aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Transforms/Scalar/IndVarSimplify.cpp
blob: 97fff7e78265ce0635752d20f1e39b1b5da80cb8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This transformation analyzes and transforms the induction variables (and
// computations derived from them) into simpler forms suitable for subsequent
// analysis and transformation.
//
// If the trip count of a loop is computable, this pass also makes the following
// changes:
//   1. The exit condition for the loop is canonicalized to compare the
//      induction value against the exit value.  This turns loops like:
//        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
//   2. Any use outside of the loop of an expression derived from the indvar
//      is changed to compute the derived value outside of the loop, eliminating
//      the dependence on the exit value of the induction variable.  If the only
//      purpose of the loop is to compute the exit value of some derived
//      expression, this transformation will make the loop dead.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "indvars"
#include "llvm/Transforms/Scalar.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetLibraryInfo.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/SimplifyIndVar.h"
using namespace llvm;

STATISTIC(NumWidened     , "Number of indvars widened");
STATISTIC(NumReplaced    , "Number of exit values replaced");
STATISTIC(NumLFTR        , "Number of loop exit tests replaced");
STATISTIC(NumElimExt     , "Number of IV sign/zero extends eliminated");
STATISTIC(NumElimIV      , "Number of congruent IVs eliminated");

// Trip count verification can be enabled by default under NDEBUG if we
// implement a strong expression equivalence checker in SCEV. Until then, we
// use the verify-indvars flag, which may assert in some cases.
static cl::opt<bool> VerifyIndvars(
  "verify-indvars", cl::Hidden,
  cl::desc("Verify the ScalarEvolution result after running indvars"));

namespace {
  class IndVarSimplify : public LoopPass {
    LoopInfo        *LI;
    ScalarEvolution *SE;
    DominatorTree   *DT;
    DataLayout      *TD;
    TargetLibraryInfo *TLI;

    SmallVector<WeakVH, 16> DeadInsts;
    bool Changed;
  public:

    static char ID; // Pass identification, replacement for typeid
    IndVarSimplify() : LoopPass(ID), LI(0), SE(0), DT(0), TD(0),
                       Changed(false) {
      initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry());
    }

    virtual bool runOnLoop(Loop *L, LPPassManager &LPM);

    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.addRequired<DominatorTree>();
      AU.addRequired<LoopInfo>();
      AU.addRequired<ScalarEvolution>();
      AU.addRequiredID(LoopSimplifyID);
      AU.addRequiredID(LCSSAID);
      AU.addPreserved<ScalarEvolution>();
      AU.addPreservedID(LoopSimplifyID);
      AU.addPreservedID(LCSSAID);
      AU.setPreservesCFG();
    }

  private:
    virtual void releaseMemory() {
      DeadInsts.clear();
    }

    bool isValidRewrite(Value *FromVal, Value *ToVal);

    void HandleFloatingPointIV(Loop *L, PHINode *PH);
    void RewriteNonIntegerIVs(Loop *L);

    void SimplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LPPassManager &LPM);

    void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);

    Value *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
                                     PHINode *IndVar, SCEVExpander &Rewriter);

    void SinkUnusedInvariants(Loop *L);
  };
}

char IndVarSimplify::ID = 0;
INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars",
                "Induction Variable Simplification", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTree)
INITIALIZE_PASS_DEPENDENCY(LoopInfo)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
INITIALIZE_PASS_DEPENDENCY(LCSSA)
INITIALIZE_PASS_END(IndVarSimplify, "indvars",
                "Induction Variable Simplification", false, false)

Pass *llvm::createIndVarSimplifyPass() {
  return new IndVarSimplify();
}

/// isValidRewrite - Return true if the SCEV expansion generated by the
/// rewriter can replace the original value. SCEV guarantees that it
/// produces the same value, but the way it is produced may be illegal IR.
/// Ideally, this function will only be called for verification.
bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
  // If an SCEV expression subsumed multiple pointers, its expansion could
  // reassociate the GEP changing the base pointer. This is illegal because the
  // final address produced by a GEP chain must be inbounds relative to its
  // underlying object. Otherwise basic alias analysis, among other things,
  // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
  // producing an expression involving multiple pointers. Until then, we must
  // bail out here.
  //
  // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
  // because it understands lcssa phis while SCEV does not.
  Value *FromPtr = FromVal;
  Value *ToPtr = ToVal;
  if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) {
    FromPtr = GEP->getPointerOperand();
  }
  if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) {
    ToPtr = GEP->getPointerOperand();
  }
  if (FromPtr != FromVal || ToPtr != ToVal) {
    // Quickly check the common case
    if (FromPtr == ToPtr)
      return true;

    // SCEV may have rewritten an expression that produces the GEP's pointer
    // operand. That's ok as long as the pointer operand has the same base
    // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
    // base of a recurrence. This handles the case in which SCEV expansion
    // converts a pointer type recurrence into a nonrecurrent pointer base
    // indexed by an integer recurrence.

    // If the GEP base pointer is a vector of pointers, abort.
    if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
      return false;

    const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
    const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
    if (FromBase == ToBase)
      return true;

    DEBUG(dbgs() << "INDVARS: GEP rewrite bail out "
          << *FromBase << " != " << *ToBase << "\n");

    return false;
  }
  return true;
}

/// Determine the insertion point for this user. By default, insert immediately
/// before the user. SCEVExpander or LICM will hoist loop invariants out of the
/// loop. For PHI nodes, there may be multiple uses, so compute the nearest
/// common dominator for the incoming blocks.
static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
                                          DominatorTree *DT) {
  PHINode *PHI = dyn_cast<PHINode>(User);
  if (!PHI)
    return User;

  Instruction *InsertPt = 0;
  for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
    if (PHI->getIncomingValue(i) != Def)
      continue;

    BasicBlock *InsertBB = PHI->getIncomingBlock(i);
    if (!InsertPt) {
      InsertPt = InsertBB->getTerminator();
      continue;
    }
    InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
    InsertPt = InsertBB->getTerminator();
  }
  assert(InsertPt && "Missing phi operand");
  assert((!isa<Instruction>(Def) ||
          DT->dominates(cast<Instruction>(Def), InsertPt)) &&
         "def does not dominate all uses");
  return InsertPt;
}

//===----------------------------------------------------------------------===//
// RewriteNonIntegerIVs and helpers. Prefer integer IVs.
//===----------------------------------------------------------------------===//

/// ConvertToSInt - Convert APF to an integer, if possible.
static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
  bool isExact = false;
  // See if we can convert this to an int64_t
  uint64_t UIntVal;
  if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero,
                           &isExact) != APFloat::opOK || !isExact)
    return false;
  IntVal = UIntVal;
  return true;
}

/// HandleFloatingPointIV - If the loop has floating induction variable
/// then insert corresponding integer induction variable if possible.
/// For example,
/// for(double i = 0; i < 10000; ++i)
///   bar(i)
/// is converted into
/// for(int i = 0; i < 10000; ++i)
///   bar((double)i);
///
void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) {
  unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
  unsigned BackEdge     = IncomingEdge^1;

  // Check incoming value.
  ConstantFP *InitValueVal =
    dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));

  int64_t InitValue;
  if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
    return;

  // Check IV increment. Reject this PN if increment operation is not
  // an add or increment value can not be represented by an integer.
  BinaryOperator *Incr =
    dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
  if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd) return;

  // If this is not an add of the PHI with a constantfp, or if the constant fp
  // is not an integer, bail out.
  ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
  int64_t IncValue;
  if (IncValueVal == 0 || Incr->getOperand(0) != PN ||
      !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
    return;

