aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Transforms/Scalar/IndVarSimplify.cpp
blob: e31b514b2faf5cedd51f7e2774c32721d46701a6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This transformation analyzes and transforms the induction variables (and
// computations derived from them) into simpler forms suitable for subsequent
// analysis and transformation.
//
// This transformation makes the following changes to each loop with an
// identifiable induction variable:
//   1. All loops are transformed to have a SINGLE canonical induction variable
//      which starts at zero and steps by one.
//   2. The canonical induction variable is guaranteed to be the first PHI node
//      in the loop header block.
//   3. Any pointer arithmetic recurrences are raised to use array subscripts.
//
// If the trip count of a loop is computable, this pass also makes the following
// changes:
//   1. The exit condition for the loop is canonicalized to compare the
//      induction value against the exit value.  This turns loops like:
//        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
//   2. Any use outside of the loop of an expression derived from the indvar
//      is changed to compute the derived value outside of the loop, eliminating
//      the dependence on the exit value of the induction variable.  If the only
//      purpose of the loop is to compute the exit value of some derived
//      expression, this transformation will make the loop dead.
//
// This transformation should be followed by strength reduction after all of the
// desired loop transformations have been performed.  Additionally, on targets
// where it is profitable, the loop could be transformed to count down to zero
// (the "do loop" optimization).
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "indvars"
#include "llvm/Transforms/Scalar.h"
#include "llvm/BasicBlock.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/Type.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
using namespace llvm;

STATISTIC(NumRemoved , "Number of aux indvars removed");
STATISTIC(NumPointer , "Number of pointer indvars promoted");
STATISTIC(NumInserted, "Number of canonical indvars added");
STATISTIC(NumReplaced, "Number of exit values replaced");
STATISTIC(NumLFTR    , "Number of loop exit tests replaced");

namespace {
  class VISIBILITY_HIDDEN IndVarSimplify : public LoopPass {
    LoopInfo        *LI;
    ScalarEvolution *SE;
    bool Changed;
  public:

   static char ID; // Pass identification, replacement for typeid
   IndVarSimplify() : LoopPass(&ID) {}

   virtual bool runOnLoop(Loop *L, LPPassManager &LPM);

   virtual void getAnalysisUsage(AnalysisUsage &AU) const {
     AU.addRequired<ScalarEvolution>();
     AU.addRequiredID(LCSSAID);
     AU.addRequiredID(LoopSimplifyID);
     AU.addRequired<LoopInfo>();
     AU.addPreservedID(LoopSimplifyID);
     AU.addPreservedID(LCSSAID);
     AU.setPreservesCFG();
   }

  private:

    void RewriteNonIntegerIVs(Loop *L);

    void EliminatePointerRecurrence(PHINode *PN, BasicBlock *Preheader,
                                    SmallPtrSet<Instruction*, 16> &DeadInsts);
    void LinearFunctionTestReplace(Loop *L, SCEVHandle IterationCount,
                                   Value *IndVar,
                                   BasicBlock *ExitingBlock,
                                   BranchInst *BI,
                                   SCEVExpander &Rewriter);
    void RewriteLoopExitValues(Loop *L, SCEV *IterationCount);

    void DeleteTriviallyDeadInstructions(SmallPtrSet<Instruction*, 16> &Insts);

    void HandleFloatingPointIV(Loop *L, PHINode *PH,
                               SmallPtrSet<Instruction*, 16> &DeadInsts);
  };
}

char IndVarSimplify::ID = 0;
static RegisterPass<IndVarSimplify>
X("indvars", "Canonicalize Induction Variables");

Pass *llvm::createIndVarSimplifyPass() {
  return new IndVarSimplify();
}

/// DeleteTriviallyDeadInstructions - If any of the instructions is the
/// specified set are trivially dead, delete them and see if this makes any of
/// their operands subsequently dead.
void IndVarSimplify::
DeleteTriviallyDeadInstructions(SmallPtrSet<Instruction*, 16> &Insts) {
  while (!Insts.empty()) {
    Instruction *I = *Insts.begin();
    Insts.erase(I);
    if (isInstructionTriviallyDead(I)) {
      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
        if (Instruction *U = dyn_cast<Instruction>(I->getOperand(i)))
          Insts.insert(U);
      SE->deleteValueFromRecords(I);
      DOUT << "INDVARS: Deleting: " << *I;
      I->eraseFromParent();
      Changed = true;
    }
  }
}


/// EliminatePointerRecurrence - Check to see if this is a trivial GEP pointer
/// recurrence.  If so, change it into an integer recurrence, permitting
/// analysis by the SCEV routines.
void IndVarSimplify::EliminatePointerRecurrence(PHINode *PN,
                                                BasicBlock *Preheader,
                                     SmallPtrSet<Instruction*, 16> &DeadInsts) {
  assert(PN->getNumIncomingValues() == 2 && "Noncanonicalized loop!");
  unsigned PreheaderIdx = PN->getBasicBlockIndex(Preheader);
  unsigned BackedgeIdx = PreheaderIdx^1;
  if (GetElementPtrInst *GEPI =
          dyn_cast<GetElementPtrInst>(PN->getIncomingValue(BackedgeIdx)))
    if (GEPI->getOperand(0) == PN) {
      assert(GEPI->getNumOperands() == 2 && "GEP types must match!");
      DOUT << "INDVARS: Eliminating pointer recurrence: " << *GEPI;

