aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Transforms/Scalar/IndVarSimplify.cpp
blob: 954844be40092c50702fe45a22671b11d25690a5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
//
// Guarantees that all loops with identifiable, linear, induction variables will
// be transformed to have a single, canonical, induction variable.  After this
// pass runs, it guarantees the the first PHI node of the header block in the
// loop is the canonical induction variable if there is one.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar.h"
#include "llvm/Constants.h"
#include "llvm/Type.h"
#include "llvm/iPHINode.h"
#include "llvm/iOther.h"
#include "llvm/Analysis/InductionVariable.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Support/CFG.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Transforms/Utils/Local.h"
#include "Support/Debug.h"
#include "Support/Statistic.h"
using namespace llvm;

namespace {
  Statistic<> NumRemoved ("indvars", "Number of aux indvars removed");
  Statistic<> NumInserted("indvars", "Number of canonical indvars added");

  class IndVarSimplify : public FunctionPass {
    LoopInfo *Loops;
    TargetData *TD;
  public:
    virtual bool runOnFunction(Function &) {
      Loops = &getAnalysis<LoopInfo>();
      TD = &getAnalysis<TargetData>();
      
      // Induction Variables live in the header nodes of loops
      bool Changed = false;
      for (unsigned i = 0, e = Loops->getTopLevelLoops().size(); i != e; ++i)
        Changed |= runOnLoop(Loops->getTopLevelLoops()[i]);
      return Changed;
    }

    unsigned getTypeSize(const Type *Ty) {
      if (unsigned Size = Ty->getPrimitiveSize())
        return Size;
      return TD->getTypeSize(Ty);  // Must be a pointer
    }

    bool runOnLoop(Loop *L);

    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.addRequired<TargetData>();   // Need pointer size
      AU.addRequired<LoopInfo>();
      AU.addRequiredID(LoopSimplifyID);
      AU.addPreservedID(LoopSimplifyID);
      AU.setPreservesCFG();
    }
  };
  RegisterOpt<IndVarSimplify> X("indvars", "Canonicalize Induction Variables");
}

Pass *llvm::createIndVarSimplifyPass() {
  return new IndVarSimplify();
}


bool IndVarSimplify::runOnLoop(Loop *Loop) {
  // Transform all subloops before this loop...
  bool Changed = false;
  for (unsigned i = 0, e = Loop->getSubLoops().size(); i != e; ++i)
    Changed |= runOnLoop(Loop->getSubLoops()[i]);

  // Get the header node for this loop.  All of the phi nodes that could be
  // induction variables must live in this basic block.
  //
  BasicBlock *Header = Loop->getHeader();
  
  // Loop over all of the PHI nodes in the basic block, calculating the
  // induction variables that they represent... stuffing the induction variable
  // info into a vector...
  //
  std::vector<InductionVariable> IndVars;    // Induction variables for block
  BasicBlock::iterator AfterPHIIt = Header->begin();
  for (; PHINode *PN = dyn_cast<PHINode>(AfterPHIIt); ++AfterPHIIt)
    IndVars.push_back(InductionVariable(PN, Loops));
  // AfterPHIIt now points to first non-phi instruction...

  // If there are no phi nodes in this basic block, there can't be indvars...
  if (IndVars.empty()) return Changed;
  
  // Loop over the induction variables, looking for a canonical induction
  // variable, and checking to make sure they are not all unknown induction
  // variables.  Keep track of the largest integer size of the induction
  // variable.
  //
  InductionVariable *Canonical = 0;
  unsigned MaxSize = 0;

  for (unsigned i = 0; i != IndVars.size(); ++i) {
    InductionVariable &IV = IndVars[i];

    if (IV.InductionType != InductionVariable::Unknown) {
      unsigned IVSize = getTypeSize(IV.Phi->getType());

      if (IV.InductionType == InductionVariable::Canonical &&
          !isa<PointerType>(IV.Phi->getType()) && IVSize >= MaxSize)
        Canonical = &IV;
      
      if (IVSize > MaxSize) MaxSize = IVSize;

      // If this variable is larger than the currently identified canonical
      // indvar, the canonical indvar is not usable.
      if (Canonical && IVSize > getTypeSize(Canonical->Phi->getType()))
        Canonical = 0;
    }
  }

  // No induction variables, bail early... don't add a canonical indvar
  if (MaxSize == 0) return Changed;

  // Okay, we want to convert other induction variables to use a canonical
  // indvar.  If we don't have one, add one now...
  if (!Canonical) {
    // Create the PHI node for the new induction variable, and insert the phi
    // node at the start of the PHI nodes...
    const Type *IVType;
    switch (MaxSize) {
    default: assert(0 && "Unknown integer type size!");
    case 1: IVType = Type::UByteTy; break;
    case 2: IVType = Type::UShortTy; break;
    case 4: IVType = Type::UIntTy; break;
    case 8: IVType = Type::ULongTy; break;
    }
    
    PHINode *PN = new PHINode(IVType, "cann-indvar", Header->begin());

    // Create the increment instruction to add one to the counter...
    Instruction *Add = BinaryOperator::create(Instruction::Add, PN,
                                              ConstantUInt::get(IVType, 1),
                                              "next-indvar", AfterPHIIt);