  // Check Incr uses. One user is PN and the other user is an exit condition
  // used by the conditional terminator.
  Value::use_iterator IncrUse = Incr->use_begin();
  Instruction *U1 = cast<Instruction>(*IncrUse++);
  if (IncrUse == Incr->use_end()) return;
  Instruction *U2 = cast<Instruction>(*IncrUse++);
  if (IncrUse != Incr->use_end()) return;

  // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
  // only used by a branch, we can't transform it.
  FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
  if (!Compare)
    Compare = dyn_cast<FCmpInst>(U2);
  if (Compare == 0 || !Compare->hasOneUse() ||
      !isa<BranchInst>(Compare->use_back()))
    return;

  BranchInst *TheBr = cast<BranchInst>(Compare->use_back());

  // We need to verify that the branch actually controls the iteration count
  // of the loop.  If not, the new IV can overflow and no one will notice.
  // The branch block must be in the loop and one of the successors must be out
  // of the loop.
  assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
  if (!L->contains(TheBr->getParent()) ||
      (L->contains(TheBr->getSuccessor(0)) &&
       L->contains(TheBr->getSuccessor(1))))
    return;


  // If it isn't a comparison with an integer-as-fp (the exit value), we can't
  // transform it.
  ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
  int64_t ExitValue;
  if (ExitValueVal == 0 ||
      !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
    return;

  // Find new predicate for integer comparison.
  CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
  switch (Compare->getPredicate()) {
  default: return;  // Unknown comparison.
  case CmpInst::FCMP_OEQ:
  case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
  case CmpInst::FCMP_ONE:
  case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
  case CmpInst::FCMP_OGT:
  case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
  case CmpInst::FCMP_OGE:
  case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
  case CmpInst::FCMP_OLT:
  case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
  case CmpInst::FCMP_OLE:
  case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
  }

  // We convert the floating point induction variable to a signed i32 value if
  // we can.  This is only safe if the comparison will not overflow in a way
  // that won't be trapped by the integer equivalent operations.  Check for this
  // now.
  // TODO: We could use i64 if it is native and the range requires it.

  // The start/stride/exit values must all fit in signed i32.
  if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
    return;

  // If not actually striding (add x, 0.0), avoid touching the code.
  if (IncValue == 0)
    return;

  // Positive and negative strides have different safety conditions.
  if (IncValue > 0) {
    // If we have a positive stride, we require the init to be less than the
    // exit value.
    if (InitValue >= ExitValue)
      return;

    uint32_t Range = uint32_t(ExitValue-InitValue);
    // Check for infinite loop, either:
    // while (i <= Exit) or until (i > Exit)
    if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
      if (++Range == 0) return;  // Range overflows.
    }

    unsigned Leftover = Range % uint32_t(IncValue);

    // If this is an equality comparison, we require that the strided value
    // exactly land on the exit value, otherwise the IV condition will wrap
    // around and do things the fp IV wouldn't.
    if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
        Leftover != 0)
      return;

    // If the stride would wrap around the i32 before exiting, we can't
    // transform the IV.
    if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
      return;

  } else {
    // If we have a negative stride, we require the init to be greater than the
    // exit value.
    if (InitValue <= ExitValue)
      return;

    uint32_t Range = uint32_t(InitValue-ExitValue);
    // Check for infinite loop, either:
    // while (i >= Exit) or until (i < Exit)
    if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
      if (++Range == 0) return;  // Range overflows.
    }

    unsigned Leftover = Range % uint32_t(-IncValue);

    // If this is an equality comparison, we require that the strided value
    // exactly land on the exit value, otherwise the IV condition will wrap
    // around and do things the fp IV wouldn't.
    if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
        Leftover != 0)
      return;

    // If the stride would wrap around the i32 before exiting, we can't
    // transform the IV.
    if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
      return;
  }

  IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());

  // Insert new integer induction variable.
  PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
  NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
                      PN->getIncomingBlock(IncomingEdge));

  Value *NewAdd =
    BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
                              Incr->getName()+".int", Incr);
  NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));

  ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
                                      ConstantInt::get(Int32Ty, ExitValue),
                                      Compare->getName());

  // In the following deletions, PN may become dead and may be deleted.
  // Use a WeakVH to observe whether this happens.
  WeakVH WeakPH = PN;

  // Delete the old floating point exit comparison.  The branch starts using the
  // new comparison.
  NewCompare->takeName(Compare);
  Compare->replaceAllUsesWith(NewCompare);
  RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI);

  // Delete the old floating point increment.
  Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
  RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI);

  // If the FP induction variable still has uses, this is because something else
  // in the loop uses its value.  In order to canonicalize the induction
  // variable, we chose to eliminate the IV and rewrite it in terms of an
  // int->fp cast.
  //
  // We give preference to sitofp over uitofp because it is faster on most
  // platforms.
  if (WeakPH) {
    Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
                                 PN->getParent()->getFirstInsertionPt());
    PN->replaceAllUsesWith(Conv);
    RecursivelyDeleteTriviallyDeadInstructions(PN, TLI);
  }
  Changed = true;
}

void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
  // First step.  Check to see if there are any floating-point recurrences.
  // If there are, change them into integer recurrences, permitting analysis by
  // the SCEV routines.
  //
  BasicBlock *Header = L->getHeader();

  SmallVector<WeakVH, 8> PHIs;
  for (BasicBlock::iterator I = Header->begin();
       PHINode *PN = dyn_cast<PHINode>(I); ++I)
    PHIs.push_back(PN);

  for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
    if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
      HandleFloatingPointIV(L, PN);

  // If the loop previously had floating-point IV, ScalarEvolution
  // may not have been able to compute a trip count. Now that we've done some
  // re-writing, the trip count may be computable.
  if (Changed)
    SE->forgetLoop(L);
}

//===----------------------------------------------------------------------===//
// RewriteLoopExitValues - Optimize IV users outside the loop.
// As a side effect, reduces the amount of IV processing within the loop.
//===----------------------------------------------------------------------===//

/// RewriteLoopExitValues - Check to see if this loop has a computable
/// loop-invariant execution count.  If so, this means that we can compute the
/// final value of any expressions that are recurrent in the loop, and
/// substitute the exit values from the loop into any instructions outside of
/// the loop that use the final values of the current expressions.
///
/// This is mostly redundant with the regular IndVarSimplify activities that
/// happen later, except that it's more powerful in some cases, because it's
/// able to brute-force evaluate arbitrary instructions as long as they have
/// constant operands at the beginning of the loop.
void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
  // Verify the input to the pass in already in LCSSA form.
  assert(L->isLCSSAForm(*DT));

  SmallVector<BasicBlock*, 8> ExitBlocks;
  L->getUniqueExitBlocks(ExitBlocks);

  // Find all values that are computed inside the loop, but used outside of it.
  // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
  // the exit blocks of the loop to find them.
  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
    BasicBlock *ExitBB = ExitBlocks[i];

    // If there are no PHI nodes in this exit block, then no values defined
    // inside the loop are used on this path, skip it.
    PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
    if (!PN) continue;

    unsigned NumPreds = PN->getNumIncomingValues();

    // Iterate over all of the PHI nodes.
    BasicBlock::iterator BBI = ExitBB->begin();
    while ((PN = dyn_cast<PHINode>(BBI++))) {
      if (PN->use_empty())
        continue; // dead use, don't replace it

      // SCEV only supports integer expressions for now.
      if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy())
        continue;

      // It's necessary to tell ScalarEvolution about this explicitly so that
      // it can walk the def-use list and forget all SCEVs, as it may not be
      // watching the PHI itself. Once the new exit value is in place, there
      // may not be a def-use connection between the loop and every instruction
      // which got a SCEVAddRecExpr for that loop.
      SE->forgetValue(PN);

      // Iterate over all of the values in all the PHI nodes.
      for (unsigned i = 0; i != NumPreds; ++i) {
        // If the value being merged in is not integer or is not defined
        // in the loop, skip it.
        Value *InVal = PN->getIncomingValue(i);
        if (!isa<Instruction>(InVal))
          continue;

        // If this pred is for a subloop, not L itself, skip it.
        if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
          continue; // The Block is in a subloop, skip it.

