aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Transforms/Scalar/InstructionCombining.cpp
blob: d12674d3bf77dacd3206f3f0b0f2ffb673e2fec7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
//
// InstructionCombining - Combine instructions to form fewer, simple
// instructions.  This pass does not modify the CFG This pass is where algebraic
// simplification happens.
//
// This pass combines things like:
//    %Y = add int 1, %X
//    %Z = add int 1, %Y
// into:
//    %Z = add int 2, %X
//
// This is a simple worklist driven algorithm.
//
// This pass guarantees that the following canonicalizations are performed on
// the program:
//    1. If a binary operator has a constant operand, it is moved to the RHS
//    2. Bitwise operators with constant operands are always grouped so that
//       shifts are performed first, then or's, then and's, then xor's.
//    3. SetCC instructions are converted from <,>,<=,>= to ==,!= if possible
//    4. All SetCC instructions on boolean values are replaced with logical ops
//    5. add X, X is represented as (X*2) => (X << 1)
//    6. Multiplies with a power-of-two constant argument are transformed into
//       shifts.
//    N. This list is incomplete
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar.h"
#include "llvm/Instructions.h"
#include "llvm/Pass.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/GlobalVariable.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Support/InstIterator.h"
#include "llvm/Support/InstVisitor.h"
#include "llvm/Support/CallSite.h"
#include "Support/Statistic.h"
#include <algorithm>
using namespace llvm;

namespace {
  Statistic<> NumCombined ("instcombine", "Number of insts combined");
  Statistic<> NumConstProp("instcombine", "Number of constant folds");
  Statistic<> NumDeadInst ("instcombine", "Number of dead inst eliminated");

  class InstCombiner : public FunctionPass,
                       public InstVisitor<InstCombiner, Instruction*> {
    // Worklist of all of the instructions that need to be simplified.
    std::vector<Instruction*> WorkList;
    TargetData *TD;

    void AddUsesToWorkList(Instruction &I) {
      // The instruction was simplified, add all users of the instruction to
      // the work lists because they might get more simplified now...
      //
      for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
           UI != UE; ++UI)
        WorkList.push_back(cast<Instruction>(*UI));
    }

    // removeFromWorkList - remove all instances of I from the worklist.
    void removeFromWorkList(Instruction *I);
  public:
    virtual bool runOnFunction(Function &F);

    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.addRequired<TargetData>();
      AU.setPreservesCFG();
    }

    // Visitation implementation - Implement instruction combining for different
    // instruction types.  The semantics are as follows:
    // Return Value:
    //    null        - No change was made
    //     I          - Change was made, I is still valid, I may be dead though
    //   otherwise    - Change was made, replace I with returned instruction
    //   
    Instruction *visitAdd(BinaryOperator &I);
    Instruction *visitSub(BinaryOperator &I);
    Instruction *visitMul(BinaryOperator &I);
    Instruction *visitDiv(BinaryOperator &I);
    Instruction *visitRem(BinaryOperator &I);
    Instruction *visitAnd(BinaryOperator &I);
    Instruction *visitOr (BinaryOperator &I);
    Instruction *visitXor(BinaryOperator &I);
    Instruction *visitSetCondInst(BinaryOperator &I);
    Instruction *visitShiftInst(ShiftInst &I);
    Instruction *visitCastInst(CastInst &CI);
    Instruction *visitCallInst(CallInst &CI);
    Instruction *visitInvokeInst(InvokeInst &II);
    Instruction *visitPHINode(PHINode &PN);
    Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
    Instruction *visitAllocationInst(AllocationInst &AI);
    Instruction *visitFreeInst(FreeInst &FI);
    Instruction *visitLoadInst(LoadInst &LI);
    Instruction *visitBranchInst(BranchInst &BI);

    // visitInstruction - Specify what to return for unhandled instructions...
    Instruction *visitInstruction(Instruction &I) { return 0; }

  private:
    Instruction *visitCallSite(CallSite CS);
    bool transformConstExprCastCall(CallSite CS);

