aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Transforms/Scalar/InstructionCombining.cpp
blob: 7c77a666d6ef0935413f076fceabded2e44f66e8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
//
// InstructionCombining - Combine instructions to form fewer, simple
// instructions.  This pass does not modify the CFG This pass is where algebraic
// simplification happens.
//
// This pass combines things like:
//    %Y = add int 1, %X
//    %Z = add int 1, %Y
// into:
//    %Z = add int 2, %X
//
// This is a simple worklist driven algorithm.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/ConstantHandling.h"
#include "llvm/Instructions.h"
#include "llvm/Pass.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Support/InstIterator.h"
#include "llvm/Support/InstVisitor.h"
#include "Support/Statistic.h"
#include <algorithm>

namespace {
  Statistic<> NumCombined ("instcombine", "Number of insts combined");
  Statistic<> NumConstProp("instcombine", "Number of constant folds");
  Statistic<> NumDeadInst ("instcombine", "Number of dead inst eliminated");

  class InstCombiner : public FunctionPass,
                       public InstVisitor<InstCombiner, Instruction*> {
    // Worklist of all of the instructions that need to be simplified.
    std::vector<Instruction*> WorkList;

    void AddUsesToWorkList(Instruction &I) {
      // The instruction was simplified, add all users of the instruction to
      // the work lists because they might get more simplified now...
      //
      for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
           UI != UE; ++UI)
        WorkList.push_back(cast<Instruction>(*UI));
    }

    // removeFromWorkList - remove all instances of I from the worklist.
    void removeFromWorkList(Instruction *I);
  public:
    virtual bool runOnFunction(Function &F);

    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.setPreservesCFG();
    }

    // Visitation implementation - Implement instruction combining for different
    // instruction types.  The semantics are as follows:
    // Return Value:
    //    null        - No change was made
    //     I          - Change was made, I is still valid, I may be dead though
    //   otherwise    - Change was made, replace I with returned instruction
    //   
    Instruction *visitAdd(BinaryOperator &I);
    Instruction *visitSub(BinaryOperator &I);
    Instruction *visitMul(BinaryOperator &I);
    Instruction *visitDiv(BinaryOperator &I);
    Instruction *visitRem(BinaryOperator &I);
    Instruction *visitAnd(BinaryOperator &I);
    Instruction *visitOr (BinaryOperator &I);
    Instruction *visitXor(BinaryOperator &I);
    Instruction *visitSetCondInst(BinaryOperator &I);
    Instruction *visitShiftInst(ShiftInst &I);
    Instruction *visitCastInst(CastInst &CI);
    Instruction *visitPHINode(PHINode &PN);
    Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
    Instruction *visitAllocationInst(AllocationInst &AI);

    // visitInstruction - Specify what to return for unhandled instructions...
    Instruction *visitInstruction(Instruction &I) { return 0; }

    // InsertNewInstBefore - insert an instruction New before instruction Old
    // in the program.  Add the new instruction to the worklist.
    //
    void InsertNewInstBefore(Instruction *New, Instruction &Old) {
      assert(New && New->getParent() == 0 &&
             "New instruction already inserted into a basic block!");
      BasicBlock *BB = Old.getParent();
      BB->getInstList().insert(&Old, New);  // Insert inst
      WorkList.push_back(New);              // Add to worklist
    }

    // ReplaceInstUsesWith - This method is to be used when an instruction is
    // found to be dead, replacable with another preexisting expression.  Here
    // we add all uses of I to the worklist, replace all uses of I with the new
    // value, then return I, so that the inst combiner will know that I was
    // modified.
    //
    Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) {
      AddUsesToWorkList(I);         // Add all modified instrs to worklist
      I.replaceAllUsesWith(V);
      return &I;
    }

    // SimplifyCommutative - This performs a few simplifications for commutative
    // operators...
    bool SimplifyCommutative(BinaryOperator &I);

  };

  RegisterOpt<InstCombiner> X("instcombine", "Combine redundant instructions");
}

// getComplexity:  Assign a complexity or rank value to LLVM Values...
//   0 -> Constant, 1 -> Other, 2 -> Argument, 2 -> Unary, 3 -> OtherInst
static unsigned getComplexity(Value *V) {
  if (isa<Instruction>(V)) {
    if (BinaryOperator::isNeg(V) || BinaryOperator::isNot(V))
      return 2;
    return 3;
  }
  if (isa<Argument>(V)) return 2;
  return isa<Constant>(V) ? 0 : 1;
}

// isOnlyUse - Return true if this instruction will be deleted if we stop using
// it.
static bool isOnlyUse(Value *V) {
  return V->use_size() == 1 || isa<Constant>(V);
}

// SimplifyCommutative - This performs a few simplifications for commutative
// operators:
//
//  1. Order operands such that they are listed from right (least complex) to
//     left (most complex).  This puts constants before unary operators before
//     binary operators.
//
//  2. Transform: (op (op V, C1), C2) ==> (op V, (op C1, C2))
//  3. Transform: (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
//
bool InstCombiner::SimplifyCommutative(BinaryOperator &I) {
  bool Changed = false;
  if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1)))
    Changed = !I.swapOperands();
  
  if (!I.isAssociative()) return Changed;
  Instruction::BinaryOps Opcode = I.getOpcode();
  if (BinaryOperator *Op = dyn_cast<BinaryOperator>(I.getOperand(0)))
    if (Op->getOpcode() == Opcode && isa<Constant>(Op->getOperand(1))) {
      if (isa<Constant>(I.getOperand(1))) {
        Constant *Folded = ConstantFoldBinaryInstruction(I.getOpcode(),
            cast<Constant>(I.getOperand(1)), cast<Constant>(Op->getOperand(1)));
        assert(Folded && "Couldn't constant fold commutative operand?");
        I.setOperand(0, Op->getOperand(0));
        I.setOperand(1, Folded);
        return true;
      } else if (BinaryOperator *Op1=dyn_cast<BinaryOperator>(I.getOperand(1)))
        if (Op1->getOpcode() == Opcode && isa<Constant>(Op1->getOperand(1)) &&
            isOnlyUse(Op) && isOnlyUse(Op1)) {
          Constant *C1 = cast<Constant>(Op->getOperand(1));
          Constant *C2 = cast<Constant>(Op1->getOperand(1));