        // Check that InVal is defined in the loop.
        Instruction *Inst = cast<Instruction>(InVal);
        if (!L->contains(Inst))
          continue;

        // Okay, this instruction has a user outside of the current loop
        // and varies predictably *inside* the loop.  Evaluate the value it
        // contains when the loop exits, if possible.
        const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
        if (!SE->isLoopInvariant(ExitValue, L))
          continue;

        Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);

        DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
                     << "  LoopVal = " << *Inst << "\n");

        if (!isValidRewrite(Inst, ExitVal)) {
          DeadInsts.push_back(ExitVal);
          continue;
        }
        Changed = true;
        ++NumReplaced;

        PN->setIncomingValue(i, ExitVal);

        // If this instruction is dead now, delete it. Don't do it now to avoid
        // invalidating iterators.
        if (isInstructionTriviallyDead(Inst, TLI))
          DeadInsts.push_back(Inst);

        if (NumPreds == 1) {
          // Completely replace a single-pred PHI. This is safe, because the
          // NewVal won't be variant in the loop, so we don't need an LCSSA phi
          // node anymore.
          PN->replaceAllUsesWith(ExitVal);
          PN->eraseFromParent();
        }
      }
      if (NumPreds != 1) {
        // Clone the PHI and delete the original one. This lets IVUsers and
        // any other maps purge the original user from their records.
        PHINode *NewPN = cast<PHINode>(PN->clone());
        NewPN->takeName(PN);
        NewPN->insertBefore(PN);
        PN->replaceAllUsesWith(NewPN);
        PN->eraseFromParent();
      }
    }
  }

  // The insertion point instruction may have been deleted; clear it out
  // so that the rewriter doesn't trip over it later.
  Rewriter.clearInsertPoint();
}

//===----------------------------------------------------------------------===//
//  IV Widening - Extend the width of an IV to cover its widest uses.
//===----------------------------------------------------------------------===//

namespace {
  // Collect information about induction variables that are used by sign/zero
  // extend operations. This information is recorded by CollectExtend and
  // provides the input to WidenIV.
  struct WideIVInfo {
    PHINode *NarrowIV;
    Type *WidestNativeType; // Widest integer type created [sz]ext
    bool IsSigned;          // Was an sext user seen before a zext?

    WideIVInfo() : NarrowIV(0), WidestNativeType(0), IsSigned(false) {}
  };

  class WideIVVisitor : public IVVisitor {
    ScalarEvolution *SE;
    const DataLayout *TD;

  public:
    WideIVInfo WI;

    WideIVVisitor(PHINode *NarrowIV, ScalarEvolution *SCEV,
                  const DataLayout *TData) :
      SE(SCEV), TD(TData) { WI.NarrowIV = NarrowIV; }

    // Implement the interface used by simplifyUsersOfIV.
    virtual void visitCast(CastInst *Cast);
  };
}

/// visitCast - Update information about the induction variable that is
/// extended by this sign or zero extend operation. This is used to determine
/// the final width of the IV before actually widening it.
void WideIVVisitor::visitCast(CastInst *Cast) {
  bool IsSigned = Cast->getOpcode() == Instruction::SExt;
  if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
    return;

  Type *Ty = Cast->getType();
  uint64_t Width = SE->getTypeSizeInBits(Ty);
  if (TD && !TD->isLegalInteger(Width))
    return;

  if (!WI.WidestNativeType) {
    WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
    WI.IsSigned = IsSigned;
    return;
  }

  // We extend the IV to satisfy the sign of its first user, arbitrarily.
  if (WI.IsSigned != IsSigned)
    return;

  if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
    WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
}

namespace {

/// NarrowIVDefUse - Record a link in the Narrow IV def-use chain along with the
/// WideIV that computes the same value as the Narrow IV def.  This avoids
/// caching Use* pointers.
struct NarrowIVDefUse {
  Instruction *NarrowDef;
  Instruction *NarrowUse;
  Instruction *WideDef;

  NarrowIVDefUse(): NarrowDef(0), NarrowUse(0), WideDef(0) {}

  NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD):
    NarrowDef(ND), NarrowUse(NU), WideDef(WD) {}
};

/// WidenIV - The goal of this transform is to remove sign and zero extends
/// without creating any new induction variables. To do this, it creates a new
/// phi of the wider type and redirects all users, either removing extends or
/// inserting truncs whenever we stop propagating the type.
///
class WidenIV {
  // Parameters
  PHINode *OrigPhi;
  Type *WideType;
  bool IsSigned;

  // Context
  LoopInfo        *LI;
  Loop            *L;
  ScalarEvolution *SE;
  DominatorTree   *DT;

  // Result
  PHINode *WidePhi;
  Instruction *WideInc;
  const SCEV *WideIncExpr;
  SmallVectorImpl<WeakVH> &DeadInsts;

  SmallPtrSet<Instruction*,16> Widened;
  SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;

public:
  WidenIV(const WideIVInfo &WI, LoopInfo *LInfo,
          ScalarEvolution *SEv, DominatorTree *DTree,
          SmallVectorImpl<WeakVH> &DI) :
    OrigPhi(WI.NarrowIV),
    WideType(WI.WidestNativeType),
    IsSigned(WI.IsSigned),
    LI(LInfo),
    L(LI->getLoopFor(OrigPhi->getParent())),
    SE(SEv),
    DT(DTree),
    WidePhi(0),
    WideInc(0),
    WideIncExpr(0),
    DeadInsts(DI) {
    assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
  }

  PHINode *CreateWideIV(SCEVExpander &Rewriter);

protected:
  Value *getExtend(Value *NarrowOper, Type *WideType, bool IsSigned,
                   Instruction *Use);

  Instruction *CloneIVUser(NarrowIVDefUse DU);

  const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse);

  const SCEVAddRecExpr* GetExtendedOperandRecurrence(NarrowIVDefUse DU);

  Instruction *WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);

  void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
};
} // anonymous namespace

/// isLoopInvariant - Perform a quick domtree based check for loop invariance
/// assuming that V is used within the loop. LoopInfo::isLoopInvariant() seems
/// gratuitous for this purpose.
static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) {
  Instruction *Inst = dyn_cast<Instruction>(V);
  if (!Inst)
    return true;

  return DT->properlyDominates(Inst->getParent(), L->getHeader());
}

Value *WidenIV::getExtend(Value *NarrowOper, Type *WideType, bool IsSigned,
                          Instruction *Use) {
  // Set the debug location and conservative insertion point.
  IRBuilder<> Builder(Use);
  // Hoist the insertion point into loop preheaders as far as possible.
  for (const Loop *L = LI->getLoopFor(Use->getParent());
       L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT);
       L = L->getParentLoop())
    Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());

  return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
                    Builder.CreateZExt(NarrowOper, WideType);
}