    // InsertNewInstBefore - insert an instruction New before instruction Old
    // in the program.  Add the new instruction to the worklist.
    //
    void InsertNewInstBefore(Instruction *New, Instruction &Old) {
      assert(New && New->getParent() == 0 &&
             "New instruction already inserted into a basic block!");
      BasicBlock *BB = Old.getParent();
      BB->getInstList().insert(&Old, New);  // Insert inst
      WorkList.push_back(New);              // Add to worklist
    }

  public:
    // ReplaceInstUsesWith - This method is to be used when an instruction is
    // found to be dead, replacable with another preexisting expression.  Here
    // we add all uses of I to the worklist, replace all uses of I with the new
    // value, then return I, so that the inst combiner will know that I was
    // modified.
    //
    Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) {
      AddUsesToWorkList(I);         // Add all modified instrs to worklist
      I.replaceAllUsesWith(V);
      return &I;
    }
  private:
    /// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
    /// InsertBefore instruction.  This is specialized a bit to avoid inserting
    /// casts that are known to not do anything...
    ///
    Value *InsertOperandCastBefore(Value *V, const Type *DestTy,
                                   Instruction *InsertBefore);

    // SimplifyCommutative - This performs a few simplifications for commutative
    // operators...
    bool SimplifyCommutative(BinaryOperator &I);

    Instruction *OptAndOp(Instruction *Op, ConstantIntegral *OpRHS,
                          ConstantIntegral *AndRHS, BinaryOperator &TheAnd);
  };

  RegisterOpt<InstCombiner> X("instcombine", "Combine redundant instructions");
}

// getComplexity:  Assign a complexity or rank value to LLVM Values...
//   0 -> Constant, 1 -> Other, 2 -> Argument, 2 -> Unary, 3 -> OtherInst
static unsigned getComplexity(Value *V) {
  if (isa<Instruction>(V)) {
    if (BinaryOperator::isNeg(V) || BinaryOperator::isNot(V))
      return 2;
    return 3;
  }
  if (isa<Argument>(V)) return 2;
  return isa<Constant>(V) ? 0 : 1;
}

// isOnlyUse - Return true if this instruction will be deleted if we stop using
// it.
static bool isOnlyUse(Value *V) {
  return V->hasOneUse() || isa<Constant>(V);
}

// SimplifyCommutative - This performs a few simplifications for commutative
// operators:
//
//  1. Order operands such that they are listed from right (least complex) to
//     left (most complex).  This puts constants before unary operators before
//     binary operators.
//
//  2. Transform: (op (op V, C1), C2) ==> (op V, (op C1, C2))
//  3. Transform: (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
//
bool InstCombiner::SimplifyCommutative(BinaryOperator &I) {
  bool Changed = false;
  if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1)))
    Changed = !I.swapOperands();
  
  if (!I.isAssociative()) return Changed;
  Instruction::BinaryOps Opcode = I.getOpcode();
  if (BinaryOperator *Op = dyn_cast<BinaryOperator>(I.getOperand(0)))
    if (Op->getOpcode() == Opcode && isa<Constant>(Op->getOperand(1))) {
      if (isa<Constant>(I.getOperand(1))) {
        Constant *Folded = ConstantExpr::get(I.getOpcode(),
                                             cast<Constant>(I.getOperand(1)),
                                             cast<Constant>(Op->getOperand(1)));
        I.setOperand(0, Op->getOperand(0));
        I.setOperand(1, Folded);
        return true;
      } else if (BinaryOperator *Op1=dyn_cast<BinaryOperator>(I.getOperand(1)))
        if (Op1->getOpcode() == Opcode && isa<Constant>(Op1->getOperand(1)) &&
            isOnlyUse(Op) && isOnlyUse(Op1)) {
          Constant *C1 = cast<Constant>(Op->getOperand(1));
          Constant *C2 = cast<Constant>(Op1->getOperand(1));

          // Fold (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
          Constant *Folded = ConstantExpr::get(I.getOpcode(), C1, C2);
          Instruction *New = BinaryOperator::create(Opcode, Op->getOperand(0),
                                                    Op1->getOperand(0),
                                                    Op1->getName(), &I);
          WorkList.push_back(New);
          I.setOperand(0, New);
          I.setOperand(1, Folded);
          return true;
        }      
    }
  return Changed;
}

// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
// if the LHS is a constant zero (which is the 'negate' form).
//
static inline Value *dyn_castNegVal(Value *V) {
  if (BinaryOperator::isNeg(V))
    return BinaryOperator::getNegArgument(cast<BinaryOperator>(V));