      // Okay, we found a pointer recurrence.  Transform this pointer
      // recurrence into an integer recurrence.  Compute the value that gets
      // added to the pointer at every iteration.
      Value *AddedVal = GEPI->getOperand(1);

      // Insert a new integer PHI node into the top of the block.
      PHINode *NewPhi = PHINode::Create(AddedVal->getType(),
                                        PN->getName()+".rec", PN);
      NewPhi->addIncoming(Constant::getNullValue(NewPhi->getType()), Preheader);

      // Create the new add instruction.
      Value *NewAdd = BinaryOperator::CreateAdd(NewPhi, AddedVal,
                                                GEPI->getName()+".rec", GEPI);
      NewPhi->addIncoming(NewAdd, PN->getIncomingBlock(BackedgeIdx));

      // Update the existing GEP to use the recurrence.
      GEPI->setOperand(0, PN->getIncomingValue(PreheaderIdx));

      // Update the GEP to use the new recurrence we just inserted.
      GEPI->setOperand(1, NewAdd);

      // If the incoming value is a constant expr GEP, try peeling out the array
      // 0 index if possible to make things simpler.
      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEPI->getOperand(0)))
        if (CE->getOpcode() == Instruction::GetElementPtr) {
          unsigned NumOps = CE->getNumOperands();
          assert(NumOps > 1 && "CE folding didn't work!");
          if (CE->getOperand(NumOps-1)->isNullValue()) {
            // Check to make sure the last index really is an array index.
            gep_type_iterator GTI = gep_type_begin(CE);
            for (unsigned i = 1, e = CE->getNumOperands()-1;
                 i != e; ++i, ++GTI)
              /*empty*/;
            if (isa<SequentialType>(*GTI)) {
              // Pull the last index out of the constant expr GEP.
              SmallVector<Value*, 8> CEIdxs(CE->op_begin()+1, CE->op_end()-1);
              Constant *NCE = ConstantExpr::getGetElementPtr(CE->getOperand(0),
                                                             &CEIdxs[0],
                                                             CEIdxs.size());
              Value *Idx[2];
              Idx[0] = Constant::getNullValue(Type::Int32Ty);
              Idx[1] = NewAdd;
              GetElementPtrInst *NGEPI = GetElementPtrInst::Create(
                  NCE, Idx, Idx + 2,
                  GEPI->getName(), GEPI);
              SE->deleteValueFromRecords(GEPI);
              GEPI->replaceAllUsesWith(NGEPI);
              GEPI->eraseFromParent();
              GEPI = NGEPI;
            }
          }
        }


      // Finally, if there are any other users of the PHI node, we must
      // insert a new GEP instruction that uses the pre-incremented version
      // of the induction amount.
      if (!PN->use_empty()) {
        BasicBlock::iterator InsertPos = PN; ++InsertPos;
        while (isa<PHINode>(InsertPos)) ++InsertPos;
        Value *PreInc =
          GetElementPtrInst::Create(PN->getIncomingValue(PreheaderIdx),
                                    NewPhi, "", InsertPos);
        PreInc->takeName(PN);
        PN->replaceAllUsesWith(PreInc);
      }

      // Delete the old PHI for sure, and the GEP if its otherwise unused.
      DeadInsts.insert(PN);

      ++NumPointer;
      Changed = true;
    }
}

/// LinearFunctionTestReplace - This method rewrites the exit condition of the
/// loop to be a canonical != comparison against the incremented loop induction
/// variable.  This pass is able to rewrite the exit tests of any loop where the
/// SCEV analysis can determine a loop-invariant trip count of the loop, which
/// is actually a much broader range than just linear tests.
void IndVarSimplify::LinearFunctionTestReplace(Loop *L,
                                   SCEVHandle IterationCount,
                                   Value *IndVar,
                                   BasicBlock *ExitingBlock,
                                   BranchInst *BI,
                                   SCEVExpander &Rewriter) {
  // If the exiting block is not the same as the backedge block, we must compare
  // against the preincremented value, otherwise we prefer to compare against
  // the post-incremented value.
  Value *CmpIndVar;
  if (ExitingBlock == L->getLoopLatch()) {
    // What ScalarEvolution calls the "iteration count" is actually the
    // number of times the branch is taken. Add one to get the number
    // of times the branch is executed. If this addition may overflow,
    // we have to be more pessimistic and cast the induction variable
    // before doing the add.
    SCEVHandle Zero = SE->getIntegerSCEV(0, IterationCount->getType());
    SCEVHandle N =
      SE->getAddExpr(IterationCount,
                     SE->getIntegerSCEV(1, IterationCount->getType()));
    if ((isa<SCEVConstant>(N) && !N->isZero()) ||
        SE->isLoopGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) {
      // No overflow. Cast the sum.
      IterationCount = SE->getTruncateOrZeroExtend(N, IndVar->getType());
    } else {
      // Potential overflow. Cast before doing the add.
      IterationCount = SE->getTruncateOrZeroExtend(IterationCount,
                                                   IndVar->getType());
      IterationCount =
        SE->getAddExpr(IterationCount,
                       SE->getIntegerSCEV(1, IndVar->getType()));
    }