          // Fold (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
          Constant *Folded = ConstantFoldBinaryInstruction(I.getOpcode(),C1,C2);
          assert(Folded && "Couldn't constant fold commutative operand?");
          Instruction *New = BinaryOperator::create(Opcode, Op->getOperand(0),
                                                    Op1->getOperand(0),
                                                    Op1->getName(), &I);
          WorkList.push_back(New);
          I.setOperand(0, New);
          I.setOperand(1, Folded);
          return true;
        }      
    }
  return Changed;
}

// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
// if the LHS is a constant zero (which is the 'negate' form).
//
static inline Value *dyn_castNegVal(Value *V) {
  if (BinaryOperator::isNeg(V))
    return BinaryOperator::getNegArgument(cast<BinaryOperator>(V));

  // Constants can be considered to be negated values if they can be folded...
  if (Constant *C = dyn_cast<Constant>(V))
    return *Constant::getNullValue(V->getType()) - *C;
  return 0;
}

static inline Value *dyn_castNotVal(Value *V) {
  if (BinaryOperator::isNot(V))
    return BinaryOperator::getNotArgument(cast<BinaryOperator>(V));

  // Constants can be considered to be not'ed values...
  if (ConstantIntegral *C = dyn_cast<ConstantIntegral>(V))
    return *ConstantIntegral::getAllOnesValue(C->getType()) ^ *C;
  return 0;
}

// dyn_castFoldableMul - If this value is a multiply that can be folded into
// other computations (because it has a constant operand), return the
// non-constant operand of the multiply.
//
static inline Value *dyn_castFoldableMul(Value *V) {
  if (V->use_size() == 1 && V->getType()->isInteger())
    if (Instruction *I = dyn_cast<Instruction>(V))
      if (I->getOpcode() == Instruction::Mul)
        if (isa<Constant>(I->getOperand(1)))
          return I->getOperand(0);
  return 0;
}

// dyn_castMaskingAnd - If this value is an And instruction masking a value with
// a constant, return the constant being anded with.
//
static inline Constant *dyn_castMaskingAnd(Value *V) {
  if (Instruction *I = dyn_cast<Instruction>(V))
    if (I->getOpcode() == Instruction::And)
      return dyn_cast<Constant>(I->getOperand(1));

  // If this is a constant, it acts just like we were masking with it.
  return dyn_cast<Constant>(V);
}

// Log2 - Calculate the log base 2 for the specified value if it is exactly a
// power of 2.
static unsigned Log2(uint64_t Val) {
  assert(Val > 1 && "Values 0 and 1 should be handled elsewhere!");
  unsigned Count = 0;
  while (Val != 1) {
    if (Val & 1) return 0;    // Multiple bits set?
    Val >>= 1;
    ++Count;
  }
  return Count;
}

Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
  bool Changed = SimplifyCommutative(I);
  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);

  // Eliminate 'add int %X, 0'
  if (RHS == Constant::getNullValue(I.getType()))
    return ReplaceInstUsesWith(I, LHS);

  // -A + B  -->  B - A
  if (Value *V = dyn_castNegVal(LHS))
    return BinaryOperator::create(Instruction::Sub, RHS, V);

  // A + -B  -->  A - B
  if (!isa<Constant>(RHS))
    if (Value *V = dyn_castNegVal(RHS))
      return BinaryOperator::create(Instruction::Sub, LHS, V);

  // X*C + X --> X * (C+1)
  if (dyn_castFoldableMul(LHS) == RHS) {
    Constant *CP1 = *cast<Constant>(cast<Instruction>(LHS)->getOperand(1)) +
                    *ConstantInt::get(I.getType(), 1);
    assert(CP1 && "Couldn't constant fold C + 1?");
    return BinaryOperator::create(Instruction::Mul, RHS, CP1);
  }

  // X + X*C --> X * (C+1)
  if (dyn_castFoldableMul(RHS) == LHS) {
    Constant *CP1 = *cast<Constant>(cast<Instruction>(RHS)->getOperand(1)) +
                    *ConstantInt::get(I.getType(), 1);
    assert(CP1 && "Couldn't constant fold C + 1?");
    return BinaryOperator::create(Instruction::Mul, LHS, CP1);
  }

  // (A & C1)+(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
  if (Constant *C1 = dyn_castMaskingAnd(LHS))
    if (Constant *C2 = dyn_castMaskingAnd(RHS))
      if ((*C1 & *C2)->isNullValue())
        return BinaryOperator::create(Instruction::Or, LHS, RHS);

  return Changed ? &I : 0;
}

Instruction *InstCombiner::visitSub(BinaryOperator &I) {
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);

  if (Op0 == Op1)         // sub X, X  -> 0
    return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));

  // If this is a 'B = x-(-A)', change to B = x+A...
  if (Value *V = dyn_castNegVal(Op1))
    return BinaryOperator::create(Instruction::Add, Op0, V);

  // Replace (-1 - A) with (~A)...
  if (ConstantInt *C = dyn_cast<ConstantInt>(Op0))
    if (C->isAllOnesValue())
      return BinaryOperator::createNot(Op1);

  if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1))
    if (Op1I->use_size() == 1) {
      // Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression
      // is not used by anyone else...
      //
      if (Op1I->getOpcode() == Instruction::Sub) {
        // Swap the two operands of the subexpr...
        Value *IIOp0 = Op1I->getOperand(0), *IIOp1 = Op1I->getOperand(1);
        Op1I->setOperand(0, IIOp1);
        Op1I->setOperand(1, IIOp0);
        
