetRange {
  // Start/End - A semi range that describes the span that this range covers.
  // The range is closed at the start and open at the end: [Start, End).  
  int64_t Start, End;

  /// StartPtr - The getelementptr instruction that points to the start of the
  /// range.
  Value *StartPtr;
  
  /// Alignment - The known alignment of the first store.
  unsigned Alignment;
  
  /// TheStores - The actual stores that make up this range.
  SmallVector<StoreInst*, 16> TheStores;
  
  bool isProfitableToUseMemset(const TargetData &TD) const;

};
} // end anon namespace

bool MemsetRange::isProfitableToUseMemset(const TargetData &TD) const {
  // If we found more than 8 stores to merge or 64 bytes, use memset.
  if (TheStores.size() >= 8 || End-Start >= 64) return true;
  
  // Assume that the code generator is capable of merging pairs of stores
  // together if it wants to.
  if (TheStores.size() <= 2) return false;
  
  // If we have fewer than 8 stores, it can still be worthwhile to do this.
  // For example, merging 4 i8 stores into an i32 store is useful almost always.
  // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
  // memset will be split into 2 32-bit stores anyway) and doing so can
  // pessimize the llvm optimizer.
  //
  // Since we don't have perfect knowledge here, make some assumptions: assume
  // the maximum GPR width is the same size as the pointer size and assume that
  // this width can be stored.  If so, check to see whether we will end up
  // actually reducing the number of stores used.
  unsigned Bytes = unsigned(End-Start);
  unsigned NumPointerStores = Bytes/TD.getPointerSize();
  
  // Assume the remaining bytes if any are done a byte at a time.
  unsigned NumByteStores = Bytes - NumPointerStores*TD.getPointerSize();
  
  // If we will reduce the # stores (according to this heuristic), do the
  // transformation.  This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
  // etc.
  return TheStores.size() > NumPointerStores+NumByteStores;
}    


namespace {
class MemsetRanges {
  /// Ranges - A sorted list of the memset ranges.  We use std::list here
  /// because each element is relatively large and expensive to copy.
  std::list<MemsetRange> Ranges;
  typedef std::list<MemsetRange>::iterator range_iterator;
  TargetData &TD;
public:
  MemsetRanges(TargetData &td) : TD(td) {}
  
  typedef std::list<MemsetRange>::const_iterator const_iterator;
  const_iterator begin() const { return Ranges.begin(); }
  const_iterator end() const { return Ranges.end(); }
  
  
  void addStore(int64_t OffsetFromFirst, StoreInst *SI);
};
  
} // end anon namespace


/// addStore - Add a new store to the MemsetRanges data structure.  This adds a
/// new range for the specified store at the specified offset, merging into
/// existing ranges as appropriate.
void MemsetRanges::addStore(int64_t Start, StoreInst *SI) {
  int64_t End = Start+TD.getTypeStoreSize(SI->getOperand(0)->getType());
  
  // Do a linear search of the ranges to see if this can be joined and/or to
  // find the insertion point in the list.  We keep the ranges sorted for
  // simplicity here.  This is a linear search of a linked list, which is ugly,
  // however the number of ranges is limited, so this won't get crazy slow.
  range_iterator I = Ranges.begin(), E = Ranges.end();
  
  while (I != E && Start > I->End)
    ++I;
  
  // We now know that I == E, in which case we didn't find anything to merge
  // with, or that Start <= I->End.  If End < I->Start or I == E, then we need
  // to insert a new range.  Handle this now.
  if (I == E || End < I->Start) {
    MemsetRange &R = *Ranges.insert(I, MemsetRange());
    R.Start        = Start;
    R.End          = End;
    R.StartPtr     = SI->getPointerOperand();
    R.Alignment    = SI->getAlignment();
    R.TheStores.push_back(SI);
    return;
  }

  // This store overlaps with I, add it.
  I->TheStores.push_back(SI);
  
  // At this point, we may have an interval that completely contains our store.
  // If so, just add it to the interval and return.
  if (I->Start <= Start && I->End >= End)
    return;
  
  // Now we know that Start <= I->End and End >= I->Start so the range overlaps
  // but is not entirely contained within the range.
  
