aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Transforms/Scalar/IndVarSimplify.cpp
blob: 6cfdc59687c22f02ef629a50816e2c31651a7a98 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
//
// InductionVariableSimplify - Transform induction variables in a program
//   to all use a single cannonical induction variable per loop.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/IndVarSimplify.h"
#include "llvm/Analysis/InductionVariable.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/iPHINode.h"
#include "llvm/iOther.h"
#include "llvm/Type.h"
#include "llvm/Constants.h"
#include "llvm/Support/CFG.h"
#include "Support/STLExtras.h"

#if 0
#define DEBUG
#include "llvm/Analysis/Writer.h"
#endif

// InsertCast - Cast Val to Ty, setting a useful name on the cast if Val has a
// name...
//
static Instruction *InsertCast(Instruction *Val, const Type *Ty,
                               BasicBlock::iterator It) {
  Instruction *Cast = new CastInst(Val, Ty);
  if (Val->hasName()) Cast->setName(Val->getName()+"-casted");
  Val->getParent()->getInstList().insert(It, Cast);
  return Cast;
}

static bool TransformLoop(LoopInfo *Loops, Loop *Loop) {
  // Transform all subloops before this loop...
  bool Changed = reduce_apply_bool(Loop->getSubLoops().begin(),
                                   Loop->getSubLoops().end(),
                              std::bind1st(std::ptr_fun(TransformLoop), Loops));
  // Get the header node for this loop.  All of the phi nodes that could be
  // induction variables must live in this basic block.
  BasicBlock *Header = (BasicBlock*)Loop->getBlocks().front();
  
  // Loop over all of the PHI nodes in the basic block, calculating the
  // induction variables that they represent... stuffing the induction variable
  // info into a vector...
  //
  std::vector<InductionVariable> IndVars;    // Induction variables for block
  for (BasicBlock::iterator I = Header->begin(); 
       PHINode *PN = dyn_cast<PHINode>(*I); ++I)
    IndVars.push_back(InductionVariable(PN, Loops));

  // If there are no phi nodes in this basic block, there can't be indvars...
  if (IndVars.empty()) return Changed;
  
  // Loop over the induction variables, looking for a cannonical induction
  // variable, and checking to make sure they are not all unknown induction
  // variables.
  //
  bool FoundIndVars = false;
  InductionVariable *Cannonical = 0;
  for (unsigned i = 0; i < IndVars.size(); ++i) {
    if (IndVars[i].InductionType == InductionVariable::Cannonical)
      Cannonical = &IndVars[i];
    if (IndVars[i].InductionType != InductionVariable::Unknown)
      FoundIndVars = true;
  }

  // No induction variables, bail early... don't add a cannonnical indvar
  if (!FoundIndVars) return Changed;

  // Okay, we want to convert other induction variables to use a cannonical
  // indvar.  If we don't have one, add one now...
  if (!Cannonical) {
    // Create the PHI node for the new induction variable
    PHINode *PN = new PHINode(Type::UIntTy, "cann-indvar");

    // Insert the phi node at the end of the other phi nodes...
    Header->getInstList().insert(Header->begin()+IndVars.size(), PN);

    // Create the increment instruction to add one to the counter...
    Instruction *Add = BinaryOperator::create(Instruction::Add, PN,
                                              ConstantUInt::get(Type::UIntTy,1),
                                              "add1-indvar");

    // Insert the add instruction after all of the PHI nodes...
    Header->getInstList().insert(Header->begin()+(IndVars.size()+1), Add);

    // Figure out which block is incoming and which is the backedge for the loop
    BasicBlock *Incoming, *BackEdgeBlock;
    pred_iterator PI = pred_begin(Header);
    assert(PI != pred_end(Header) && "Loop headers should have 2 preds!");
    if (Loop->contains(*PI)) {  // First pred is back edge...
      BackEdgeBlock = *PI++;
      Incoming      = *PI++;
    } else {
      Incoming      = *PI++;
      BackEdgeBlock = *PI++;
    }
    assert(PI == pred_end(Header) && "Loop headers should have 2 preds!");
    