        // Create the new top level add instruction...
        return BinaryOperator::create(Instruction::Add, Op0, Op1);
      }

      // Replace (A - (A & B)) with (A & ~B) if this is the only use of (A&B)...
      //
      if (Op1I->getOpcode() == Instruction::And &&
          (Op1I->getOperand(0) == Op0 || Op1I->getOperand(1) == Op0)) {
        Value *OtherOp = Op1I->getOperand(Op1I->getOperand(0) == Op0);

        Instruction *NewNot = BinaryOperator::createNot(OtherOp, "B.not", &I);
        return BinaryOperator::create(Instruction::And, Op0, NewNot);
      }

      // X - X*C --> X * (1-C)
      if (dyn_castFoldableMul(Op1I) == Op0) {
        Constant *CP1 = *ConstantInt::get(I.getType(), 1) -
                        *cast<Constant>(cast<Instruction>(Op1)->getOperand(1));
        assert(CP1 && "Couldn't constant fold 1-C?");
        return BinaryOperator::create(Instruction::Mul, Op0, CP1);
      }
    }

  // X*C - X --> X * (C-1)
  if (dyn_castFoldableMul(Op0) == Op1) {
    Constant *CP1 = *cast<Constant>(cast<Instruction>(Op0)->getOperand(1)) -
                    *ConstantInt::get(I.getType(), 1);
    assert(CP1 && "Couldn't constant fold C - 1?");
    return BinaryOperator::create(Instruction::Mul, Op1, CP1);
  }

  return 0;
}

Instruction *InstCombiner::visitMul(BinaryOperator &I) {
  bool Changed = SimplifyCommutative(I);
  Value *Op0 = I.getOperand(0);

  // Simplify mul instructions with a constant RHS...
  if (Constant *Op1 = dyn_cast<Constant>(I.getOperand(1))) {
    if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
      const Type *Ty = CI->getType();
      uint64_t Val = Ty->isSigned() ?
                          (uint64_t)cast<ConstantSInt>(CI)->getValue() : 
                                    cast<ConstantUInt>(CI)->getValue();
      switch (Val) {
      case 0:
        return ReplaceInstUsesWith(I, Op1);  // Eliminate 'mul double %X, 0'
      case 1:
        return ReplaceInstUsesWith(I, Op0);  // Eliminate 'mul int %X, 1'
      case 2:                     // Convert 'mul int %X, 2' to 'add int %X, %X'
        return BinaryOperator::create(Instruction::Add, Op0, Op0, I.getName());
      }

      if (uint64_t C = Log2(Val))            // Replace X*(2^C) with X << C
        return new ShiftInst(Instruction::Shl, Op0,
                             ConstantUInt::get(Type::UByteTy, C));
    } else {
      ConstantFP *Op1F = cast<ConstantFP>(Op1);
      if (Op1F->isNullValue())
        return ReplaceInstUsesWith(I, Op1);

      // "In IEEE floating point, x*1 is not equivalent to x for nans.  However,
      // ANSI says we can drop signals, so we can do this anyway." (from GCC)
      if (Op1F->getValue() == 1.0)
        return ReplaceInstUsesWith(I, Op0);  // Eliminate 'mul double %X, 1.0'
    }
  }

  if (Value *Op0v = dyn_castNegVal(Op0))     // -X * -Y = X*Y
    if (Value *Op1v = dyn_castNegVal(I.getOperand(1)))
      return BinaryOperator::create(Instruction::Mul, Op0v, Op1v);

  return Changed ? &I : 0;
}

Instruction *InstCombiner::visitDiv(BinaryOperator &I) {
  // div X, 1 == X
  if (ConstantInt *RHS = dyn_cast<ConstantInt>(I.getOperand(1))) {
    if (RHS->equalsInt(1))
      return ReplaceInstUsesWith(I, I.getOperand(0));

    // Check to see if this is an unsigned division with an exact power of 2,
    // if so, convert to a right shift.
    if (ConstantUInt *C = dyn_cast<ConstantUInt>(RHS))
      if (uint64_t Val = C->getValue())    // Don't break X / 0
        if (uint64_t C = Log2(Val))
          return new ShiftInst(Instruction::Shr, I.getOperand(0),
                               ConstantUInt::get(Type::UByteTy, C));
  }

  // 0 / X == 0, we don't need to preserve faults!
  if (ConstantInt *LHS = dyn_cast<ConstantInt>(I.getOperand(0)))
    if (LHS->equalsInt(0))
      return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));

  return 0;
}


Instruction *InstCombiner::visitRem(BinaryOperator &I) {
  if (ConstantInt *RHS = dyn_cast<ConstantInt>(I.getOperand(1))) {
    if (RHS->equalsInt(1))  // X % 1 == 0
      return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));

    // Check to see if this is an unsigned remainder with an exact power of 2,
    // if so, convert to a bitwise and.
    if (ConstantUInt *C = dyn_cast<ConstantUInt>(RHS))
      if (uint64_t Val = C->getValue())    // Don't break X % 0 (divide by zero)
        if (Log2(Val))
          return BinaryOperator::create(Instruction::And, I.getOperand(0),
                                        ConstantUInt::get(I.getType(), Val-1));
  }

  // 0 % X == 0, we don't need to preserve faults!
  if (ConstantInt *LHS = dyn_cast<ConstantInt>(I.getOperand(0)))
    if (LHS->equalsInt(0))
      return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));

  return 0;
}

// isMaxValueMinusOne - return true if this is Max-1
static bool isMaxValueMinusOne(const ConstantInt *C) {
  if (const ConstantUInt *CU = dyn_cast<ConstantUInt>(C)) {
    // Calculate -1 casted to the right type...
    unsigned TypeBits = C->getType()->getPrimitiveSize()*8;
    uint64_t Val = ~0ULL;                // All ones
    Val >>= 64-TypeBits;                 // Shift out unwanted 1 bits...
    return CU->getValue() == Val-1;
  }

  const ConstantSInt *CS = cast<ConstantSInt>(C);
  