  // See if the range extends the start of the range.  In this case, it couldn't
  // possibly cause it to join the prior range, because otherwise we would have
  // stopped on *it*.
  if (Start < I->Start)
    I->Start = Start;
    
  // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
  // is in or right at the end of I), and that End >= I->Start.  Extend I out to
  // End.
  if (End > I->End) {
    I->End = End;
    range_iterator NextI = I;;
    while (++NextI != E && End >= NextI->Start) {
      // Merge the range in.
      I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
      if (NextI->End > I->End)
        I->End = NextI->End;
      Ranges.erase(NextI);
      NextI = I;
    }
  }
}



/// processStore - When GVN is scanning forward over instructions, we look for
/// some other patterns to fold away.  In particular, this looks for stores to
/// neighboring locations of memory.  If it sees enough consequtive ones
/// (currently 4) it attempts to merge them together into a memcpy/memset.
bool GVN::processStore(StoreInst *SI, SmallVectorImpl<Instruction*> &toErase) {
  if (!FormMemSet) return false;
  if (SI->isVolatile()) return false;
  
  // There are two cases that are interesting for this code to handle: memcpy
  // and memset.  Right now we only handle memset.
  
  // Ensure that the value being stored is something that can be memset'able a
  // byte at a time like "0" or "-1" or any width, as well as things like
  // 0xA0A0A0A0 and 0.0.
  Value *ByteVal = isBytewiseValue(SI->getOperand(0));
  if (!ByteVal)
    return false;

  TargetData &TD = getAnalysis<TargetData>();
  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();

  // Okay, so we now have a single store that can be splatable.  Scan to find
  // all subsequent stores of the same value to offset from the same pointer.
  // Join these together into ranges, so we can decide whether contiguous blocks
  // are stored.
  MemsetRanges Ranges(TD);
  
  // Add our first pointer.
  Ranges.addStore(0, SI);
  Value *StartPtr = SI->getPointerOperand();
  
  BasicBlock::iterator BI = SI;
  for (++BI; !isa<TerminatorInst>(BI); ++BI) {
    if (isa<CallInst>(BI) || isa<InvokeInst>(BI)) { 
      // If the call is readnone, ignore it, otherwise bail out.  We don't even
      // allow readonly here because we don't want something like:
      // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
      if (AA.getModRefBehavior(CallSite::get(BI)) ==
            AliasAnalysis::DoesNotAccessMemory)
        continue;
      
      // TODO: If this is a memset, try to join it in.
      
      break;
    } else if (isa<VAArgInst>(BI) || isa<LoadInst>(BI))
      break;

    // If this is a non-store instruction it is fine, ignore it.
    StoreInst *NextStore = dyn_cast<StoreInst>(BI);
    if (NextStore == 0) continue;
    
    // If this is a store, see if we can merge it in.
    if (NextStore->isVolatile()) break;
    
    // Check to see if this stored value is of the same byte-splattable value.
    if (ByteVal != isBytewiseValue(NextStore->getOperand(0)))
      break;

    // Check to see if this store is to a constant offset from the start ptr.
    int64_t Offset;
    if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(), Offset, TD))
      break;

    Ranges.addStore(Offset, NextStore);
  }
  
  Function *MemSetF = 0;
  
  // Now that we have full information about ranges, loop over the ranges and
  // emit memset's for anything big enough to be worthwhile.
  bool MadeChange = false;
  for (MemsetRanges::const_iterator I = Ranges.begin(), E = Ranges.end();
       I != E; ++I) {
    const MemsetRange &Range = *I;

    if (Range.TheStores.size() == 1) continue;
    
    // If it is profitable to lower this range to memset, do so now.
    if (!Range.isProfitableToUseMemset(TD))
      continue;
    
    // Otherwise, we do want to transform this!  Create a new memset.  We put
    // the memset right after the first store that we found in this block.  This
    // ensures that the caller will increment the iterator to the memset before
    // it deletes all the stores.
    BasicBlock::iterator InsertPt = SI; ++InsertPt;
  
    if (MemSetF == 0)
      MemSetF = Intrinsic::getDeclaration(SI->getParent()->getParent()
                                          ->getParent(), Intrinsic::memset_i64);
    
    // StartPtr may not dominate the starting point.  Instead of using it, base
    // the destination pointer off the input to the first store in the block.
    StartPtr = SI->getPointerOperand();
  
    // Cast the start ptr to be i8* as memset requires.
    const Type *i8Ptr = PointerType::getUnqual(Type::Int8Ty);
    if (StartPtr->getType() != i8Ptr)
      StartPtr = new BitCastInst(StartPtr, i8Ptr, StartPtr->getNameStart(),
                                 InsertPt);
  