    // The IterationCount expression contains the number of times that the
    // backedge actually branches to the loop header.  This is one less than the
    // number of times the loop executes, so add one to it.
    CmpIndVar = L->getCanonicalInductionVariableIncrement();
  } else {
    // We have to use the preincremented value...
    IterationCount = SE->getTruncateOrZeroExtend(IterationCount,
                                                 IndVar->getType());
    CmpIndVar = IndVar;
  }

  // Expand the code for the iteration count into the preheader of the loop.
  BasicBlock *Preheader = L->getLoopPreheader();
  Value *ExitCnt = Rewriter.expandCodeFor(IterationCount,
                                          Preheader->getTerminator());

  // Insert a new icmp_ne or icmp_eq instruction before the branch.
  ICmpInst::Predicate Opcode;
  if (L->contains(BI->getSuccessor(0)))
    Opcode = ICmpInst::ICMP_NE;
  else
    Opcode = ICmpInst::ICMP_EQ;

  DOUT << "INDVARS: Rewriting loop exit condition to:\n"
       << "      LHS:" << *CmpIndVar // includes a newline
       << "       op:\t"
       << (Opcode == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
       << "      RHS:\t" << *IterationCount << "\n";

  Value *Cond = new ICmpInst(Opcode, CmpIndVar, ExitCnt, "exitcond", BI);
  BI->setCondition(Cond);
  ++NumLFTR;
  Changed = true;
}

/// RewriteLoopExitValues - Check to see if this loop has a computable
/// loop-invariant execution count.  If so, this means that we can compute the
/// final value of any expressions that are recurrent in the loop, and
/// substitute the exit values from the loop into any instructions outside of
/// the loop that use the final values of the current expressions.
void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEV *IterationCount) {
  BasicBlock *Preheader = L->getLoopPreheader();

  // Scan all of the instructions in the loop, looking at those that have
  // extra-loop users and which are recurrences.
  SCEVExpander Rewriter(*SE, *LI);

  // We insert the code into the preheader of the loop if the loop contains
  // multiple exit blocks, or in the exit block if there is exactly one.
  BasicBlock *BlockToInsertInto;
  SmallVector<BasicBlock*, 8> ExitBlocks;
  L->getUniqueExitBlocks(ExitBlocks);
  if (ExitBlocks.size() == 1)
    BlockToInsertInto = ExitBlocks[0];
  else
    BlockToInsertInto = Preheader;
  BasicBlock::iterator InsertPt = BlockToInsertInto->getFirstNonPHI();

  bool HasConstantItCount = isa<SCEVConstant>(IterationCount);

  SmallPtrSet<Instruction*, 16> InstructionsToDelete;
  std::map<Instruction*, Value*> ExitValues;

  // Find all values that are computed inside the loop, but used outside of it.
  // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
  // the exit blocks of the loop to find them.
  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
    BasicBlock *ExitBB = ExitBlocks[i];

    // If there are no PHI nodes in this exit block, then no values defined
    // inside the loop are used on this path, skip it.
    PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
    if (!PN) continue;

    unsigned NumPreds = PN->getNumIncomingValues();

    // Iterate over all of the PHI nodes.
    BasicBlock::iterator BBI = ExitBB->begin();
    while ((PN = dyn_cast<PHINode>(BBI++))) {

      // Iterate over all of the values in all the PHI nodes.
      for (unsigned i = 0; i != NumPreds; ++i) {
        // If the value being merged in is not integer or is not defined
        // in the loop, skip it.
        Value *InVal = PN->getIncomingValue(i);
        if (!isa<Instruction>(InVal) ||
            // SCEV only supports integer expressions for now.
            !isa<IntegerType>(InVal->getType()))
          continue;

        // If this pred is for a subloop, not L itself, skip it.
        if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
          continue; // The Block is in a subloop, skip it.

        // Check that InVal is defined in the loop.
        Instruction *Inst = cast<Instruction>(InVal);
        if (!L->contains(Inst->getParent()))
          continue;

        // We require that this value either have a computable evolution or that
        // the loop have a constant iteration count.  In the case where the loop
        // has a constant iteration count, we can sometimes force evaluation of
        // the exit value through brute force.
        SCEVHandle SH = SE->getSCEV(Inst);
        if (!SH->hasComputableLoopEvolution(L) && !HasConstantItCount)
          continue;          // Cannot get exit evolution for the loop value.