  // Calculate 0111111111..11111
  unsigned TypeBits = C->getType()->getPrimitiveSize()*8;
  int64_t Val = INT64_MAX;             // All ones
  Val >>= 64-TypeBits;                 // Shift out unwanted 1 bits...
  return CS->getValue() == Val-1;
}

// isMinValuePlusOne - return true if this is Min+1
static bool isMinValuePlusOne(const ConstantInt *C) {
  if (const ConstantUInt *CU = dyn_cast<ConstantUInt>(C))
    return CU->getValue() == 1;

  const ConstantSInt *CS = cast<ConstantSInt>(C);
  
  // Calculate 1111111111000000000000 
  unsigned TypeBits = C->getType()->getPrimitiveSize()*8;
  int64_t Val = -1;                    // All ones
  Val <<= TypeBits-1;                  // Shift over to the right spot
  return CS->getValue() == Val+1;
}


Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
  bool Changed = SimplifyCommutative(I);
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);

  // and X, X = X   and X, 0 == 0
  if (Op0 == Op1 || Op1 == Constant::getNullValue(I.getType()))
    return ReplaceInstUsesWith(I, Op1);

  // and X, -1 == X
  if (ConstantIntegral *RHS = dyn_cast<ConstantIntegral>(Op1))
    if (RHS->isAllOnesValue())
      return ReplaceInstUsesWith(I, Op0);

  Value *Op0NotVal = dyn_castNotVal(Op0);
  Value *Op1NotVal = dyn_castNotVal(Op1);

  // (~A & ~B) == (~(A | B)) - Demorgan's Law
  if (Op0NotVal && Op1NotVal && isOnlyUse(Op0) && isOnlyUse(Op1)) {
    Instruction *Or = BinaryOperator::create(Instruction::Or, Op0NotVal,
                                             Op1NotVal,I.getName()+".demorgan",
                                             &I);
    WorkList.push_back(Or);
    return BinaryOperator::createNot(Or);
  }

  if (Op0NotVal == Op1 || Op1NotVal == Op0)  // A & ~A  == ~A & A == 0
    return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));

  return Changed ? &I : 0;
}



Instruction *InstCombiner::visitOr(BinaryOperator &I) {
  bool Changed = SimplifyCommutative(I);
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);

  // or X, X = X   or X, 0 == X
  if (Op0 == Op1 || Op1 == Constant::getNullValue(I.getType()))
    return ReplaceInstUsesWith(I, Op0);

  // or X, -1 == -1
  if (ConstantIntegral *RHS = dyn_cast<ConstantIntegral>(Op1))
    if (RHS->isAllOnesValue())
      return ReplaceInstUsesWith(I, Op1);

  Value *Op0NotVal = dyn_castNotVal(Op0);
  Value *Op1NotVal = dyn_castNotVal(Op1);

  if (Op1 == Op0NotVal)   // ~A | A == -1
    return ReplaceInstUsesWith(I, 
                               ConstantIntegral::getAllOnesValue(I.getType()));

  if (Op0 == Op1NotVal)   // A | ~A == -1
    return ReplaceInstUsesWith(I, 
                               ConstantIntegral::getAllOnesValue(I.getType()));

  // (~A | ~B) == (~(A & B)) - Demorgan's Law
  if (Op0NotVal && Op1NotVal && isOnlyUse(Op0) && isOnlyUse(Op1)) {
    Instruction *And = BinaryOperator::create(Instruction::And, Op0NotVal,
                                              Op1NotVal,I.getName()+".demorgan",
                                              &I);
    WorkList.push_back(And);
    return BinaryOperator::createNot(And);
  }

  return Changed ? &I : 0;
}



Instruction *InstCombiner::visitXor(BinaryOperator &I) {
  bool Changed = SimplifyCommutative(I);
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);

  // xor X, X = 0
  if (Op0 == Op1)
    return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));

  if (ConstantIntegral *Op1C = dyn_cast<ConstantIntegral>(Op1)) {
    // xor X, 0 == X
    if (Op1C->isNullValue())
      return ReplaceInstUsesWith(I, Op0);

    // Is this a "NOT" instruction?
    if (Op1C->isAllOnesValue()) {
      // xor (xor X, -1), -1 = not (not X) = X
      if (Value *X = dyn_castNotVal(Op0))
        return ReplaceInstUsesWith(I, X);

      // xor (setcc A, B), true = not (setcc A, B) = setncc A, B
      if (SetCondInst *SCI = dyn_cast<SetCondInst>(Op0))
        if (SCI->use_size() == 1)
          return new SetCondInst(SCI->getInverseCondition(),
                                 SCI->getOperand(0), SCI->getOperand(1));
    }
  }

  if (Value *X = dyn_castNotVal(Op0))   // ~A ^ A == -1
    if (X == Op1)
      return ReplaceInstUsesWith(I,
                                ConstantIntegral::getAllOnesValue(I.getType()));

  if (Value *X = dyn_castNotVal(Op1))   // A ^ ~A == -1
    if (X == Op0)
      return ReplaceInstUsesWith(I,
                                ConstantIntegral::getAllOnesValue(I.getType()));

  if (Instruction *Op1I = dyn_cast<Instruction>(Op1))
    if (Op1I->getOpcode() == Instruction::Or)
      if (Op1I->getOperand(0) == Op0) {              // B^(B|A) == (A|B)^B
        cast<BinaryOperator>(Op1I)->swapOperands();
        I.swapOperands();
        std::swap(Op0, Op1);
      } else if (Op1I->getOperand(1) == Op0) {       // B^(A|B) == (A|B)^B
        I.swapOperands();
        std::swap(Op0, Op1);
      }

  if (Instruction *Op0I = dyn_cast<Instruction>(Op0))
    if (Op0I->getOpcode() == Instruction::Or && Op0I->use_size() == 1) {
      if (Op0I->getOperand(0) == Op1)                // (B|A)^B == (A|B)^B
        cast<BinaryOperator>(Op0I)->swapOperands();
      if (Op0I->getOperand(1) == Op1) {              // (A|B)^B == A & ~B
        Value *NotB = BinaryOperator::createNot(Op1, Op1->getName()+".not", &I);
        WorkList.push_back(cast<Instruction>(NotB));
        return BinaryOperator::create(Instruction::And, Op0I->getOperand(0),
                                      NotB);
      }
    }