  // Constants can be considered to be negated values if they can be folded...
  if (Constant *C = dyn_cast<Constant>(V))
    return ConstantExpr::get(Instruction::Sub,
                             Constant::getNullValue(V->getType()), C);
  return 0;
}

static Constant *NotConstant(Constant *C) {
  return ConstantExpr::get(Instruction::Xor, C,
                           ConstantIntegral::getAllOnesValue(C->getType()));
}

static inline Value *dyn_castNotVal(Value *V) {
  if (BinaryOperator::isNot(V))
    return BinaryOperator::getNotArgument(cast<BinaryOperator>(V));

  // Constants can be considered to be not'ed values...
  if (ConstantIntegral *C = dyn_cast<ConstantIntegral>(V))
    return NotConstant(C);
  return 0;
}

// dyn_castFoldableMul - If this value is a multiply that can be folded into
// other computations (because it has a constant operand), return the
// non-constant operand of the multiply.
//
static inline Value *dyn_castFoldableMul(Value *V) {
  if (V->hasOneUse() && V->getType()->isInteger())
    if (Instruction *I = dyn_cast<Instruction>(V))
      if (I->getOpcode() == Instruction::Mul)
        if (isa<Constant>(I->getOperand(1)))
          return I->getOperand(0);
  return 0;
}

// dyn_castMaskingAnd - If this value is an And instruction masking a value with
// a constant, return the constant being anded with.
//
template<class ValueType>
static inline Constant *dyn_castMaskingAnd(ValueType *V) {
  if (Instruction *I = dyn_cast<Instruction>(V))
    if (I->getOpcode() == Instruction::And)
      return dyn_cast<Constant>(I->getOperand(1));

  // If this is a constant, it acts just like we were masking with it.
  return dyn_cast<Constant>(V);
}

// Log2 - Calculate the log base 2 for the specified value if it is exactly a
// power of 2.
static unsigned Log2(uint64_t Val) {
  assert(Val > 1 && "Values 0 and 1 should be handled elsewhere!");
  unsigned Count = 0;
  while (Val != 1) {
    if (Val & 1) return 0;    // Multiple bits set?
    Val >>= 1;
    ++Count;
  }
  return Count;
}


/// AssociativeOpt - Perform an optimization on an associative operator.  This
/// function is designed to check a chain of associative operators for a
/// potential to apply a certain optimization.  Since the optimization may be
/// applicable if the expression was reassociated, this checks the chain, then
/// reassociates the expression as necessary to expose the optimization
/// opportunity.  This makes use of a special Functor, which must define
/// 'shouldApply' and 'apply' methods.
///
template<typename Functor>
Instruction *AssociativeOpt(BinaryOperator &Root, const Functor &F) {
  unsigned Opcode = Root.getOpcode();
  Value *LHS = Root.getOperand(0);

  // Quick check, see if the immediate LHS matches...
  if (F.shouldApply(LHS))
    return F.apply(Root);

  // Otherwise, if the LHS is not of the same opcode as the root, return.
  Instruction *LHSI = dyn_cast<Instruction>(LHS);
  while (LHSI && LHSI->getOpcode() == Opcode && LHSI->hasOneUse()) {
    // Should we apply this transform to the RHS?
    bool ShouldApply = F.shouldApply(LHSI->getOperand(1));

    // If not to the RHS, check to see if we should apply to the LHS...
    if (!ShouldApply && F.shouldApply(LHSI->getOperand(0))) {
      cast<BinaryOperator>(LHSI)->swapOperands();   // Make the LHS the RHS
      ShouldApply = true;
    }

    // If the functor wants to apply the optimization to the RHS of LHSI,
    // reassociate the expression from ((? op A) op B) to (? op (A op B))
    if (ShouldApply) {
      BasicBlock *BB = Root.getParent();
      // All of the instructions have a single use and have no side-effects,
      // because of this, we can pull them all into the current basic block.
      if (LHSI->getParent() != BB) {
        // Move all of the instructions from root to LHSI into the current
        // block.
        Instruction *TmpLHSI = cast<Instruction>(Root.getOperand(0));
        Instruction *LastUse = &Root;
        while (TmpLHSI->getParent() == BB) {
          LastUse = TmpLHSI;
          TmpLHSI = cast<Instruction>(TmpLHSI->getOperand(0));
        }
        