        // Okay, this instruction has a user outside of the current loop
        // and varies predictably *inside* the loop.  Evaluate the value it
        // contains when the loop exits, if possible.
        SCEVHandle ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
        if (isa<SCEVCouldNotCompute>(ExitValue) ||
            !ExitValue->isLoopInvariant(L))
          continue;

        Changed = true;
        ++NumReplaced;

        // See if we already computed the exit value for the instruction, if so,
        // just reuse it.
        Value *&ExitVal = ExitValues[Inst];
        if (!ExitVal)
          ExitVal = Rewriter.expandCodeFor(ExitValue, InsertPt);

        DOUT << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal
             << "  LoopVal = " << *Inst << "\n";

        PN->setIncomingValue(i, ExitVal);

        // If this instruction is dead now, schedule it to be removed.
        if (Inst->use_empty())
          InstructionsToDelete.insert(Inst);

        // See if this is a single-entry LCSSA PHI node.  If so, we can (and
        // have to) remove
        // the PHI entirely.  This is safe, because the NewVal won't be variant
        // in the loop, so we don't need an LCSSA phi node anymore.
        if (NumPreds == 1) {
          SE->deleteValueFromRecords(PN);
          PN->replaceAllUsesWith(ExitVal);
          PN->eraseFromParent();
          break;
        }
      }
    }
  }

  DeleteTriviallyDeadInstructions(InstructionsToDelete);
}

void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
  // First step.  Check to see if there are any trivial GEP pointer recurrences.
  // If there are, change them into integer recurrences, permitting analysis by
  // the SCEV routines.
  //
  BasicBlock *Header    = L->getHeader();
  BasicBlock *Preheader = L->getLoopPreheader();

  SmallPtrSet<Instruction*, 16> DeadInsts;
  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
    PHINode *PN = cast<PHINode>(I);
    if (isa<PointerType>(PN->getType()))
      EliminatePointerRecurrence(PN, Preheader, DeadInsts);
    else
      HandleFloatingPointIV(L, PN, DeadInsts);
  }

  // If the loop previously had a pointer or floating-point IV, ScalarEvolution
  // may not have been able to compute a trip count. Now that we've done some
  // re-writing, the trip count may be computable.
  if (Changed)
    SE->forgetLoopIterationCount(L);

  if (!DeadInsts.empty())
    DeleteTriviallyDeadInstructions(DeadInsts);
}

/// getEffectiveIndvarType - Determine the widest type that the
/// induction-variable PHINode Phi is cast to.
///
static const Type *getEffectiveIndvarType(const PHINode *Phi) {
  const Type *Ty = Phi->getType();

  for (Value::use_const_iterator UI = Phi->use_begin(), UE = Phi->use_end();
       UI != UE; ++UI) {
    const Type *CandidateType = NULL;
    if (const ZExtInst *ZI = dyn_cast<ZExtInst>(UI))
      CandidateType = ZI->getDestTy();
    else if (const SExtInst *SI = dyn_cast<SExtInst>(UI))
      CandidateType = SI->getDestTy();
    if (CandidateType &&
        CandidateType->getPrimitiveSizeInBits() >
          Ty->getPrimitiveSizeInBits())
      Ty = CandidateType;
  }

  return Ty;
}

/// TestOrigIVForWrap - Analyze the original induction variable
/// that controls the loop's iteration to determine whether it
/// would ever undergo signed or unsigned overflow.
///
/// In addition to setting the NoSignedWrap and NoUnsignedWrap
/// variables, return the PHI for this induction variable.
///
/// TODO: This duplicates a fair amount of ScalarEvolution logic.
/// Perhaps this can be merged with ScalarEvolution::getIterationCount
/// and/or ScalarEvolution::get{Sign,Zero}ExtendExpr.
///
static const PHINode *TestOrigIVForWrap(const Loop *L,
                                        const BranchInst *BI,
                                        const Instruction *OrigCond,
                                        bool &NoSignedWrap,
                                        bool &NoUnsignedWrap) {
  // Verify that the loop is sane and find the exit condition.
  const ICmpInst *Cmp = dyn_cast<ICmpInst>(OrigCond);
  if (!Cmp) return 0;

  const Value *CmpLHS = Cmp->getOperand(0);
  const Value *CmpRHS = Cmp->getOperand(1);
  const BasicBlock *TrueBB = BI->getSuccessor(0);
  const BasicBlock *FalseBB = BI->getSuccessor(1);
  ICmpInst::Predicate Pred = Cmp->getPredicate();