  // (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1^C2 == 0
  if (Constant *C1 = dyn_castMaskingAnd(Op0))
    if (Constant *C2 = dyn_castMaskingAnd(Op1))
      if ((*C1 & *C2)->isNullValue())
        return BinaryOperator::create(Instruction::Or, Op0, Op1);

  return Changed ? &I : 0;
}

// AddOne, SubOne - Add or subtract a constant one from an integer constant...
static Constant *AddOne(ConstantInt *C) {
  Constant *Result = *C + *ConstantInt::get(C->getType(), 1);
  assert(Result && "Constant folding integer addition failed!");
  return Result;
}
static Constant *SubOne(ConstantInt *C) {
  Constant *Result = *C - *ConstantInt::get(C->getType(), 1);
  assert(Result && "Constant folding integer addition failed!");
  return Result;
}

// isTrueWhenEqual - Return true if the specified setcondinst instruction is
// true when both operands are equal...
//
static bool isTrueWhenEqual(Instruction &I) {
  return I.getOpcode() == Instruction::SetEQ ||
         I.getOpcode() == Instruction::SetGE ||
         I.getOpcode() == Instruction::SetLE;
}

Instruction *InstCombiner::visitSetCondInst(BinaryOperator &I) {
  bool Changed = SimplifyCommutative(I);
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
  const Type *Ty = Op0->getType();

  // setcc X, X
  if (Op0 == Op1)
    return ReplaceInstUsesWith(I, ConstantBool::get(isTrueWhenEqual(I)));

  // setcc <global*>, 0 - Global value addresses are never null!
  if (isa<GlobalValue>(Op0) && isa<ConstantPointerNull>(Op1))
    return ReplaceInstUsesWith(I, ConstantBool::get(!isTrueWhenEqual(I)));

  // setcc's with boolean values can always be turned into bitwise operations
  if (Ty == Type::BoolTy) {
    // If this is <, >, or !=, we can change this into a simple xor instruction
    if (!isTrueWhenEqual(I))
      return BinaryOperator::create(Instruction::Xor, Op0, Op1, I.getName());

    // Otherwise we need to make a temporary intermediate instruction and insert
    // it into the instruction stream.  This is what we are after:
    //
    //  seteq bool %A, %B -> ~(A^B)
    //  setle bool %A, %B -> ~A | B
    //  setge bool %A, %B -> A | ~B
    //
    if (I.getOpcode() == Instruction::SetEQ) {  // seteq case
      Instruction *Xor = BinaryOperator::create(Instruction::Xor, Op0, Op1,
                                                I.getName()+"tmp");
      InsertNewInstBefore(Xor, I);
      return BinaryOperator::createNot(Xor, I.getName());
    }

    // Handle the setXe cases...
    assert(I.getOpcode() == Instruction::SetGE ||
           I.getOpcode() == Instruction::SetLE);

    if (I.getOpcode() == Instruction::SetGE)
      std::swap(Op0, Op1);                   // Change setge -> setle

    // Now we just have the SetLE case.
    Instruction *Not = BinaryOperator::createNot(Op0, I.getName()+"tmp");
    InsertNewInstBefore(Not, I);
    return BinaryOperator::create(Instruction::Or, Not, Op1, I.getName());
  }

  // Check to see if we are doing one of many comparisons against constant
  // integers at the end of their ranges...
  //
  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
    // Check to see if we are comparing against the minimum or maximum value...
    if (CI->isMinValue()) {
      if (I.getOpcode() == Instruction::SetLT)       // A < MIN -> FALSE
        return ReplaceInstUsesWith(I, ConstantBool::False);
      if (I.getOpcode() == Instruction::SetGE)       // A >= MIN -> TRUE
        return ReplaceInstUsesWith(I, ConstantBool::True);
      if (I.getOpcode() == Instruction::SetLE)       // A <= MIN -> A == MIN
        return BinaryOperator::create(Instruction::SetEQ, Op0,Op1, I.getName());
      if (I.getOpcode() == Instruction::SetGT)       // A > MIN -> A != MIN
        return BinaryOperator::create(Instruction::SetNE, Op0,Op1, I.getName());

    } else if (CI->isMaxValue()) {
      if (I.getOpcode() == Instruction::SetGT)       // A > MAX -> FALSE
        return ReplaceInstUsesWith(I, ConstantBool::False);
      if (I.getOpcode() == Instruction::SetLE)       // A <= MAX -> TRUE
        return ReplaceInstUsesWith(I, ConstantBool::True);
      if (I.getOpcode() == Instruction::SetGE)       // A >= MAX -> A == MAX
        return BinaryOperator::create(Instruction::SetEQ, Op0,Op1, I.getName());
      if (I.getOpcode() == Instruction::SetLT)       // A < MAX -> A != MAX
        return BinaryOperator::create(Instruction::SetNE, Op0,Op1, I.getName());

      // Comparing against a value really close to min or max?
    } else if (isMinValuePlusOne(CI)) {
      if (I.getOpcode() == Instruction::SetLT)       // A < MIN+1 -> A == MIN
        return BinaryOperator::create(Instruction::SetEQ, Op0,
                                      SubOne(CI), I.getName());
      if (I.getOpcode() == Instruction::SetGE)       // A >= MIN-1 -> A != MIN
        return BinaryOperator::create(Instruction::SetNE, Op0,
                                      SubOne(CI), I.getName());