/// CloneIVUser - Instantiate a wide operation to replace a narrow
/// operation. This only needs to handle operations that can evaluation to
/// SCEVAddRec. It can safely return 0 for any operation we decide not to clone.
Instruction *WidenIV::CloneIVUser(NarrowIVDefUse DU) {
  unsigned Opcode = DU.NarrowUse->getOpcode();
  switch (Opcode) {
  default:
    return 0;
  case Instruction::Add:
  case Instruction::Mul:
  case Instruction::UDiv:
  case Instruction::Sub:
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor:
  case Instruction::Shl:
  case Instruction::LShr:
  case Instruction::AShr:
    DEBUG(dbgs() << "Cloning IVUser: " << *DU.NarrowUse << "\n");

    // Replace NarrowDef operands with WideDef. Otherwise, we don't know
    // anything about the narrow operand yet so must insert a [sz]ext. It is
    // probably loop invariant and will be folded or hoisted. If it actually
    // comes from a widened IV, it should be removed during a future call to
    // WidenIVUse.
    Value *LHS = (DU.NarrowUse->getOperand(0) == DU.NarrowDef) ? DU.WideDef :
      getExtend(DU.NarrowUse->getOperand(0), WideType, IsSigned, DU.NarrowUse);
    Value *RHS = (DU.NarrowUse->getOperand(1) == DU.NarrowDef) ? DU.WideDef :
      getExtend(DU.NarrowUse->getOperand(1), WideType, IsSigned, DU.NarrowUse);

    BinaryOperator *NarrowBO = cast<BinaryOperator>(DU.NarrowUse);
    BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(),
                                                    LHS, RHS,
                                                    NarrowBO->getName());
    IRBuilder<> Builder(DU.NarrowUse);
    Builder.Insert(WideBO);
    if (const OverflowingBinaryOperator *OBO =
        dyn_cast<OverflowingBinaryOperator>(NarrowBO)) {
      if (OBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap();
      if (OBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap();
    }
    return WideBO;
  }
}

/// No-wrap operations can transfer sign extension of their result to their
/// operands. Generate the SCEV value for the widened operation without
/// actually modifying the IR yet. If the expression after extending the
/// operands is an AddRec for this loop, return it.
const SCEVAddRecExpr* WidenIV::GetExtendedOperandRecurrence(NarrowIVDefUse DU) {
  // Handle the common case of add<nsw/nuw>
  if (DU.NarrowUse->getOpcode() != Instruction::Add)
    return 0;

  // One operand (NarrowDef) has already been extended to WideDef. Now determine
  // if extending the other will lead to a recurrence.
  unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
  assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");

  const SCEV *ExtendOperExpr = 0;
  const OverflowingBinaryOperator *OBO =
    cast<OverflowingBinaryOperator>(DU.NarrowUse);
  if (IsSigned && OBO->hasNoSignedWrap())
    ExtendOperExpr = SE->getSignExtendExpr(
      SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
  else if(!IsSigned && OBO->hasNoUnsignedWrap())
    ExtendOperExpr = SE->getZeroExtendExpr(
      SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
  else
    return 0;

  // When creating this AddExpr, don't apply the current operations NSW or NUW
  // flags. This instruction may be guarded by control flow that the no-wrap
  // behavior depends on. Non-control-equivalent instructions can be mapped to
  // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
  // semantics to those operations.
  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(
    SE->getAddExpr(SE->getSCEV(DU.WideDef), ExtendOperExpr));

  if (!AddRec || AddRec->getLoop() != L)
    return 0;
  return AddRec;
}

/// GetWideRecurrence - Is this instruction potentially interesting from
/// IVUsers' perspective after widening it's type? In other words, can the
/// extend be safely hoisted out of the loop with SCEV reducing the value to a
/// recurrence on the same loop. If so, return the sign or zero extended
/// recurrence. Otherwise return NULL.
const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) {
  if (!SE->isSCEVable(NarrowUse->getType()))
    return 0;

  const SCEV *NarrowExpr = SE->getSCEV(NarrowUse);
  if (SE->getTypeSizeInBits(NarrowExpr->getType())
      >= SE->getTypeSizeInBits(WideType)) {
    // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
    // index. So don't follow this use.
    return 0;
  }

  const SCEV *WideExpr = IsSigned ?
    SE->getSignExtendExpr(NarrowExpr, WideType) :
    SE->getZeroExtendExpr(NarrowExpr, WideType);
  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
  if (!AddRec || AddRec->getLoop() != L)
    return 0;
  return AddRec;
}

/// WidenIVUse - Determine whether an individual user of the narrow IV can be
/// widened. If so, return the wide clone of the user.
Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) {

  // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
  if (isa<PHINode>(DU.NarrowUse) &&
      LI->getLoopFor(DU.NarrowUse->getParent()) != L)
    return 0;

  // Our raison d'etre! Eliminate sign and zero extension.
  if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) {
    Value *NewDef = DU.WideDef;
    if (DU.NarrowUse->getType() != WideType) {
      unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
      unsigned IVWidth = SE->getTypeSizeInBits(WideType);
      if (CastWidth < IVWidth) {
        // The cast isn't as wide as the IV, so insert a Trunc.
        IRBuilder<> Builder(DU.NarrowUse);
        NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
      }
      else {
        // A wider extend was hidden behind a narrower one. This may induce
        // another round of IV widening in which the intermediate IV becomes
        // dead. It should be very rare.
        DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
              << " not wide enough to subsume " << *DU.NarrowUse << "\n");
        DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
        NewDef = DU.NarrowUse;
      }
    }
    if (NewDef != DU.NarrowUse) {
      DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
            << " replaced by " << *DU.WideDef << "\n");
      ++NumElimExt;
      DU.NarrowUse->replaceAllUsesWith(NewDef);
      DeadInsts.push_back(DU.NarrowUse);
    }
    // Now that the extend is gone, we want to expose it's uses for potential
    // further simplification. We don't need to directly inform SimplifyIVUsers
    // of the new users, because their parent IV will be processed later as a
    // new loop phi. If we preserved IVUsers analysis, we would also want to
    // push the uses of WideDef here.

    // No further widening is needed. The deceased [sz]ext had done it for us.
    return 0;
  }

  // Does this user itself evaluate to a recurrence after widening?
  const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(DU.NarrowUse);
  if (!WideAddRec) {
      WideAddRec = GetExtendedOperandRecurrence(DU);
  }
  if (!WideAddRec) {
    // This user does not evaluate to a recurence after widening, so don't
    // follow it. Instead insert a Trunc to kill off the original use,
    // eventually isolating the original narrow IV so it can be removed.
    IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT));
    Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
    DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
    return 0;
  }
  // Assume block terminators cannot evaluate to a recurrence. We can't to
  // insert a Trunc after a terminator if there happens to be a critical edge.
  assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
         "SCEV is not expected to evaluate a block terminator");

  // Reuse the IV increment that SCEVExpander created as long as it dominates
  // NarrowUse.
  Instruction *WideUse = 0;
  if (WideAddRec == WideIncExpr
      && Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
    WideUse = WideInc;
  else {
    WideUse = CloneIVUser(DU);
    if (!WideUse)
      return 0;
  }
  // Evaluation of WideAddRec ensured that the narrow expression could be
  // extended outside the loop without overflow. This suggests that the wide use
  // evaluates to the same expression as the extended narrow use, but doesn't
  // absolutely guarantee it. Hence the following failsafe check. In rare cases
  // where it fails, we simply throw away the newly created wide use.
  if (WideAddRec != SE->getSCEV(WideUse)) {
    DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse
          << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n");
    DeadInsts.push_back(WideUse);
    return 0;
  }