    // Add incoming values for the PHI node...
    PN->addIncoming(Constant::getNullValue(Type::UIntTy), Incoming);
    PN->addIncoming(Add, BackEdgeBlock);

    // Analyze the new induction variable...
    IndVars.push_back(InductionVariable(PN, Loops));
    assert(IndVars.back().InductionType == InductionVariable::Cannonical &&
           "Just inserted cannonical indvar that is not cannonical!");
    Cannonical = &IndVars.back();
    Changed = true;
  }

#ifdef DEBUG
  cerr << "Induction variables:\n";
#endif

  // Get the current loop iteration count, which is always the value of the
  // cannonical phi node...
  //
  PHINode *IterCount = Cannonical->Phi;

  // Loop through and replace all of the auxillary induction variables with
  // references to the primary induction variable...
  //
  unsigned InsertPos = IndVars.size();
  for (unsigned i = 0; i < IndVars.size(); ++i) {
    InductionVariable *IV = &IndVars[i];
#ifdef DEBUG
    cerr << IndVars[i];
#endif
    // Don't modify the cannonical indvar or unrecognized indvars...
    if (IV != Cannonical && IV->InductionType != InductionVariable::Unknown) {
      Instruction *Val = IterCount;
      if (!isa<ConstantInt>(IV->Step) ||   // If the step != 1
          !cast<ConstantInt>(IV->Step)->equalsInt(1)) {
        std::string Name;   // Create a scale by the step value...
        if (IV->Phi->hasName()) Name = IV->Phi->getName()+"-scale";

        // If the types are not compatible, insert a cast now...
        if (Val->getType() != IV->Step->getType())
          Val = InsertCast(Val, IV->Step->getType(),
                           Header->begin()+InsertPos++);

        Val = BinaryOperator::create(Instruction::Mul, Val, IV->Step, Name);
        // Insert the phi node at the end of the other phi nodes...
        Header->getInstList().insert(Header->begin()+InsertPos++, Val);
      }

      if (!isa<Constant>(IV->Start) ||   // If the start != 0
          !cast<Constant>(IV->Start)->isNullValue()) {
        std::string Name;   // Create a offset by the start value...
        if (IV->Phi->hasName()) Name = IV->Phi->getName()+"-offset";

        // If the types are not compatible, insert a cast now...
        if (Val->getType() != IV->Start->getType())
          Val = InsertCast(Val, IV->Start->getType(),
                           Header->begin()+InsertPos++);

        Val = BinaryOperator::create(Instruction::Add, Val, IV->Start, Name);
        // Insert the phi node at the end of the other phi nodes...
        Header->getInstList().insert(Header->begin()+InsertPos++, Val);
      }

      // If the PHI node has a different type than val is, insert a cast now...
      if (Val->getType() != IV->Phi->getType())
          Val = InsertCast(Val, IV->Phi->getType(),
                           Header->begin()+InsertPos++);
      
      // Replace all uses of the old PHI node with the new computed value...
      IV->Phi->replaceAllUsesWith(Val);

      // Move the PHI name to it's new equivalent value...
      std::string OldName = IV->Phi->getName();
      IV->Phi->setName("");
      Val->setName(OldName);

      // Delete the old, now unused, phi node...
      Header->getInstList().remove(IV->Phi);
      delete IV->Phi;
      InsertPos--;            // Deleted an instr, decrement insert position
      Changed = true;
    }
  }

  return Changed;
}

static bool doit(Function *M, LoopInfo &Loops) {
  // Induction Variables live in the header nodes of the loops of the function
  return reduce_apply_bool(Loops.getTopLevelLoops().begin(),
                           Loops.getTopLevelLoops().end(),
                           std::bind1st(std::ptr_fun(TransformLoop), &Loops));
}


namespace {
  struct InductionVariableSimplify : public FunctionPass {
    const char *getPassName() const {
      return "Induction Variable Cannonicalize";
    }

    virtual bool runOnFunction(Function *F) {
      return doit(F, getAnalysis<LoopInfo>());
    }
    
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.addRequired(LoopInfo::ID);
      AU.preservesCFG();
    }
  };
}

Pass *createIndVarSimplifyPass() {
  return new InductionVariableSimplify();
}