  // Canonicalize a constant to the RHS.
  if (isa<ConstantInt>(CmpLHS)) {
    Pred = ICmpInst::getSwappedPredicate(Pred);
    std::swap(CmpLHS, CmpRHS);
  }
  // Canonicalize SLE to SLT.
  if (Pred == ICmpInst::ICMP_SLE)
    if (const ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS))
      if (!CI->getValue().isMaxSignedValue()) {
        CmpRHS = ConstantInt::get(CI->getValue() + 1);
        Pred = ICmpInst::ICMP_SLT;
      }
  // Canonicalize SGT to SGE.
  if (Pred == ICmpInst::ICMP_SGT)
    if (const ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS))
      if (!CI->getValue().isMaxSignedValue()) {
        CmpRHS = ConstantInt::get(CI->getValue() + 1);
        Pred = ICmpInst::ICMP_SGE;
      }
  // Canonicalize SGE to SLT.
  if (Pred == ICmpInst::ICMP_SGE) {
    std::swap(TrueBB, FalseBB);
    Pred = ICmpInst::ICMP_SLT;
  }
  // Canonicalize ULE to ULT.
  if (Pred == ICmpInst::ICMP_ULE)
    if (const ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS))
      if (!CI->getValue().isMaxValue()) {
        CmpRHS = ConstantInt::get(CI->getValue() + 1);
        Pred = ICmpInst::ICMP_ULT;
      }
  // Canonicalize UGT to UGE.
  if (Pred == ICmpInst::ICMP_UGT)
    if (const ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS))
      if (!CI->getValue().isMaxValue()) {
        CmpRHS = ConstantInt::get(CI->getValue() + 1);
        Pred = ICmpInst::ICMP_UGE;
      }
  // Canonicalize UGE to ULT.
  if (Pred == ICmpInst::ICMP_UGE) {
    std::swap(TrueBB, FalseBB);
    Pred = ICmpInst::ICMP_ULT;
  }
  // For now, analyze only LT loops for signed overflow.
  if (Pred != ICmpInst::ICMP_SLT && Pred != ICmpInst::ICMP_ULT)
    return 0;

  bool isSigned = Pred == ICmpInst::ICMP_SLT;

  // Get the increment instruction. Look past casts if we will
  // be able to prove that the original induction variable doesn't
  // undergo signed or unsigned overflow, respectively.
  const Value *IncrVal = CmpLHS;
  if (isSigned) {
    if (const SExtInst *SI = dyn_cast<SExtInst>(CmpLHS)) {
      if (!isa<ConstantInt>(CmpRHS) ||
          !cast<ConstantInt>(CmpRHS)->getValue()
            .isSignedIntN(IncrVal->getType()->getPrimitiveSizeInBits()))
        return 0;
      IncrVal = SI->getOperand(0);
    }
  } else {
    if (const ZExtInst *ZI = dyn_cast<ZExtInst>(CmpLHS)) {
      if (!isa<ConstantInt>(CmpRHS) ||
          !cast<ConstantInt>(CmpRHS)->getValue()
            .isIntN(IncrVal->getType()->getPrimitiveSizeInBits()))
        return 0;
      IncrVal = ZI->getOperand(0);
    }
  }

  // For now, only analyze induction variables that have simple increments.
  const BinaryOperator *IncrOp = dyn_cast<BinaryOperator>(IncrVal);
  if (!IncrOp ||
      IncrOp->getOpcode() != Instruction::Add ||
      !isa<ConstantInt>(IncrOp->getOperand(1)) ||
      !cast<ConstantInt>(IncrOp->getOperand(1))->equalsInt(1))
    return 0;

  // Make sure the PHI looks like a normal IV.
  const PHINode *PN = dyn_cast<PHINode>(IncrOp->getOperand(0));
  if (!PN || PN->getNumIncomingValues() != 2)
    return 0;
  unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
  unsigned BackEdge = !IncomingEdge;
  if (!L->contains(PN->getIncomingBlock(BackEdge)) ||
      PN->getIncomingValue(BackEdge) != IncrOp)
    return 0;
  if (!L->contains(TrueBB))
    return 0;

  // For now, only analyze loops with a constant start value, so that
  // we can easily determine if the start value is not a maximum value
  // which would wrap on the first iteration.
  const ConstantInt *InitialVal =
    dyn_cast<ConstantInt>(PN->getIncomingValue(IncomingEdge));
  if (!InitialVal)
    return 0;

  // The original induction variable will start at some non-max value,
  // it counts up by one, and the loop iterates only while it remans
  // less than some value in the same type. As such, it will never wrap.
  if (isSigned && !InitialVal->getValue().isMaxSignedValue())
    NoSignedWrap = true;
  else if (!isSigned && !InitialVal->getValue().isMaxValue())
    NoUnsignedWrap = true;
  return PN;
}

bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
  LI = &getAnalysis<LoopInfo>();
  SE = &getAnalysis<ScalarEvolution>();
  Changed = false;

  // If there are any floating-point or pointer recurrences, attempt to
  // transform them to use integer recurrences.
  RewriteNonIntegerIVs(L);