    } else if (isMaxValueMinusOne(CI)) {
      if (I.getOpcode() == Instruction::SetGT)       // A > MAX-1 -> A == MAX
        return BinaryOperator::create(Instruction::SetEQ, Op0,
                                      AddOne(CI), I.getName());
      if (I.getOpcode() == Instruction::SetLE)       // A <= MAX-1 -> A != MAX
        return BinaryOperator::create(Instruction::SetNE, Op0,
                                      AddOne(CI), I.getName());
    }
  }

  return Changed ? &I : 0;
}



Instruction *InstCombiner::visitShiftInst(ShiftInst &I) {
  assert(I.getOperand(1)->getType() == Type::UByteTy);
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);

  // shl X, 0 == X and shr X, 0 == X
  // shl 0, X == 0 and shr 0, X == 0
  if (Op1 == Constant::getNullValue(Type::UByteTy) ||
      Op0 == Constant::getNullValue(Op0->getType()))
    return ReplaceInstUsesWith(I, Op0);

  // If this is a shift of a shift, see if we can fold the two together...
  if (ShiftInst *Op0SI = dyn_cast<ShiftInst>(Op0)) {
    if (isa<Constant>(Op1) && isa<Constant>(Op0SI->getOperand(1))) {
      ConstantUInt *ShiftAmt1C = cast<ConstantUInt>(Op0SI->getOperand(1));
      unsigned ShiftAmt1 = ShiftAmt1C->getValue();
      unsigned ShiftAmt2 = cast<ConstantUInt>(Op1)->getValue();

      // Check for (A << c1) << c2   and   (A >> c1) >> c2
      if (I.getOpcode() == Op0SI->getOpcode()) {
        unsigned Amt = ShiftAmt1+ShiftAmt2;   // Fold into one big shift...
        return new ShiftInst(I.getOpcode(), Op0SI->getOperand(0),
                             ConstantUInt::get(Type::UByteTy, Amt));
      }

      if (I.getType()->isUnsigned()) { // Check for (A << c1) >> c2 or visaversa
        // Calculate bitmask for what gets shifted off the edge...
        Constant *C = ConstantIntegral::getAllOnesValue(I.getType());
        if (I.getOpcode() == Instruction::Shr)
          C = *C >> *ShiftAmt1C;
        else
          C = *C << *ShiftAmt1C;
        assert(C && "Couldn't constant fold shift expression?");
          
        Instruction *Mask =
          BinaryOperator::create(Instruction::And, Op0SI->getOperand(0),
                                 C, Op0SI->getOperand(0)->getName()+".mask",&I);
        WorkList.push_back(Mask);
          
        // Figure out what flavor of shift we should use...
        if (ShiftAmt1 == ShiftAmt2)
          return ReplaceInstUsesWith(I, Mask);  // (A << c) >> c  === A & c2
        else if (ShiftAmt1 < ShiftAmt2) {
          return new ShiftInst(I.getOpcode(), Mask,
                         ConstantUInt::get(Type::UByteTy, ShiftAmt2-ShiftAmt1));
        } else {
          return new ShiftInst(Op0SI->getOpcode(), Mask,
                         ConstantUInt::get(Type::UByteTy, ShiftAmt1-ShiftAmt2));
        }
      }
    }
  }

  // shl uint X, 32 = 0 and shr ubyte Y, 9 = 0, ... just don't eliminate shr of
  // a signed value.
  //
  if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(Op1)) {
    unsigned TypeBits = Op0->getType()->getPrimitiveSize()*8;
    if (CUI->getValue() >= TypeBits &&
        (!Op0->getType()->isSigned() || I.getOpcode() == Instruction::Shl))
      return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType()));

    // Check to see if we are shifting left by 1.  If so, turn it into an add
    // instruction.
    if (I.getOpcode() == Instruction::Shl && CUI->equalsInt(1))
      // Convert 'shl int %X, 1' to 'add int %X, %X'
      return BinaryOperator::create(Instruction::Add, Op0, Op0, I.getName());

  }

  // shr int -1, X = -1   (for any arithmetic shift rights of ~0)
  if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(Op0))
    if (I.getOpcode() == Instruction::Shr && CSI->isAllOnesValue())
      return ReplaceInstUsesWith(I, CSI);
  
  return 0;
}


// isEliminableCastOfCast - Return true if it is valid to eliminate the CI
// instruction.
//
static inline bool isEliminableCastOfCast(const CastInst &CI,
                                          const CastInst *CSrc) {
  assert(CI.getOperand(0) == CSrc);
  const Type *SrcTy = CSrc->getOperand(0)->getType();
  const Type *MidTy = CSrc->getType();
  const Type *DstTy = CI.getType();

  // It is legal to eliminate the instruction if casting A->B->A if the sizes
  // are identical and the bits don't get reinterpreted (for example 
  // int->float->int would not be allowed)
  if (SrcTy == DstTy && SrcTy->isLosslesslyConvertibleTo(MidTy))
    return true;

  // Allow free casting and conversion of sizes as long as the sign doesn't
  // change...
  if (SrcTy->isIntegral() && MidTy->isIntegral() && DstTy->isIntegral()) {
    unsigned SrcSize = SrcTy->getPrimitiveSize();
    unsigned MidSize = MidTy->getPrimitiveSize();
    unsigned DstSize = DstTy->getPrimitiveSize();

    // Cases where we are monotonically decreasing the size of the type are
    // always ok, regardless of what sign changes are going on.
    //
    if (SrcSize >= MidSize && MidSize >= DstSize)
      return true;

    // Cases where the source and destination type are the same, but the middle
    // type is bigger are noops.
    //
    if (SrcSize == DstSize && MidSize > SrcSize)
      return true;