  // Returning WideUse pushes it on the worklist.
  return WideUse;
}

/// pushNarrowIVUsers - Add eligible users of NarrowDef to NarrowIVUsers.
///
void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
  for (Value::use_iterator UI = NarrowDef->use_begin(),
         UE = NarrowDef->use_end(); UI != UE; ++UI) {
    Instruction *NarrowUse = cast<Instruction>(*UI);

    // Handle data flow merges and bizarre phi cycles.
    if (!Widened.insert(NarrowUse))
      continue;

    NarrowIVUsers.push_back(NarrowIVDefUse(NarrowDef, NarrowUse, WideDef));
  }
}

/// CreateWideIV - Process a single induction variable. First use the
/// SCEVExpander to create a wide induction variable that evaluates to the same
/// recurrence as the original narrow IV. Then use a worklist to forward
/// traverse the narrow IV's def-use chain. After WidenIVUse has processed all
/// interesting IV users, the narrow IV will be isolated for removal by
/// DeleteDeadPHIs.
///
/// It would be simpler to delete uses as they are processed, but we must avoid
/// invalidating SCEV expressions.
///
PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) {
  // Is this phi an induction variable?
  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
  if (!AddRec)
    return NULL;

  // Widen the induction variable expression.
  const SCEV *WideIVExpr = IsSigned ?
    SE->getSignExtendExpr(AddRec, WideType) :
    SE->getZeroExtendExpr(AddRec, WideType);

  assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
         "Expect the new IV expression to preserve its type");

  // Can the IV be extended outside the loop without overflow?
  AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
  if (!AddRec || AddRec->getLoop() != L)
    return NULL;

  // An AddRec must have loop-invariant operands. Since this AddRec is
  // materialized by a loop header phi, the expression cannot have any post-loop
  // operands, so they must dominate the loop header.
  assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
         SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader())
         && "Loop header phi recurrence inputs do not dominate the loop");

  // The rewriter provides a value for the desired IV expression. This may
  // either find an existing phi or materialize a new one. Either way, we
  // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
  // of the phi-SCC dominates the loop entry.
  Instruction *InsertPt = L->getHeader()->begin();
  WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));

  // Remembering the WideIV increment generated by SCEVExpander allows
  // WidenIVUse to reuse it when widening the narrow IV's increment. We don't
  // employ a general reuse mechanism because the call above is the only call to
  // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
  if (BasicBlock *LatchBlock = L->getLoopLatch()) {
    WideInc =
      cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
    WideIncExpr = SE->getSCEV(WideInc);
  }

  DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
  ++NumWidened;

  // Traverse the def-use chain using a worklist starting at the original IV.
  assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );

  Widened.insert(OrigPhi);
  pushNarrowIVUsers(OrigPhi, WidePhi);

  while (!NarrowIVUsers.empty()) {
    NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();

    // Process a def-use edge. This may replace the use, so don't hold a
    // use_iterator across it.
    Instruction *WideUse = WidenIVUse(DU, Rewriter);

    // Follow all def-use edges from the previous narrow use.
    if (WideUse)
      pushNarrowIVUsers(DU.NarrowUse, WideUse);

    // WidenIVUse may have removed the def-use edge.
    if (DU.NarrowDef->use_empty())
      DeadInsts.push_back(DU.NarrowDef);
  }
  return WidePhi;
}

//===----------------------------------------------------------------------===//
//  Simplification of IV users based on SCEV evaluation.
//===----------------------------------------------------------------------===//


/// SimplifyAndExtend - Iteratively perform simplification on a worklist of IV
/// users. Each successive simplification may push more users which may
/// themselves be candidates for simplification.
///
/// Sign/Zero extend elimination is interleaved with IV simplification.
///
void IndVarSimplify::SimplifyAndExtend(Loop *L,
                                       SCEVExpander &Rewriter,
                                       LPPassManager &LPM) {
  SmallVector<WideIVInfo, 8> WideIVs;

  SmallVector<PHINode*, 8> LoopPhis;
  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
    LoopPhis.push_back(cast<PHINode>(I));
  }
  // Each round of simplification iterates through the SimplifyIVUsers worklist
  // for all current phis, then determines whether any IVs can be
  // widened. Widening adds new phis to LoopPhis, inducing another round of
  // simplification on the wide IVs.
  while (!LoopPhis.empty()) {
    // Evaluate as many IV expressions as possible before widening any IVs. This
    // forces SCEV to set no-wrap flags before evaluating sign/zero
    // extension. The first time SCEV attempts to normalize sign/zero extension,
    // the result becomes final. So for the most predictable results, we delay
    // evaluation of sign/zero extend evaluation until needed, and avoid running
    // other SCEV based analysis prior to SimplifyAndExtend.
    do {
      PHINode *CurrIV = LoopPhis.pop_back_val();

      // Information about sign/zero extensions of CurrIV.
      WideIVVisitor WIV(CurrIV, SE, TD);

      Changed |= simplifyUsersOfIV(CurrIV, SE, &LPM, DeadInsts, &WIV);

      if (WIV.WI.WidestNativeType) {
        WideIVs.push_back(WIV.WI);
      }
    } while(!LoopPhis.empty());

    for (; !WideIVs.empty(); WideIVs.pop_back()) {
      WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts);
      if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) {
        Changed = true;
        LoopPhis.push_back(WidePhi);
      }
    }
  }
}

//===----------------------------------------------------------------------===//
//  LinearFunctionTestReplace and its kin. Rewrite the loop exit condition.
//===----------------------------------------------------------------------===//

/// Check for expressions that ScalarEvolution generates to compute
/// BackedgeTakenInfo. If these expressions have not been reduced, then
/// expanding them may incur additional cost (albeit in the loop preheader).
static bool isHighCostExpansion(const SCEV *S, BranchInst *BI,
                                SmallPtrSet<const SCEV*, 8> &Processed,
                                ScalarEvolution *SE) {
  if (!Processed.insert(S))
    return false;

  // If the backedge-taken count is a UDiv, it's very likely a UDiv that
  // ScalarEvolution's HowFarToZero or HowManyLessThans produced to compute a
  // precise expression, rather than a UDiv from the user's code. If we can't
  // find a UDiv in the code with some simple searching, assume the former and
  // forego rewriting the loop.
  if (isa<SCEVUDivExpr>(S)) {
    ICmpInst *OrigCond = dyn_cast<ICmpInst>(BI->getCondition());
    if (!OrigCond) return true;
    const SCEV *R = SE->getSCEV(OrigCond->getOperand(1));
    R = SE->getMinusSCEV(R, SE->getConstant(R->getType(), 1));
    if (R != S) {
      const SCEV *L = SE->getSCEV(OrigCond->getOperand(0));
      L = SE->getMinusSCEV(L, SE->getConstant(L->getType(), 1));
      if (L != S)
        return true;
    }
  }

  // Recurse past add expressions, which commonly occur in the
  // BackedgeTakenCount. They may already exist in program code, and if not,
  // they are not too expensive rematerialize.
  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
    for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
         I != E; ++I) {
      if (isHighCostExpansion(*I, BI, Processed, SE))
        return true;
    }
    return false;
  }

  // HowManyLessThans uses a Max expression whenever the loop is not guarded by
  // the exit condition.
  if (isa<SCEVSMaxExpr>(S) || isa<SCEVUMaxExpr>(S))
    return true;

  // If we haven't recognized an expensive SCEV pattern, assume it's an
  // expression produced by program code.
  return false;
}