        // Loop over all of the instructions in other blocks, moving them into
        // the current one.
        Value *TmpLHS = TmpLHSI;
        do {
          TmpLHSI = cast<Instruction>(TmpLHS);
          // Remove from current block...
          TmpLHSI->getParent()->getInstList().remove(TmpLHSI);
          // Insert before the last instruction...
          BB->getInstList().insert(LastUse, TmpLHSI);
          TmpLHS = TmpLHSI->getOperand(0);
        } while (TmpLHSI != LHSI);
      }
      
      // Now all of the instructions are in the current basic block, go ahead
      // and perform the reassociation.
      Instruction *TmpLHSI = cast<Instruction>(Root.getOperand(0));

      // First move the selected RHS to the LHS of the root...
      Root.setOperand(0, LHSI->getOperand(1));

      // Make what used to be the LHS of the root be the user of the root...
      Value *ExtraOperand = TmpLHSI->getOperand(1);
      Root.replaceAllUsesWith(TmpLHSI);          // Users now use TmpLHSI
      TmpLHSI->setOperand(1, &Root);             // TmpLHSI now uses the root
      BB->getInstList().remove(&Root);           // Remove root from the BB
      BB->getInstList().insert(TmpLHSI, &Root);  // Insert root before TmpLHSI

      // Now propagate the ExtraOperand down the chain of instructions until we
      // get to LHSI.
      while (TmpLHSI != LHSI) {
        Instruction *NextLHSI = cast<Instruction>(TmpLHSI->getOperand(0));
        Value *NextOp = NextLHSI->getOperand(1);
        NextLHSI->setOperand(1, ExtraOperand);
        TmpLHSI = NextLHSI;
        ExtraOperand = NextOp;
      }
      
      // Now that the instructions are reassociated, have the functor perform
      // the transformation...
      return F.apply(Root);
    }
    
    LHSI = dyn_cast<Instruction>(LHSI->getOperand(0));
  }
  return 0;
}


// AddRHS - Implements: X + X --> X << 1
struct AddRHS {
  Value *RHS;
  AddRHS(Value *rhs) : RHS(rhs) {}
  bool shouldApply(Value *LHS) const { return LHS == RHS; }
  Instruction *apply(BinaryOperator &Add) const {
    return new ShiftInst(Instruction::Shl, Add.getOperand(0),
                         ConstantInt::get(Type::UByteTy, 1));
  }
};

// AddMaskingAnd - Implements (A & C1)+(B & C2) --> (A & C1)|(B & C2)
//                 iff C1&C2 == 0
struct AddMaskingAnd {
  Constant *C2;
  AddMaskingAnd(Constant *c) : C2(c) {}
  bool shouldApply(Value *LHS) const {
    if (Constant *C1 = dyn_castMaskingAnd(LHS))
      return ConstantExpr::get(Instruction::And, C1, C2)->isNullValue();
    return false;
  }
  Instruction *apply(BinaryOperator &Add) const {
    return BinaryOperator::create(Instruction::Or, Add.getOperand(0),
                                  Add.getOperand(1));
  }
};



Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
  bool Changed = SimplifyCommutative(I);
  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);

  // X + 0 --> X
  if (RHS == Constant::getNullValue(I.getType()))
    return ReplaceInstUsesWith(I, LHS);

  // X + X --> X << 1
  if (I.getType()->isInteger())
    if (Instruction *Result = AssociativeOpt(I, AddRHS(RHS))) return Result;

  // -A + B  -->  B - A
  if (Value *V = dyn_castNegVal(LHS))
    return BinaryOperator::create(Instruction::Sub, RHS, V);

  // A + -B  -->  A - B
  if (!isa<Constant>(RHS))
    if (Value *V = dyn_castNegVal(RHS))
      return BinaryOperator::create(Instruction::Sub, LHS, V);

  // X*C + X --> X * (C+1)
  if (dyn_castFoldableMul(LHS) == RHS) {
    Constant *CP1 =
      ConstantExpr::get(Instruction::Add, 
                        cast<Constant>(cast<Instruction>(LHS)->getOperand(1)),
                        ConstantInt::get(I.getType(), 1));
    return BinaryOperator::create(Instruction::Mul, RHS, CP1);
  }

  // X + X*C --> X * (C+1)
  if (dyn_castFoldableMul(RHS) == LHS) {
    Constant *CP1 =
      ConstantExpr::get(Instruction::Add,
                        cast<Constant>(cast<Instruction>(RHS)->getOperand(1)),
                        ConstantInt::get(I.getType(), 1));
    return BinaryOperator::create(Instruction::Mul, LHS, CP1);
  }