    // If we are monotonically growing, things are more complex.
    //
    if (SrcSize <= MidSize && MidSize <= DstSize) {
      // We have eight combinations of signedness to worry about. Here's the
      // table:
      static const int SignTable[8] = {
        // CODE, SrcSigned, MidSigned, DstSigned, Comment
        1,     //   U          U          U       Always ok
        1,     //   U          U          S       Always ok
        3,     //   U          S          U       Ok iff SrcSize != MidSize
        3,     //   U          S          S       Ok iff SrcSize != MidSize
        0,     //   S          U          U       Never ok
        2,     //   S          U          S       Ok iff MidSize == DstSize
        1,     //   S          S          U       Always ok
        1,     //   S          S          S       Always ok
      };

      // Choose an action based on the current entry of the signtable that this
      // cast of cast refers to...
      unsigned Row = SrcTy->isSigned()*4+MidTy->isSigned()*2+DstTy->isSigned();
      switch (SignTable[Row]) {
      case 0: return false;              // Never ok
      case 1: return true;               // Always ok
      case 2: return MidSize == DstSize; // Ok iff MidSize == DstSize
      case 3:                            // Ok iff SrcSize != MidSize
        return SrcSize != MidSize || SrcTy == Type::BoolTy;
      default: assert(0 && "Bad entry in sign table!");
      }
    }
  }

  // Otherwise, we cannot succeed.  Specifically we do not want to allow things
  // like:  short -> ushort -> uint, because this can create wrong results if
  // the input short is negative!
  //
  return false;
}


// CastInst simplification
//
Instruction *InstCombiner::visitCastInst(CastInst &CI) {
  // If the user is casting a value to the same type, eliminate this cast
  // instruction...
  if (CI.getType() == CI.getOperand(0)->getType())
    return ReplaceInstUsesWith(CI, CI.getOperand(0));

  // If casting the result of another cast instruction, try to eliminate this
  // one!
  //
  if (CastInst *CSrc = dyn_cast<CastInst>(CI.getOperand(0))) {
    if (isEliminableCastOfCast(CI, CSrc)) {
      // This instruction now refers directly to the cast's src operand.  This
      // has a good chance of making CSrc dead.
      CI.setOperand(0, CSrc->getOperand(0));
      return &CI;
    }

    // If this is an A->B->A cast, and we are dealing with integral types, try
    // to convert this into a logical 'and' instruction.
    //
    if (CSrc->getOperand(0)->getType() == CI.getType() &&
        CI.getType()->isInteger() && CSrc->getType()->isInteger() &&
        CI.getType()->isUnsigned() && CSrc->getType()->isUnsigned() &&
        CSrc->getType()->getPrimitiveSize() < CI.getType()->getPrimitiveSize()){
      assert(CSrc->getType() != Type::ULongTy &&
             "Cannot have type bigger than ulong!");
      unsigned AndValue = (1U << CSrc->getType()->getPrimitiveSize()*8)-1;
      Constant *AndOp = ConstantUInt::get(CI.getType(), AndValue);
      return BinaryOperator::create(Instruction::And, CSrc->getOperand(0),
                                    AndOp);
    }
  }

  return 0;
}


// PHINode simplification
//
Instruction *InstCombiner::visitPHINode(PHINode &PN) {
  // If the PHI node only has one incoming value, eliminate the PHI node...
  if (PN.getNumIncomingValues() == 1)
    return ReplaceInstUsesWith(PN, PN.getIncomingValue(0));
  
  // Otherwise if all of the incoming values are the same for the PHI, replace
  // the PHI node with the incoming value.
  //
  Value *InVal = 0;
  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
    if (PN.getIncomingValue(i) != &PN)  // Not the PHI node itself...
      if (InVal && PN.getIncomingValue(i) != InVal)
        return 0;  // Not the same, bail out.
      else
        InVal = PN.getIncomingValue(i);

  // The only case that could cause InVal to be null is if we have a PHI node
  // that only has entries for itself.  In this case, there is no entry into the
  // loop, so kill the PHI.
  //
  if (InVal == 0) InVal = Constant::getNullValue(PN.getType());

  // All of the incoming values are the same, replace the PHI node now.
  return ReplaceInstUsesWith(PN, InVal);
}


Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
  // Is it 'getelementptr %P, long 0'  or 'getelementptr %P'
  // If so, eliminate the noop.
  if ((GEP.getNumOperands() == 2 &&
       GEP.getOperand(1) == Constant::getNullValue(Type::LongTy)) ||
      GEP.getNumOperands() == 1)
    return ReplaceInstUsesWith(GEP, GEP.getOperand(0));

  // Combine Indices - If the source pointer to this getelementptr instruction
  // is a getelementptr instruction, combine the indices of the two
  // getelementptr instructions into a single instruction.
  //
  if (GetElementPtrInst *Src = dyn_cast<GetElementPtrInst>(GEP.getOperand(0))) {
    std::vector<Value *> Indices;
  