    // Figure out which block is incoming and which is the backedge for the loop
    BasicBlock *Incoming, *BackEdgeBlock;
    pred_iterator PI = pred_begin(Header);
    assert(PI != pred_end(Header) && "Loop headers should have 2 preds!");
    if (Loop->contains(*PI)) {  // First pred is back edge...
      BackEdgeBlock = *PI++;
      Incoming      = *PI++;
    } else {
      Incoming      = *PI++;
      BackEdgeBlock = *PI++;
    }
    assert(PI == pred_end(Header) && "Loop headers should have 2 preds!");
    
    // Add incoming values for the PHI node...
    PN->addIncoming(Constant::getNullValue(IVType), Incoming);
    PN->addIncoming(Add, BackEdgeBlock);

    // Analyze the new induction variable...
    IndVars.push_back(InductionVariable(PN, Loops));
    assert(IndVars.back().InductionType == InductionVariable::Canonical &&
           "Just inserted canonical indvar that is not canonical!");
    Canonical = &IndVars.back();
    ++NumInserted;
    Changed = true;
  } else {
    // If we have a canonical induction variable, make sure that it is the first
    // one in the basic block.
    if (&Header->front() != Canonical->Phi)
      Header->getInstList().splice(Header->begin(), Header->getInstList(),
                                   Canonical->Phi);
  }

  DEBUG(std::cerr << "Induction variables:\n");

  // Get the current loop iteration count, which is always the value of the
  // canonical phi node...
  //
  PHINode *IterCount = Canonical->Phi;

  // Loop through and replace all of the auxiliary induction variables with
  // references to the canonical induction variable...
  //
  for (unsigned i = 0; i != IndVars.size(); ++i) {
    InductionVariable *IV = &IndVars[i];

    DEBUG(IV->print(std::cerr));

    while (isa<PHINode>(AfterPHIIt)) ++AfterPHIIt;

    // Don't do math with pointers...
    const Type *IVTy = IV->Phi->getType();
    if (isa<PointerType>(IVTy)) IVTy = Type::ULongTy;

    // Don't modify the canonical indvar or unrecognized indvars...
    if (IV != Canonical && IV->InductionType != InductionVariable::Unknown) {
      Instruction *Val = IterCount;
      if (!isa<ConstantInt>(IV->Step) ||   // If the step != 1
          !cast<ConstantInt>(IV->Step)->equalsInt(1)) {

        // If the types are not compatible, insert a cast now...
        if (Val->getType() != IVTy)
          Val = new CastInst(Val, IVTy, Val->getName(), AfterPHIIt);
        if (IV->Step->getType() != IVTy)
          IV->Step = new CastInst(IV->Step, IVTy, IV->Step->getName(),
                                  AfterPHIIt);

        Val = BinaryOperator::create(Instruction::Mul, Val, IV->Step,
                                     IV->Phi->getName()+"-scale", AfterPHIIt);
      }

      // If the start != 0
      if (IV->Start != Constant::getNullValue(IV->Start->getType())) {
        // If the types are not compatible, insert a cast now...
        if (Val->getType() != IVTy)
          Val = new CastInst(Val, IVTy, Val->getName(), AfterPHIIt);
        if (IV->Start->getType() != IVTy)
          IV->Start = new CastInst(IV->Start, IVTy, IV->Start->getName(),
                                   AfterPHIIt);

        // Insert the instruction after the phi nodes...
        Val = BinaryOperator::create(Instruction::Add, Val, IV->Start,
                                     IV->Phi->getName()+"-offset", AfterPHIIt);
      }

      // If the PHI node has a different type than val is, insert a cast now...
      if (Val->getType() != IV->Phi->getType())
        Val = new CastInst(Val, IV->Phi->getType(), Val->getName(), AfterPHIIt);
      
      // Replace all uses of the old PHI node with the new computed value...
      IV->Phi->replaceAllUsesWith(Val);

      // Move the PHI name to it's new equivalent value...
      std::string OldName = IV->Phi->getName();
      IV->Phi->setName("");
      Val->setName(OldName);

      // Get the incoming values used by the PHI node
      std::vector<Value*> PHIOps;
      PHIOps.reserve(IV->Phi->getNumIncomingValues());
      for (unsigned i = 0, e = IV->Phi->getNumIncomingValues(); i != e; ++i)
        PHIOps.push_back(IV->Phi->getIncomingValue(i));

      // Delete the old, now unused, phi node...
      Header->getInstList().erase(IV->Phi);

      // If the PHI is the last user of any instructions for computing PHI nodes
      // that are irrelevant now, delete those instructions.
      while (!PHIOps.empty()) {
        Instruction *MaybeDead = dyn_cast<Instruction>(PHIOps.back());
        PHIOps.pop_back();

        if (MaybeDead && isInstructionTriviallyDead(MaybeDead)) {
          PHIOps.insert(PHIOps.end(), MaybeDead->op_begin(),
                        MaybeDead->op_end());
          MaybeDead->getParent()->getInstList().erase(MaybeDead);
          
          // Erase any duplicates entries in the PHIOps list.
          std::vector<Value*>::iterator It =
            std::find(PHIOps.begin(), PHIOps.end(), MaybeDead);
          while (It != PHIOps.end()) {
            PHIOps.erase(It);
            It = std::find(PHIOps.begin(), PHIOps.end(), MaybeDead);
          }

          // Erasing the instruction could invalidate the AfterPHI iterator!
          AfterPHIIt = Header->begin();
        }
      }

      Changed = true;
      ++NumRemoved;
    }
  }

  return Changed;
}