/// canExpandBackedgeTakenCount - Return true if this loop's backedge taken
/// count expression can be safely and cheaply expanded into an instruction
/// sequence that can be used by LinearFunctionTestReplace.
///
/// TODO: This fails for pointer-type loop counters with greater than one byte
/// strides, consequently preventing LFTR from running. For the purpose of LFTR
/// we could skip this check in the case that the LFTR loop counter (chosen by
/// FindLoopCounter) is also pointer type. Instead, we could directly convert
/// the loop test to an inequality test by checking the target data's alignment
/// of element types (given that the initial pointer value originates from or is
/// used by ABI constrained operation, as opposed to inttoptr/ptrtoint).
/// However, we don't yet have a strong motivation for converting loop tests
/// into inequality tests.
static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE) {
  const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
      BackedgeTakenCount->isZero())
    return false;

  if (!L->getExitingBlock())
    return false;

  // Can't rewrite non-branch yet.
  BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
  if (!BI)
    return false;

  SmallPtrSet<const SCEV*, 8> Processed;
  if (isHighCostExpansion(BackedgeTakenCount, BI, Processed, SE))
    return false;

  return true;
}

/// getLoopPhiForCounter - Return the loop header phi IFF IncV adds a loop
/// invariant value to the phi.
static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) {
  Instruction *IncI = dyn_cast<Instruction>(IncV);
  if (!IncI)
    return 0;

  switch (IncI->getOpcode()) {
  case Instruction::Add:
  case Instruction::Sub:
    break;
  case Instruction::GetElementPtr:
    // An IV counter must preserve its type.
    if (IncI->getNumOperands() == 2)
      break;
  default:
    return 0;
  }

  PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
  if (Phi && Phi->getParent() == L->getHeader()) {
    if (isLoopInvariant(IncI->getOperand(1), L, DT))
      return Phi;
    return 0;
  }
  if (IncI->getOpcode() == Instruction::GetElementPtr)
    return 0;

  // Allow add/sub to be commuted.
  Phi = dyn_cast<PHINode>(IncI->getOperand(1));
  if (Phi && Phi->getParent() == L->getHeader()) {
    if (isLoopInvariant(IncI->getOperand(0), L, DT))
      return Phi;
  }
  return 0;
}

/// Return the compare guarding the loop latch, or NULL for unrecognized tests.
static ICmpInst *getLoopTest(Loop *L) {
  assert(L->getExitingBlock() && "expected loop exit");

  BasicBlock *LatchBlock = L->getLoopLatch();
  // Don't bother with LFTR if the loop is not properly simplified.
  if (!LatchBlock)
    return 0;

  BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
  assert(BI && "expected exit branch");

  return dyn_cast<ICmpInst>(BI->getCondition());
}

/// needsLFTR - LinearFunctionTestReplace policy. Return true unless we can show
/// that the current exit test is already sufficiently canonical.
static bool needsLFTR(Loop *L, DominatorTree *DT) {
  // Do LFTR to simplify the exit condition to an ICMP.
  ICmpInst *Cond = getLoopTest(L);
  if (!Cond)
    return true;

  // Do LFTR to simplify the exit ICMP to EQ/NE
  ICmpInst::Predicate Pred = Cond->getPredicate();
  if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
    return true;

  // Look for a loop invariant RHS
  Value *LHS = Cond->getOperand(0);
  Value *RHS = Cond->getOperand(1);
  if (!isLoopInvariant(RHS, L, DT)) {
    if (!isLoopInvariant(LHS, L, DT))
      return true;
    std::swap(LHS, RHS);
  }
  // Look for a simple IV counter LHS
  PHINode *Phi = dyn_cast<PHINode>(LHS);
  if (!Phi)
    Phi = getLoopPhiForCounter(LHS, L, DT);

  if (!Phi)
    return true;

  // Do LFTR if PHI node is defined in the loop, but is *not* a counter.
  int Idx = Phi->getBasicBlockIndex(L->getLoopLatch());
  if (Idx < 0)
    return true;

  // Do LFTR if the exit condition's IV is *not* a simple counter.
  Value *IncV = Phi->getIncomingValue(Idx);
  return Phi != getLoopPhiForCounter(IncV, L, DT);
}

/// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils
/// down to checking that all operands are constant and listing instructions
/// that may hide undef.
static bool hasConcreteDefImpl(Value *V, SmallPtrSet<Value*, 8> &Visited,
                               unsigned Depth) {
  if (isa<Constant>(V))
    return !isa<UndefValue>(V);

  if (Depth >= 6)
    return false;

  // Conservatively handle non-constant non-instructions. For example, Arguments
  // may be undef.
  Instruction *I = dyn_cast<Instruction>(V);
  if (!I)
    return false;

  // Load and return values may be undef.
  if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I))
    return false;

  // Optimistically handle other instructions.
  for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) {
    if (!Visited.insert(*OI))
      continue;
    if (!hasConcreteDefImpl(*OI, Visited, Depth+1))
      return false;
  }
  return true;
}

/// Return true if the given value is concrete. We must prove that undef can
/// never reach it.
///
/// TODO: If we decide that this is a good approach to checking for undef, we
/// may factor it into a common location.
static bool hasConcreteDef(Value *V) {
  SmallPtrSet<Value*, 8> Visited;
  Visited.insert(V);
  return hasConcreteDefImpl(V, Visited, 0);
}

/// AlmostDeadIV - Return true if this IV has any uses other than the (soon to
/// be rewritten) loop exit test.
static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
  int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
  Value *IncV = Phi->getIncomingValue(LatchIdx);

  for (Value::use_iterator UI = Phi->use_begin(), UE = Phi->use_end();
       UI != UE; ++UI) {
    if (*UI != Cond && *UI != IncV) return false;
  }

  for (Value::use_iterator UI = IncV->use_begin(), UE = IncV->use_end();
       UI != UE; ++UI) {
    if (*UI != Cond && *UI != Phi) return false;
  }
  return true;
}

/// FindLoopCounter - Find an affine IV in canonical form.
///
/// BECount may be an i8* pointer type. The pointer difference is already
/// valid count without scaling the address stride, so it remains a pointer
/// expression as far as SCEV is concerned.
///
/// Currently only valid for LFTR. See the comments on hasConcreteDef below.
///
/// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount
///
/// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride.
/// This is difficult in general for SCEV because of potential overflow. But we
/// could at least handle constant BECounts.
static PHINode *
FindLoopCounter(Loop *L, const SCEV *BECount,
                ScalarEvolution *SE, DominatorTree *DT, const DataLayout *TD) {
  uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());

  Value *Cond =
    cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition();

  // Loop over all of the PHI nodes, looking for a simple counter.
  PHINode *BestPhi = 0;
  const SCEV *BestInit = 0;
  BasicBlock *LatchBlock = L->getLoopLatch();
  assert(LatchBlock && "needsLFTR should guarantee a loop latch");

  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
    PHINode *Phi = cast<PHINode>(I);
    if (!SE->isSCEVable(Phi->getType()))
      continue;

    // Avoid comparing an integer IV against a pointer Limit.
    if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
      continue;

    const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
    if (!AR || AR->getLoop() != L || !AR->isAffine())
      continue;

    // AR may be a pointer type, while BECount is an integer type.
    // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
    // AR may not be a narrower type, or we may never exit.
    uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
    if (PhiWidth < BCWidth || (TD && !TD->isLegalInteger(PhiWidth)))
      continue;

    const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
    if (!Step || !Step->isOne())
      continue;

    int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
    Value *IncV = Phi->getIncomingValue(LatchIdx);
    if (getLoopPhiForCounter(IncV, L, DT) != Phi)
      continue;