    // Offset the pointer if needed.
    if (Range.Start)
      StartPtr = new GetElementPtrInst(StartPtr, ConstantInt::get(Type::Int64Ty,
                                                                  Range.Start),
                                       "ptroffset", InsertPt);
  
    Value *Ops[] = {
      StartPtr, ByteVal,   // Start, value
      ConstantInt::get(Type::Int64Ty, Range.End-Range.Start),  // size
      ConstantInt::get(Type::Int32Ty, Range.Alignment)   // align
    };
    Value *C = new CallInst(MemSetF, Ops, Ops+4, "", InsertPt);
    DEBUG(cerr << "Replace stores:\n";
          for (unsigned i = 0, e = Range.TheStores.size(); i != e; ++i)
            cerr << *Range.TheStores[i];
          cerr << "With: " << *C); C=C;
  
    // Zap all the stores.
    toErase.append(Range.TheStores.begin(), Range.TheStores.end());
    ++NumMemSetInfer;
    MadeChange = true;
  }
  
  return MadeChange;
}


/// performCallSlotOptzn - takes a memcpy and a call that it depends on,
/// and checks for the possibility of a call slot optimization by having
/// the call write its result directly into the destination of the memcpy.
bool GVN::performCallSlotOptzn(MemCpyInst *cpy, CallInst *C,
                               SmallVectorImpl<Instruction*> &toErase) {
  // The general transformation to keep in mind is
  //
  //   call @func(..., src, ...)
  //   memcpy(dest, src, ...)
  //
  // ->
  //
  //   memcpy(dest, src, ...)
  //   call @func(..., dest, ...)
  //
  // Since moving the memcpy is technically awkward, we additionally check that
  // src only holds uninitialized values at the moment of the call, meaning that
  // the memcpy can be discarded rather than moved.

  // Deliberately get the source and destination with bitcasts stripped away,
  // because we'll need to do type comparisons based on the underlying type.
  Value* cpyDest = cpy->getDest();
  Value* cpySrc = cpy->getSource();
  CallSite CS = CallSite::get(C);

  // We need to be able to reason about the size of the memcpy, so we require
  // that it be a constant.
  ConstantInt* cpyLength = dyn_cast<ConstantInt>(cpy->getLength());
  if (!cpyLength)
    return false;

  // Require that src be an alloca.  This simplifies the reasoning considerably.
  AllocaInst* srcAlloca = dyn_cast<AllocaInst>(cpySrc);
  if (!srcAlloca)
    return false;

  // Check that all of src is copied to dest.
  TargetData& TD = getAnalysis<TargetData>();

  ConstantInt* srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
  if (!srcArraySize)
    return false;

  uint64_t srcSize = TD.getABITypeSize(srcAlloca->getAllocatedType()) *
    srcArraySize->getZExtValue();

  if (cpyLength->getZExtValue() < srcSize)
    return false;

  // Check that accessing the first srcSize bytes of dest will not cause a
  // trap.  Otherwise the transform is invalid since it might cause a trap
  // to occur earlier than it otherwise would.
  if (AllocaInst* A = dyn_cast<AllocaInst>(cpyDest)) {
    // The destination is an alloca.  Check it is larger than srcSize.
    ConstantInt* destArraySize = dyn_cast<ConstantInt>(A->getArraySize());
    if (!destArraySize)
      return false;

    uint64_t destSize = TD.getABITypeSize(A->getAllocatedType()) *
      destArraySize->getZExtValue();

    if (destSize < srcSize)
      return false;
  } else if (Argument* A = dyn_cast<Argument>(cpyDest)) {
    // If the destination is an sret parameter then only accesses that are
    // outside of the returned struct type can trap.
    if (!A->hasStructRetAttr())
      return false;

    const Type* StructTy = cast<PointerType>(A->getType())->getElementType();
    uint64_t destSize = TD.getABITypeSize(StructTy);

    if (destSize < srcSize)
      return false;
  } else {
    return false;
  }

  // Check that src is not accessed except via the call and the memcpy.  This
  // guarantees that it holds only undefined values when passed in (so the final
  // memcpy can be dropped), that it is not read or written between the call and
  // the memcpy, and that writing beyond the end of it is undefined.
  SmallVector<User*, 8> srcUseList(srcAlloca->use_begin(),
                                   srcAlloca->use_end());
  while (!srcUseList.empty()) {
    User* UI = srcUseList.back();
    srcUseList.pop_back();

    if (isa<GetElementPtrInst>(UI) || isa<BitCastInst>(UI)) {
      for (User::use_iterator I = UI->use_begin(), E = UI->use_end();
           I != E; ++I)
        srcUseList.push_back(*I);
    } else if (UI != C && UI != cpy) {
      return false;
    }
  }