  // (A & C1)+(B & C2) --> (A & C1)|(B & C2) iff C1&C2 == 0
  if (Constant *C2 = dyn_castMaskingAnd(RHS))
    if (Instruction *R = AssociativeOpt(I, AddMaskingAnd(C2))) return R;

  if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
    if (Instruction *ILHS = dyn_cast<Instruction>(LHS)) {
      switch (ILHS->getOpcode()) {
      case Instruction::Xor:
        // ~X + C --> (C-1) - X
        if (ConstantInt *XorRHS = dyn_cast<ConstantInt>(ILHS->getOperand(1)))
          if (XorRHS->isAllOnesValue())
            return BinaryOperator::create(Instruction::Sub,
                                          ConstantExpr::get(Instruction::Sub,
                                    CRHS, ConstantInt::get(I.getType(), 1)),
                                          ILHS->getOperand(0));
        break;
      default: break;
      }
    }
  }

  return Changed ? &I : 0;
}

// isSignBit - Return true if the value represented by the constant only has the
// highest order bit set.
static bool isSignBit(ConstantInt *CI) {
  unsigned NumBits = CI->getType()->getPrimitiveSize()*8;
  return (CI->getRawValue() & ~(-1LL << NumBits)) == (1ULL << (NumBits-1));
}

static unsigned getTypeSizeInBits(const Type *Ty) {
  return Ty == Type::BoolTy ? 1 : Ty->getPrimitiveSize()*8;
}

Instruction *InstCombiner::visitSub(BinaryOperator &I) {
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);

  if (Op0 == Op1)         // sub X, X  -> 0
    return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));

  // If this is a 'B = x-(-A)', change to B = x+A...
  if (Value *V = dyn_castNegVal(Op1))
    return BinaryOperator::create(Instruction::Add, Op0, V);

  if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
    // Replace (-1 - A) with (~A)...
    if (C->isAllOnesValue())
      return BinaryOperator::createNot(Op1);

    // C - ~X == X + (1+C)
    if (BinaryOperator::isNot(Op1))
      return BinaryOperator::create(Instruction::Add,
               BinaryOperator::getNotArgument(cast<BinaryOperator>(Op1)),
                    ConstantExpr::get(Instruction::Add, C,
                                      ConstantInt::get(I.getType(), 1)));
  }

  if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1))
    if (Op1I->hasOneUse()) {
      // Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression
      // is not used by anyone else...
      //
      if (Op1I->getOpcode() == Instruction::Sub &&
          !Op1I->getType()->isFloatingPoint()) {
        // Swap the two operands of the subexpr...
        Value *IIOp0 = Op1I->getOperand(0), *IIOp1 = Op1I->getOperand(1);
        Op1I->setOperand(0, IIOp1);
        Op1I->setOperand(1, IIOp0);
        
        // Create the new top level add instruction...
        return BinaryOperator::create(Instruction::Add, Op0, Op1);
      }

      // Replace (A - (A & B)) with (A & ~B) if this is the only use of (A&B)...
      //
      if (Op1I->getOpcode() == Instruction::And &&
          (Op1I->getOperand(0) == Op0 || Op1I->getOperand(1) == Op0)) {
        Value *OtherOp = Op1I->getOperand(Op1I->getOperand(0) == Op0);

        Instruction *NewNot = BinaryOperator::createNot(OtherOp, "B.not", &I);
        return BinaryOperator::create(Instruction::And, Op0, NewNot);
      }

      // X - X*C --> X * (1-C)
      if (dyn_castFoldableMul(Op1I) == Op0) {
        Constant *CP1 =
          ConstantExpr::get(Instruction::Sub,
                            ConstantInt::get(I.getType(), 1),
                         cast<Constant>(cast<Instruction>(Op1)->getOperand(1)));
        assert(CP1 && "Couldn't constant fold 1-C?");
        return BinaryOperator::create(Instruction::Mul, Op0, CP1);
      }
    }

  // X*C - X --> X * (C-1)
  if (dyn_castFoldableMul(Op0) == Op1) {
    Constant *CP1 =
      ConstantExpr::get(Instruction::Sub,
                        cast<Constant>(cast<Instruction>(Op0)->getOperand(1)),
                        ConstantInt::get(I.getType(), 1));
    assert(CP1 && "Couldn't constant fold C - 1?");
    return BinaryOperator::create(Instruction::Mul, Op1, CP1);
  }

  return 0;
}

Instruction *InstCombiner::visitMul(BinaryOperator &I) {
  bool Changed = SimplifyCommutative(I);
  Value *Op0 = I.getOperand(0);