  BasicBlock *Header       = L->getHeader();
  BasicBlock *ExitingBlock = L->getExitingBlock();
  SmallPtrSet<Instruction*, 16> DeadInsts;

  // Verify the input to the pass in already in LCSSA form.
  assert(L->isLCSSAForm());

  // Check to see if this loop has a computable loop-invariant execution count.
  // If so, this means that we can compute the final value of any expressions
  // that are recurrent in the loop, and substitute the exit values from the
  // loop into any instructions outside of the loop that use the final values of
  // the current expressions.
  //
  SCEVHandle IterationCount = SE->getIterationCount(L);
  if (!isa<SCEVCouldNotCompute>(IterationCount))
    RewriteLoopExitValues(L, IterationCount);

  // Next, analyze all of the induction variables in the loop, canonicalizing
  // auxillary induction variables.
  std::vector<std::pair<PHINode*, SCEVHandle> > IndVars;

  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
    PHINode *PN = cast<PHINode>(I);
    if (PN->getType()->isInteger()) { // FIXME: when we have fast-math, enable!
      SCEVHandle SCEV = SE->getSCEV(PN);
      // FIXME: It is an extremely bad idea to indvar substitute anything more
      // complex than affine induction variables.  Doing so will put expensive
      // polynomial evaluations inside of the loop, and the str reduction pass
      // currently can only reduce affine polynomials.  For now just disable
      // indvar subst on anything more complex than an affine addrec.
      if (SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SCEV))
        if (AR->getLoop() == L && AR->isAffine())
          IndVars.push_back(std::make_pair(PN, SCEV));
    }
  }

  // Compute the type of the largest recurrence expression, and collect
  // the set of the types of the other recurrence expressions.
  const Type *LargestType = 0;
  SmallSetVector<const Type *, 4> SizesToInsert;
  if (!isa<SCEVCouldNotCompute>(IterationCount)) {
    LargestType = IterationCount->getType();
    SizesToInsert.insert(IterationCount->getType());
  }
  for (unsigned i = 0, e = IndVars.size(); i != e; ++i) {
    const PHINode *PN = IndVars[i].first;
    SizesToInsert.insert(PN->getType());
    const Type *EffTy = getEffectiveIndvarType(PN);
    SizesToInsert.insert(EffTy);
    if (!LargestType ||
        EffTy->getPrimitiveSizeInBits() >
          LargestType->getPrimitiveSizeInBits())
      LargestType = EffTy;
  }

  // Create a rewriter object which we'll use to transform the code with.
  SCEVExpander Rewriter(*SE, *LI);

  // Now that we know the largest of of the induction variables in this loop,
  // insert a canonical induction variable of the largest size.
  Value *IndVar = 0;
  if (!SizesToInsert.empty()) {
    IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L,LargestType);
    ++NumInserted;
    Changed = true;
    DOUT << "INDVARS: New CanIV: " << *IndVar;
  }

  // If we have a trip count expression, rewrite the loop's exit condition
  // using it.  We can currently only handle loops with a single exit.
  bool NoSignedWrap = false;
  bool NoUnsignedWrap = false;
  const PHINode *OrigControllingPHI = 0;
  if (!isa<SCEVCouldNotCompute>(IterationCount) && ExitingBlock)
    // Can't rewrite non-branch yet.
    if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator())) {
      if (Instruction *OrigCond = dyn_cast<Instruction>(BI->getCondition())) {
        // Determine if the OrigIV will ever undergo overflow.
        OrigControllingPHI =
          TestOrigIVForWrap(L, BI, OrigCond,
                            NoSignedWrap, NoUnsignedWrap);

        // We'll be replacing the original condition, so it'll be dead.
        DeadInsts.insert(OrigCond);
      }

      LinearFunctionTestReplace(L, IterationCount, IndVar,
                                ExitingBlock, BI, Rewriter);
    }

  // Now that we have a canonical induction variable, we can rewrite any
  // recurrences in terms of the induction variable.  Start with the auxillary
  // induction variables, and recursively rewrite any of their uses.
  BasicBlock::iterator InsertPt = Header->getFirstNonPHI();

  // If there were induction variables of other sizes, cast the primary
  // induction variable to the right size for them, avoiding the need for the
  // code evaluation methods to insert induction variables of different sizes.
  for (unsigned i = 0, e = SizesToInsert.size(); i != e; ++i) {
    const Type *Ty = SizesToInsert[i];
    if (Ty != LargestType) {
      Instruction *New = new TruncInst(IndVar, Ty, "indvar", InsertPt);
      Rewriter.addInsertedValue(New, SE->getSCEV(New));
      DOUT << "INDVARS: Made trunc IV for type " << *Ty << ": "
           << *New << "\n";
    }
  }

  // Rewrite all induction variables in terms of the canonical induction
  // variable.
  while (!IndVars.empty()) {
    PHINode *PN = IndVars.back().first;
    SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(IndVars.back().second);
    Value *NewVal = Rewriter.expandCodeFor(AR, InsertPt);
    DOUT << "INDVARS: Rewrote IV '" << *AR << "' " << *PN
         << "   into = " << *NewVal << "\n";
    NewVal->takeName(PN);