  // Since we're changing the parameter to the callsite, we need to make sure
  // that what would be the new parameter dominates the callsite.
  DominatorTree& DT = getAnalysis<DominatorTree>();
  if (Instruction* cpyDestInst = dyn_cast<Instruction>(cpyDest))
    if (!DT.dominates(cpyDestInst, C))
      return false;

  // In addition to knowing that the call does not access src in some
  // unexpected manner, for example via a global, which we deduce from
  // the use analysis, we also need to know that it does not sneakily
  // access dest.  We rely on AA to figure this out for us.
  AliasAnalysis& AA = getAnalysis<AliasAnalysis>();
  if (AA.getModRefInfo(C, cpy->getRawDest(), srcSize) !=
      AliasAnalysis::NoModRef)
    return false;

  // All the checks have passed, so do the transformation.
  for (unsigned i = 0; i < CS.arg_size(); ++i)
    if (CS.getArgument(i) == cpySrc) {
      if (cpySrc->getType() != cpyDest->getType())
        cpyDest = CastInst::createPointerCast(cpyDest, cpySrc->getType(),
                                              cpyDest->getName(), C);
      CS.setArgument(i, cpyDest);
    }

  // Drop any cached information about the call, because we may have changed
  // its dependence information by changing its parameter.
  MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>();
  MD.dropInstruction(C);

  // Remove the memcpy
  MD.removeInstruction(cpy);
  toErase.push_back(cpy);

  return true;
}

/// processMemCpy - perform simplication of memcpy's.  If we have memcpy A which
/// copies X to Y, and memcpy B which copies Y to Z, then we can rewrite B to be
/// a memcpy from X to Z (or potentially a memmove, depending on circumstances).
///  This allows later passes to remove the first memcpy altogether.
bool GVN::processMemCpy(MemCpyInst* M, MemCpyInst* MDep,
                        SmallVectorImpl<Instruction*> &toErase) {
  // We can only transforms memcpy's where the dest of one is the source of the
  // other
  if (M->getSource() != MDep->getDest())
    return false;
  
  // Second, the length of the memcpy's must be the same, or the preceeding one
  // must be larger than the following one.
  ConstantInt* C1 = dyn_cast<ConstantInt>(MDep->getLength());
  ConstantInt* C2 = dyn_cast<ConstantInt>(M->getLength());
  if (!C1 || !C2)
    return false;
  
  uint64_t DepSize = C1->getValue().getZExtValue();
  uint64_t CpySize = C2->getValue().getZExtValue();
  
  if (DepSize < CpySize)
    return false;
  
  // Finally, we have to make sure that the dest of the second does not
  // alias the source of the first
  AliasAnalysis& AA = getAnalysis<AliasAnalysis>();
  if (AA.alias(M->getRawDest(), CpySize, MDep->getRawSource(), DepSize) !=
      AliasAnalysis::NoAlias)
    return false;
  else if (AA.alias(M->getRawDest(), CpySize, M->getRawSource(), CpySize) !=
           AliasAnalysis::NoAlias)
    return false;
  else if (AA.alias(MDep->getRawDest(), DepSize, MDep->getRawSource(), DepSize)
           != AliasAnalysis::NoAlias)
    return false;
  
  // If all checks passed, then we can transform these memcpy's
  Function* MemCpyFun = Intrinsic::getDeclaration(
                                 M->getParent()->getParent()->getParent(),
                                 M->getIntrinsicID());
    
  std::vector<Value*> args;
  args.push_back(M->getRawDest());
  args.push_back(MDep->getRawSource());
  args.push_back(M->getLength());
  args.push_back(M->getAlignment());
  
  CallInst* C = new CallInst(MemCpyFun, args.begin(), args.end(), "", M);
  
  MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>();
  if (MD.getDependency(C) == MDep) {
    MD.dropInstruction(M);
    toErase.push_back(M);
    return true;
  }
  
  MD.removeInstruction(C);
  toErase.push_back(C);
  return false;
}

/// processInstruction - When calculating availability, handle an instruction
/// by inserting it into the appropriate sets
bool GVN::processInstruction(Instruction *I, ValueNumberedSet &currAvail,
                             DenseMap<Value*, LoadInst*> &lastSeenLoad,
                             SmallVectorImpl<Instruction*> &toErase) {
  if (LoadInst* L = dyn_cast<LoadInst>(I))
    return processLoad(L, lastSeenLoad, toErase);
  
  if (StoreInst *SI = dyn_cast<StoreInst>(I))
    return processStore(SI, toErase);
  
  if (MemCpyInst* M = dyn_cast<MemCpyInst>(I)) {
    MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>();