    // Avoid reusing a potentially undef value to compute other values that may
    // have originally had a concrete definition.
    if (!hasConcreteDef(Phi)) {
      // We explicitly allow unknown phis as long as they are already used by
      // the loop test. In this case we assume that performing LFTR could not
      // increase the number of undef users.
      if (ICmpInst *Cond = getLoopTest(L)) {
        if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT)
            && Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) {
          continue;
        }
      }
    }
    const SCEV *Init = AR->getStart();

    if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
      // Don't force a live loop counter if another IV can be used.
      if (AlmostDeadIV(Phi, LatchBlock, Cond))
        continue;

      // Prefer to count-from-zero. This is a more "canonical" counter form. It
      // also prefers integer to pointer IVs.
      if (BestInit->isZero() != Init->isZero()) {
        if (BestInit->isZero())
          continue;
      }
      // If two IVs both count from zero or both count from nonzero then the
      // narrower is likely a dead phi that has been widened. Use the wider phi
      // to allow the other to be eliminated.
      else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
        continue;
    }
    BestPhi = Phi;
    BestInit = Init;
  }
  return BestPhi;
}

/// genLoopLimit - Help LinearFunctionTestReplace by generating a value that
/// holds the RHS of the new loop test.
static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L,
                           SCEVExpander &Rewriter, ScalarEvolution *SE) {
  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
  assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter");
  const SCEV *IVInit = AR->getStart();

  // IVInit may be a pointer while IVCount is an integer when FindLoopCounter
  // finds a valid pointer IV. Sign extend BECount in order to materialize a
  // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
  // the existing GEPs whenever possible.
  if (IndVar->getType()->isPointerTy()
      && !IVCount->getType()->isPointerTy()) {

    Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
    const SCEV *IVOffset = SE->getTruncateOrSignExtend(IVCount, OfsTy);

    // Expand the code for the iteration count.
    assert(SE->isLoopInvariant(IVOffset, L) &&
           "Computed iteration count is not loop invariant!");
    BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
    Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI);

    Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader());
    assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter");
    // We could handle pointer IVs other than i8*, but we need to compensate for
    // gep index scaling. See canExpandBackedgeTakenCount comments.
    assert(SE->getSizeOfExpr(
             cast<PointerType>(GEPBase->getType())->getElementType())->isOne()
           && "unit stride pointer IV must be i8*");

    IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
    return Builder.CreateGEP(GEPBase, GEPOffset, "lftr.limit");
  }
  else {
    // In any other case, convert both IVInit and IVCount to integers before
    // comparing. This may result in SCEV expension of pointers, but in practice
    // SCEV will fold the pointer arithmetic away as such:
    // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
    //
    // Valid Cases: (1) both integers is most common; (2) both may be pointers
    // for simple memset-style loops; (3) IVInit is an integer and IVCount is a
    // pointer may occur when enable-iv-rewrite generates a canonical IV on top
    // of case #2.

    const SCEV *IVLimit = 0;
    // For unit stride, IVCount = Start + BECount with 2's complement overflow.
    // For non-zero Start, compute IVCount here.
    if (AR->getStart()->isZero())
      IVLimit = IVCount;
    else {
      assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
      const SCEV *IVInit = AR->getStart();

      // For integer IVs, truncate the IV before computing IVInit + BECount.
      if (SE->getTypeSizeInBits(IVInit->getType())
          > SE->getTypeSizeInBits(IVCount->getType()))
        IVInit = SE->getTruncateExpr(IVInit, IVCount->getType());

      IVLimit = SE->getAddExpr(IVInit, IVCount);
    }
    // Expand the code for the iteration count.
    BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
    IRBuilder<> Builder(BI);
    assert(SE->isLoopInvariant(IVLimit, L) &&
           "Computed iteration count is not loop invariant!");
    // Ensure that we generate the same type as IndVar, or a smaller integer
    // type. In the presence of null pointer values, we have an integer type
    // SCEV expression (IVInit) for a pointer type IV value (IndVar).
    Type *LimitTy = IVCount->getType()->isPointerTy() ?
      IndVar->getType() : IVCount->getType();
    return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
  }
}

/// LinearFunctionTestReplace - This method rewrites the exit condition of the
/// loop to be a canonical != comparison against the incremented loop induction
/// variable.  This pass is able to rewrite the exit tests of any loop where the
/// SCEV analysis can determine a loop-invariant trip count of the loop, which
/// is actually a much broader range than just linear tests.
Value *IndVarSimplify::
LinearFunctionTestReplace(Loop *L,
                          const SCEV *BackedgeTakenCount,
                          PHINode *IndVar,
                          SCEVExpander &Rewriter) {
  assert(canExpandBackedgeTakenCount(L, SE) && "precondition");

  // LFTR can ignore IV overflow and truncate to the width of
  // BECount. This avoids materializing the add(zext(add)) expression.
  Type *CntTy = BackedgeTakenCount->getType();

  const SCEV *IVCount = BackedgeTakenCount;

  // If the exiting block is the same as the backedge block, we prefer to
  // compare against the post-incremented value, otherwise we must compare
  // against the preincremented value.
  Value *CmpIndVar;
  if (L->getExitingBlock() == L->getLoopLatch()) {
    // Add one to the "backedge-taken" count to get the trip count.
    // If this addition may overflow, we have to be more pessimistic and
    // cast the induction variable before doing the add.
    const SCEV *N =
      SE->getAddExpr(IVCount, SE->getConstant(IVCount->getType(), 1));
    if (CntTy == IVCount->getType())
      IVCount = N;
    else {
      const SCEV *Zero = SE->getConstant(IVCount->getType(), 0);
      if ((isa<SCEVConstant>(N) && !N->isZero()) ||
          SE->isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) {
        // No overflow. Cast the sum.
        IVCount = SE->getTruncateOrZeroExtend(N, CntTy);
      } else {
        // Potential overflow. Cast before doing the add.
        IVCount = SE->getTruncateOrZeroExtend(IVCount, CntTy);
        IVCount = SE->getAddExpr(IVCount, SE->getConstant(CntTy, 1));
      }
    }
    // The BackedgeTaken expression contains the number of times that the
    // backedge branches to the loop header.  This is one less than the
    // number of times the loop executes, so use the incremented indvar.
    CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
  } else {
    // We must use the preincremented value...
    IVCount = SE->getTruncateOrZeroExtend(IVCount, CntTy);
    CmpIndVar = IndVar;
  }

  Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE);
  assert(ExitCnt->getType()->isPointerTy() == IndVar->getType()->isPointerTy()
         && "genLoopLimit missed a cast");

  // Insert a new icmp_ne or icmp_eq instruction before the branch.
  BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
  ICmpInst::Predicate P;
  if (L->contains(BI->getSuccessor(0)))
    P = ICmpInst::ICMP_NE;
  else
    P = ICmpInst::ICMP_EQ;

  DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
               << "      LHS:" << *CmpIndVar << '\n'
               << "       op:\t"
               << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
               << "      RHS:\t" << *ExitCnt << "\n"
               << "  IVCount:\t" << *IVCount << "\n");

  IRBuilder<> Builder(BI);
  if (SE->getTypeSizeInBits(CmpIndVar->getType())
      > SE->getTypeSizeInBits(ExitCnt->getType())) {
    CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
                                    "lftr.wideiv");
  }

  Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
  Value *OrigCond = BI->getCondition();
  // It's tempting to use replaceAllUsesWith here to fully replace the old
  // comparison, but that's not immediately safe, since users of the old
  // comparison may not be dominated by the new comparison. Instead, just
  // update the branch to use the new comparison; in the common case this
  // will make old comparison dead.
  BI->setCondition(Cond);
  DeadInsts.push_back(OrigCond);

  ++NumLFTR;
  Changed = true;
  return Cond;
}

//===----------------------------------------------------------------------===//
//  SinkUnusedInvariants. A late subpass to cleanup loop preheaders.
//===----------------------------------------------------------------------===//

/// If there's a single exit block, sink any loop-invariant values that
/// were defined in the preheader but not used inside the loop into the
/// exit block to reduce register pressure in the loop.
void IndVarSimplify::SinkUnusedInvariants(Loop *L) {
  BasicBlock *ExitBlock = L->getExitBlock();
  if (!ExitBlock) return;

  BasicBlock *Preheader = L->getLoopPreheader();
  if (!Preheader) return;

  Instruction *InsertPt = ExitBlock->getFirstInsertionPt();
  BasicBlock::iterator I = Preheader->getTerminator();
  while (I != Preheader->begin()) {
    --I;
    // New instructions were inserted at the end of the preheader.
    if (isa<PHINode>(I))
      break;

    // Don't move instructions which might have side effects, since the side
    // effects need to complete before instructions inside the loop.  Also don't
    // move instructions which might read memory, since the loop may modify
    // memory. Note that it's okay if the instruction might have undefined
    // behavior: LoopSimplify guarantees that the preheader dominates the exit
    // block.
    if (I->mayHaveSideEffects() || I->mayReadFromMemory())
      continue;

    // Skip debug info intrinsics.
    if (isa<DbgInfoIntrinsic>(I))
      continue;

    // Skip landingpad instructions.
    if (isa<LandingPadInst>(I))
      continue;

    // Don't sink alloca: we never want to sink static alloca's out of the
    // entry block, and correctly sinking dynamic alloca's requires
    // checks for stacksave/stackrestore intrinsics.
    // FIXME: Refactor this check somehow?
    if (isa<AllocaInst>(I))
      continue;

    // Determine if there is a use in or before the loop (direct or
    // otherwise).
    bool UsedInLoop = false;
    for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
         UI != UE; ++UI) {
      User *U = *UI;
      BasicBlock *UseBB = cast<Instruction>(U)->getParent();
      if (PHINode *P = dyn_cast<PHINode>(U)) {
        unsigned i =
          PHINode::getIncomingValueNumForOperand(UI.getOperandNo());
        UseBB = P->getIncomingBlock(i);
      }
      if (UseBB == Preheader || L->contains(UseBB)) {
        UsedInLoop = true;
        break;
      }
    }

    // If there is, the def must remain in the preheader.
    if (UsedInLoop)
      continue;

    // Otherwise, sink it to the exit block.
    Instruction *ToMove = I;
    bool Done = false;

    if (I != Preheader->begin()) {
      // Skip debug info intrinsics.
      do {
        --I;
      } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());

      if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
        Done = true;
    } else {
      Done = true;
    }

    ToMove->moveBefore(InsertPt);
    if (Done) break;
    InsertPt = ToMove;
  }
}

//===----------------------------------------------------------------------===//
//  IndVarSimplify driver. Manage several subpasses of IV simplification.
//===----------------------------------------------------------------------===//

bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
  // If LoopSimplify form is not available, stay out of trouble. Some notes:
  //  - LSR currently only supports LoopSimplify-form loops. Indvars'
  //    canonicalization can be a pessimization without LSR to "clean up"
  //    afterwards.
  //  - We depend on having a preheader; in particular,
  //    Loop::getCanonicalInductionVariable only supports loops with preheaders,
  //    and we're in trouble if we can't find the induction variable even when
  //    we've manually inserted one.
  if (!L->isLoopSimplifyForm())
    return false;

  LI = &getAnalysis<LoopInfo>();
  SE = &getAnalysis<ScalarEvolution>();
  DT = &getAnalysis<DominatorTree>();
  TD = getAnalysisIfAvailable<DataLayout>();
  TLI = getAnalysisIfAvailable<TargetLibraryInfo>();

  DeadInsts.clear();
  Changed = false;

  // If there are any floating-point recurrences, attempt to
  // transform them to use integer recurrences.
  RewriteNonIntegerIVs(L);

  const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);

  // Create a rewriter object which we'll use to transform the code with.
  SCEVExpander Rewriter(*SE, "indvars");
#ifndef NDEBUG
  Rewriter.setDebugType(DEBUG_TYPE);
#endif

  // Eliminate redundant IV users.
  //
  // Simplification works best when run before other consumers of SCEV. We
  // attempt to avoid evaluating SCEVs for sign/zero extend operations until
  // other expressions involving loop IVs have been evaluated. This helps SCEV
  // set no-wrap flags before normalizing sign/zero extension.
  Rewriter.disableCanonicalMode();
  SimplifyAndExtend(L, Rewriter, LPM);

  // Check to see if this loop has a computable loop-invariant execution count.
  // If so, this means that we can compute the final value of any expressions
  // that are recurrent in the loop, and substitute the exit values from the
  // loop into any instructions outside of the loop that use the final values of
  // the current expressions.
  //
  if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
    RewriteLoopExitValues(L, Rewriter);

  // Eliminate redundant IV cycles.
  NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);

  // If we have a trip count expression, rewrite the loop's exit condition
  // using it.  We can currently only handle loops with a single exit.
  if (canExpandBackedgeTakenCount(L, SE) && needsLFTR(L, DT)) {
    PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT, TD);
    if (IndVar) {
      // Check preconditions for proper SCEVExpander operation. SCEV does not
      // express SCEVExpander's dependencies, such as LoopSimplify. Instead any
      // pass that uses the SCEVExpander must do it. This does not work well for
      // loop passes because SCEVExpander makes assumptions about all loops, while
      // LoopPassManager only forces the current loop to be simplified.
      //
      // FIXME: SCEV expansion has no way to bail out, so the caller must
      // explicitly check any assumptions made by SCEV. Brittle.
      const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount);
      if (!AR || AR->getLoop()->getLoopPreheader())
        (void)LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
                                        Rewriter);
    }
  }
  // Clear the rewriter cache, because values that are in the rewriter's cache
  // can be deleted in the loop below, causing the AssertingVH in the cache to
  // trigger.
  Rewriter.clear();

  // Now that we're done iterating through lists, clean up any instructions
  // which are now dead.
  while (!DeadInsts.empty())
    if (Instruction *Inst =
          dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
      RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI);

  // The Rewriter may not be used from this point on.

  // Loop-invariant instructions in the preheader that aren't used in the
  // loop may be sunk below the loop to reduce register pressure.
  SinkUnusedInvariants(L);

  // Clean up dead instructions.
  Changed |= DeleteDeadPHIs(L->getHeader(), TLI);
  // Check a post-condition.
  assert(L->isLCSSAForm(*DT) &&
         "Indvars did not leave the loop in lcssa form!");

  // Verify that LFTR, and any other change have not interfered with SCEV's
  // ability to compute trip count.
#ifndef NDEBUG
  if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
    SE->forgetLoop(L);
    const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
    if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
        SE->getTypeSizeInBits(NewBECount->getType()))
      NewBECount = SE->getTruncateOrNoop(NewBECount,
                                         BackedgeTakenCount->getType());
    else
      BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
                                                 NewBECount->getType());
    assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV");
  }
#endif

  return Changed;
}