    /// If the new canonical induction variable is wider than the original,
    /// and the original has uses that are casts to wider types, see if the
    /// truncate and extend can be omitted.
    if (PN == OrigControllingPHI && PN->getType() != LargestType)
      for (Value::use_iterator UI = PN->use_begin(), UE = PN->use_end();
           UI != UE; ++UI) {
        if (isa<SExtInst>(UI) && NoSignedWrap) {
          SCEVHandle ExtendedStart =
            SE->getSignExtendExpr(AR->getStart(), LargestType);
          SCEVHandle ExtendedStep =
            SE->getSignExtendExpr(AR->getStepRecurrence(*SE), LargestType);
          SCEVHandle ExtendedAddRec =
            SE->getAddRecExpr(ExtendedStart, ExtendedStep, L);
          if (LargestType != UI->getType())
            ExtendedAddRec = SE->getTruncateExpr(ExtendedAddRec, UI->getType());
          Value *TruncIndVar = Rewriter.expandCodeFor(ExtendedAddRec, InsertPt);
          UI->replaceAllUsesWith(TruncIndVar);
          if (Instruction *DeadUse = dyn_cast<Instruction>(*UI))
            DeadInsts.insert(DeadUse);
        }
        if (isa<ZExtInst>(UI) && NoUnsignedWrap) {
          SCEVHandle ExtendedStart =
            SE->getZeroExtendExpr(AR->getStart(), LargestType);
          SCEVHandle ExtendedStep =
            SE->getZeroExtendExpr(AR->getStepRecurrence(*SE), LargestType);
          SCEVHandle ExtendedAddRec =
            SE->getAddRecExpr(ExtendedStart, ExtendedStep, L);
          if (LargestType != UI->getType())
            ExtendedAddRec = SE->getTruncateExpr(ExtendedAddRec, UI->getType());
          Value *TruncIndVar = Rewriter.expandCodeFor(ExtendedAddRec, InsertPt);
          UI->replaceAllUsesWith(TruncIndVar);
          if (Instruction *DeadUse = dyn_cast<Instruction>(*UI))
            DeadInsts.insert(DeadUse);
        }
      }

    // Replace the old PHI Node with the inserted computation.
    PN->replaceAllUsesWith(NewVal);
    DeadInsts.insert(PN);
    IndVars.pop_back();
    ++NumRemoved;
    Changed = true;
  }

  DeleteTriviallyDeadInstructions(DeadInsts);
  assert(L->isLCSSAForm());
  return Changed;
}

/// Return true if it is OK to use SIToFPInst for an inducation variable
/// with given inital and exit values.
static bool useSIToFPInst(ConstantFP &InitV, ConstantFP &ExitV,
                          uint64_t intIV, uint64_t intEV) {

  if (InitV.getValueAPF().isNegative() || ExitV.getValueAPF().isNegative())
    return true;

  // If the iteration range can be handled by SIToFPInst then use it.
  APInt Max = APInt::getSignedMaxValue(32);
  if (Max.getZExtValue() > static_cast<uint64_t>(abs(intEV - intIV)))
    return true;

  return false;
}

/// convertToInt - Convert APF to an integer, if possible.
static bool convertToInt(const APFloat &APF, uint64_t *intVal) {

  bool isExact = false;
  if (&APF.getSemantics() == &APFloat::PPCDoubleDouble)
    return false;
  if (APF.convertToInteger(intVal, 32, APF.isNegative(),
                           APFloat::rmTowardZero, &isExact)
      != APFloat::opOK)
    return false;
  if (!isExact)
    return false;
  return true;

}

/// HandleFloatingPointIV - If the loop has floating induction variable
/// then insert corresponding integer induction variable if possible.
/// For example,
/// for(double i = 0; i < 10000; ++i)
///   bar(i)
/// is converted into
/// for(int i = 0; i < 10000; ++i)
///   bar((double)i);
///
void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PH,
                                   SmallPtrSet<Instruction*, 16> &DeadInsts) {

  unsigned IncomingEdge = L->contains(PH->getIncomingBlock(0));
  unsigned BackEdge     = IncomingEdge^1;

  // Check incoming value.
  ConstantFP *InitValue = dyn_cast<ConstantFP>(PH->getIncomingValue(IncomingEdge));
  if (!InitValue) return;
  uint64_t newInitValue = Type::Int32Ty->getPrimitiveSizeInBits();
  if (!convertToInt(InitValue->getValueAPF(), &newInitValue))
    return;