    // Can we combine the two pointer arithmetics offsets?
    if (Src->getNumOperands() == 2 && isa<Constant>(Src->getOperand(1)) &&
        isa<Constant>(GEP.getOperand(1))) {
      // Replace: gep (gep %P, long C1), long C2, ...
      // With:    gep %P, long (C1+C2), ...
      Value *Sum = *cast<Constant>(Src->getOperand(1)) +
                   *cast<Constant>(GEP.getOperand(1));
      assert(Sum && "Constant folding of longs failed!?");
      GEP.setOperand(0, Src->getOperand(0));
      GEP.setOperand(1, Sum);
      AddUsesToWorkList(*Src);   // Reduce use count of Src
      return &GEP;
    } else if (Src->getNumOperands() == 2) {
      // Replace: gep (gep %P, long B), long A, ...
      // With:    T = long A+B; gep %P, T, ...
      //
      Value *Sum = BinaryOperator::create(Instruction::Add, Src->getOperand(1),
                                          GEP.getOperand(1),
                                          Src->getName()+".sum", &GEP);
      GEP.setOperand(0, Src->getOperand(0));
      GEP.setOperand(1, Sum);
      WorkList.push_back(cast<Instruction>(Sum));
      return &GEP;
    } else if (*GEP.idx_begin() == Constant::getNullValue(Type::LongTy) &&
               Src->getNumOperands() != 1) { 
      // Otherwise we can do the fold if the first index of the GEP is a zero
      Indices.insert(Indices.end(), Src->idx_begin(), Src->idx_end());
      Indices.insert(Indices.end(), GEP.idx_begin()+1, GEP.idx_end());
    } else if (Src->getOperand(Src->getNumOperands()-1) == 
               Constant::getNullValue(Type::LongTy)) {
      // If the src gep ends with a constant array index, merge this get into
      // it, even if we have a non-zero array index.
      Indices.insert(Indices.end(), Src->idx_begin(), Src->idx_end()-1);
      Indices.insert(Indices.end(), GEP.idx_begin(), GEP.idx_end());
    }

    if (!Indices.empty())
      return new GetElementPtrInst(Src->getOperand(0), Indices, GEP.getName());

  } else if (GlobalValue *GV = dyn_cast<GlobalValue>(GEP.getOperand(0))) {
    // GEP of global variable.  If all of the indices for this GEP are
    // constants, we can promote this to a constexpr instead of an instruction.

    // Scan for nonconstants...
    std::vector<Constant*> Indices;
    User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end();
    for (; I != E && isa<Constant>(*I); ++I)
      Indices.push_back(cast<Constant>(*I));

    if (I == E) {  // If they are all constants...
      Constant *CE =
        ConstantExpr::getGetElementPtr(ConstantPointerRef::get(GV), Indices);

      // Replace all uses of the GEP with the new constexpr...
      return ReplaceInstUsesWith(GEP, CE);
    }
  }

  return 0;
}

Instruction *InstCombiner::visitAllocationInst(AllocationInst &AI) {
  // Convert: malloc Ty, C - where C is a constant != 1 into: malloc [C x Ty], 1
  if (AI.isArrayAllocation())    // Check C != 1
    if (const ConstantUInt *C = dyn_cast<ConstantUInt>(AI.getArraySize())) {
      const Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getValue());
      AllocationInst *New = 0;

      // Create and insert the replacement instruction...
      if (isa<MallocInst>(AI))
        New = new MallocInst(NewTy, 0, AI.getName(), &AI);
      else {
        assert(isa<AllocaInst>(AI) && "Unknown type of allocation inst!");
        New = new AllocaInst(NewTy, 0, AI.getName(), &AI);
      }
      
      // Scan to the end of the allocation instructions, to skip over a block of
      // allocas if possible...
      //
      BasicBlock::iterator It = New;
      while (isa<AllocationInst>(*It)) ++It;

      // Now that I is pointing to the first non-allocation-inst in the block,
      // insert our getelementptr instruction...
      //
      std::vector<Value*> Idx(2, Constant::getNullValue(Type::LongTy));
      Value *V = new GetElementPtrInst(New, Idx, New->getName()+".sub", It);

      // Now make everything use the getelementptr instead of the original
      // allocation.
      ReplaceInstUsesWith(AI, V);
      return &AI;
    }
  return 0;
}



void InstCombiner::removeFromWorkList(Instruction *I) {
  WorkList.erase(std::remove(WorkList.begin(), WorkList.end(), I),
                 WorkList.end());
}

bool InstCombiner::runOnFunction(Function &F) {
  bool Changed = false;

  WorkList.insert(WorkList.end(), inst_begin(F), inst_end(F));

  while (!WorkList.empty()) {
    Instruction *I = WorkList.back();  // Get an instruction from the worklist
    WorkList.pop_back();

    // Check to see if we can DCE or ConstantPropagate the instruction...
    // Check to see if we can DIE the instruction...
    if (isInstructionTriviallyDead(I)) {
      // Add operands to the worklist...
      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
        if (Instruction *Op = dyn_cast<Instruction>(I->getOperand(i)))
          WorkList.push_back(Op);

      ++NumDeadInst;
      BasicBlock::iterator BBI = I;
      if (dceInstruction(BBI)) {
        removeFromWorkList(I);
        continue;
      }
    } 

    // Instruction isn't dead, see if we can constant propagate it...
    if (Constant *C = ConstantFoldInstruction(I)) {
      // Add operands to the worklist...
      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
        if (Instruction *Op = dyn_cast<Instruction>(I->getOperand(i)))
          WorkList.push_back(Op);
      ReplaceInstUsesWith(*I, C);

      ++NumConstProp;
      BasicBlock::iterator BBI = I;
      if (dceInstruction(BBI)) {
        removeFromWorkList(I);
        continue;
      }
    }
    
    // Now that we have an instruction, try combining it to simplify it...
    if (Instruction *Result = visit(*I)) {
      ++NumCombined;
      // Should we replace the old instruction with a new one?
      if (Result != I) {
        // Instructions can end up on the worklist more than once.  Make sure
        // we do not process an instruction that has been deleted.
        removeFromWorkList(I);
        ReplaceInstWithInst(I, Result);
      } else {
        BasicBlock::iterator II = I;

        // If the instruction was modified, it's possible that it is now dead.
        // if so, remove it.
        if (dceInstruction(II)) {
          // Instructions may end up in the worklist more than once.  Erase them
          // all.
          removeFromWorkList(I);
          Result = 0;
        }
      }

      if (Result) {
        WorkList.push_back(Result);
        AddUsesToWorkList(*Result);
      }
      Changed = true;
    }
  }

  return Changed;
}

Pass *createInstructionCombiningPass() {
  return new InstCombiner();
}