    // The are two possible optimizations we can do for memcpy:
    //   a) memcpy-memcpy xform which exposes redundance for DSE
    //   b) call-memcpy xform for return slot optimization
    Instruction* dep = MD.getDependency(M);
    if (dep == MemoryDependenceAnalysis::None ||
        dep == MemoryDependenceAnalysis::NonLocal)
      return false;
    if (MemCpyInst *MemCpy = dyn_cast<MemCpyInst>(dep))
      return processMemCpy(M, MemCpy, toErase);
    if (CallInst* C = dyn_cast<CallInst>(dep))
      return performCallSlotOptzn(M, C, toErase);
    return false;
  }
  
  unsigned num = VN.lookup_or_add(I);
  
  // Collapse PHI nodes
  if (PHINode* p = dyn_cast<PHINode>(I)) {
    Value* constVal = CollapsePhi(p);
    
    if (constVal) {
      for (PhiMapType::iterator PI = phiMap.begin(), PE = phiMap.end();
           PI != PE; ++PI)
        if (PI->second.count(p))
          PI->second.erase(p);
        
      p->replaceAllUsesWith(constVal);
      toErase.push_back(p);
    }
  // Perform value-number based elimination
  } else if (currAvail.test(num)) {
    Value* repl = find_leader(currAvail, num);
    
    if (CallInst* CI = dyn_cast<CallInst>(I)) {
      AliasAnalysis& AA = getAnalysis<AliasAnalysis>();
      if (!AA.doesNotAccessMemory(CI)) {
        MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>();
        if (cast<Instruction>(repl)->getParent() != CI->getParent() ||
            MD.getDependency(CI) != MD.getDependency(cast<CallInst>(repl))) {
          // There must be an intervening may-alias store, so nothing from
          // this point on will be able to be replaced with the preceding call
          currAvail.erase(repl);
          currAvail.insert(I);
          
          return false;
        }
      }
    }
    
    // Remove it!
    MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>();
    MD.removeInstruction(I);
    
    VN.erase(I);
    I->replaceAllUsesWith(repl);
    toErase.push_back(I);
    return true;
  } else if (!I->isTerminator()) {
    currAvail.set(num);
    currAvail.insert(I);
  }
  
  return false;
}

// GVN::runOnFunction - This is the main transformation entry point for a
// function.
//
bool GVN::runOnFunction(Function& F) {
  VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
  
  bool changed = false;
  bool shouldContinue = true;
  
  while (shouldContinue) {
    shouldContinue = iterateOnFunction(F);
    changed |= shouldContinue;
  }
  
  return changed;
}


// GVN::iterateOnFunction - Executes one iteration of GVN
bool GVN::iterateOnFunction(Function &F) {
  // Clean out global sets from any previous functions
  VN.clear();
  availableOut.clear();
  phiMap.clear();
 
  bool changed_function = false;
  
  DominatorTree &DT = getAnalysis<DominatorTree>();   
  
  SmallVector<Instruction*, 4> toErase;
  DenseMap<Value*, LoadInst*> lastSeenLoad;

  // Top-down walk of the dominator tree
  for (df_iterator<DomTreeNode*> DI = df_begin(DT.getRootNode()),
         E = df_end(DT.getRootNode()); DI != E; ++DI) {
    
    // Get the set to update for this block
    ValueNumberedSet& currAvail = availableOut[DI->getBlock()];     
    lastSeenLoad.clear();

    BasicBlock* BB = DI->getBlock();
  
    // A block inherits AVAIL_OUT from its dominator
    if (DI->getIDom() != 0)
      currAvail = availableOut[DI->getIDom()->getBlock()];

    for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
         BI != BE; ) {
      changed_function |= processInstruction(BI, currAvail,
                                             lastSeenLoad, toErase);
      
      NumGVNInstr += toErase.size();
      
      // Avoid iterator invalidation
      ++BI;

      for (SmallVector<Instruction*, 4>::iterator I = toErase.begin(),
           E = toErase.end(); I != E; ++I)
        (*I)->eraseFromParent();

      toErase.clear();
    }
  }
  
  return changed_function;
}