  // Check IV increment. Reject this PH if increement operation is not
  // an add or increment value can not be represented by an integer.
  BinaryOperator *Incr =
    dyn_cast<BinaryOperator>(PH->getIncomingValue(BackEdge));
  if (!Incr) return;
  if (Incr->getOpcode() != Instruction::Add) return;
  ConstantFP *IncrValue = NULL;
  unsigned IncrVIndex = 1;
  if (Incr->getOperand(1) == PH)
    IncrVIndex = 0;
  IncrValue = dyn_cast<ConstantFP>(Incr->getOperand(IncrVIndex));
  if (!IncrValue) return;
  uint64_t newIncrValue = Type::Int32Ty->getPrimitiveSizeInBits();
  if (!convertToInt(IncrValue->getValueAPF(), &newIncrValue))
    return;

  // Check Incr uses. One user is PH and the other users is exit condition used
  // by the conditional terminator.
  Value::use_iterator IncrUse = Incr->use_begin();
  Instruction *U1 = cast<Instruction>(IncrUse++);
  if (IncrUse == Incr->use_end()) return;
  Instruction *U2 = cast<Instruction>(IncrUse++);
  if (IncrUse != Incr->use_end()) return;

  // Find exit condition.
  FCmpInst *EC = dyn_cast<FCmpInst>(U1);
  if (!EC)
    EC = dyn_cast<FCmpInst>(U2);
  if (!EC) return;

  if (BranchInst *BI = dyn_cast<BranchInst>(EC->getParent()->getTerminator())) {
    if (!BI->isConditional()) return;
    if (BI->getCondition() != EC) return;
  }

  // Find exit value. If exit value can not be represented as an interger then
  // do not handle this floating point PH.
  ConstantFP *EV = NULL;
  unsigned EVIndex = 1;
  if (EC->getOperand(1) == Incr)
    EVIndex = 0;
  EV = dyn_cast<ConstantFP>(EC->getOperand(EVIndex));
  if (!EV) return;
  uint64_t intEV = Type::Int32Ty->getPrimitiveSizeInBits();
  if (!convertToInt(EV->getValueAPF(), &intEV))
    return;

  // Find new predicate for integer comparison.
  CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
  switch (EC->getPredicate()) {
  case CmpInst::FCMP_OEQ:
  case CmpInst::FCMP_UEQ:
    NewPred = CmpInst::ICMP_EQ;
    break;
  case CmpInst::FCMP_OGT:
  case CmpInst::FCMP_UGT:
    NewPred = CmpInst::ICMP_UGT;
    break;
  case CmpInst::FCMP_OGE:
  case CmpInst::FCMP_UGE:
    NewPred = CmpInst::ICMP_UGE;
    break;
  case CmpInst::FCMP_OLT:
  case CmpInst::FCMP_ULT:
    NewPred = CmpInst::ICMP_ULT;
    break;
  case CmpInst::FCMP_OLE:
  case CmpInst::FCMP_ULE:
    NewPred = CmpInst::ICMP_ULE;
    break;
  default:
    break;
  }
  if (NewPred == CmpInst::BAD_ICMP_PREDICATE) return;

  // Insert new integer induction variable.
  PHINode *NewPHI = PHINode::Create(Type::Int32Ty,
                                    PH->getName()+".int", PH);
  NewPHI->addIncoming(ConstantInt::get(Type::Int32Ty, newInitValue),
                      PH->getIncomingBlock(IncomingEdge));

  Value *NewAdd = BinaryOperator::CreateAdd(NewPHI,
                                            ConstantInt::get(Type::Int32Ty,
                                                             newIncrValue),
                                            Incr->getName()+".int", Incr);
  NewPHI->addIncoming(NewAdd, PH->getIncomingBlock(BackEdge));

  ConstantInt *NewEV = ConstantInt::get(Type::Int32Ty, intEV);
  Value *LHS = (EVIndex == 1 ? NewPHI->getIncomingValue(BackEdge) : NewEV);
  Value *RHS = (EVIndex == 1 ? NewEV : NewPHI->getIncomingValue(BackEdge));
  ICmpInst *NewEC = new ICmpInst(NewPred, LHS, RHS, EC->getNameStart(),
                                 EC->getParent()->getTerminator());

  // Delete old, floating point, exit comparision instruction.
  EC->replaceAllUsesWith(NewEC);
  DeadInsts.insert(EC);

  // Delete old, floating point, increment instruction.
  Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
  DeadInsts.insert(Incr);

  // Replace floating induction variable. Give SIToFPInst preference over
  // UIToFPInst because it is faster on platforms that are widely used.
  if (useSIToFPInst(*InitValue, *EV, newInitValue, intEV)) {
    SIToFPInst *Conv = new SIToFPInst(NewPHI, PH->getType(), "indvar.conv",
                                      PH->getParent()->getFirstNonPHI());
    PH->replaceAllUsesWith(Conv);
  } else {
    UIToFPInst *Conv = new UIToFPInst(NewPHI, PH->getType(), "indvar.conv",
                                      PH->getParent()->getFirstNonPHI());
    PH->replaceAllUsesWith(Conv);
  }
  DeadInsts.insert(PH);
}