  // Simplify mul instructions with a constant RHS...
  if (Constant *Op1 = dyn_cast<Constant>(I.getOperand(1))) {
    if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {

      // ((X << C1)*C2) == (X * (C2 << C1))
      if (ShiftInst *SI = dyn_cast<ShiftInst>(Op0))
        if (SI->getOpcode() == Instruction::Shl)
          if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1)))
            return BinaryOperator::create(Instruction::Mul, SI->getOperand(0),
                                 ConstantExpr::get(Instruction::Shl, CI, ShOp));
      
      if (CI->isNullValue())
        return ReplaceInstUsesWith(I, Op1);  // X * 0  == 0
      if (CI->equalsInt(1))                  // X * 1  == X
        return ReplaceInstUsesWith(I, Op0);
      if (CI->isAllOnesValue())              // X * -1 == 0 - X
        return BinaryOperator::createNeg(Op0, I.getName());

      int64_t Val = (int64_t)cast<ConstantInt>(CI)->getRawValue();
      if (uint64_t C = Log2(Val))            // Replace X*(2^C) with X << C
        return new ShiftInst(Instruction::Shl, Op0,
                             ConstantUInt::get(Type::UByteTy, C));
    } else {
      ConstantFP *Op1F = cast<ConstantFP>(Op1);
      if (Op1F->isNullValue())
        return ReplaceInstUsesWith(I, Op1);

      // "In IEEE floating point, x*1 is not equivalent to x for nans.  However,
      // ANSI says we can drop signals, so we can do this anyway." (from GCC)
      if (Op1F->getValue() == 1.0)
        return ReplaceInstUsesWith(I, Op0);  // Eliminate 'mul double %X, 1.0'
    }
  }

  if (Value *Op0v = dyn_castNegVal(Op0))     // -X * -Y = X*Y
    if (Value *Op1v = dyn_castNegVal(I.getOperand(1)))
      return BinaryOperator::create(Instruction::Mul, Op0v, Op1v);

  // If one of the operands of the multiply is a cast from a boolean value, then
  // we know the bool is either zero or one, so this is a 'masking' multiply.
  // See if we can simplify things based on how the boolean was originally
  // formed.
  CastInst *BoolCast = 0;
  if (CastInst *CI = dyn_cast<CastInst>(I.getOperand(0)))
    if (CI->getOperand(0)->getType() == Type::BoolTy)
      BoolCast = CI;
  if (!BoolCast)
    if (CastInst *CI = dyn_cast<CastInst>(I.getOperand(1)))
      if (CI->getOperand(0)->getType() == Type::BoolTy)
        BoolCast = CI;
  if (BoolCast) {
    if (SetCondInst *SCI = dyn_cast<SetCondInst>(BoolCast->getOperand(0))) {
      Value *SCIOp0 = SCI->getOperand(0), *SCIOp1 = SCI->getOperand(1);
      const Type *SCOpTy = SCIOp0->getType();

      // If the source is X < 0, and X is a signed integer type, convert this
      // multiply into a shift/and combination.
      if (SCI->getOpcode() == Instruction::SetLT &&
          isa<Constant>(SCIOp1) && cast<Constant>(SCIOp1)->isNullValue() &&
          SCOpTy->isInteger() && SCOpTy->isSigned()) {

        // Shift the X value right to turn it into "all signbits".
        Constant *Amt = ConstantUInt::get(Type::UByteTy,
                                          SCOpTy->getPrimitiveSize()*8-1);
        Value *V = new ShiftInst(Instruction::Shr, SCIOp0, Amt,
                                 BoolCast->getName()+".mask", &I);

        // If the multiply type is not the same as the source type, sign extend
        // or truncate to the multiply type.
        if (I.getType() != V->getType())
          V = new CastInst(V, I.getType(), V->getName(), &I);
        
        Value *OtherOp = Op0 == BoolCast ? I.getOperand(1) : Op0;
        return BinaryOperator::create(Instruction::And, V, OtherOp);
      }
    }
  }

  return Changed ? &I : 0;
}

Instruction *InstCombiner::visitDiv(BinaryOperator &I) {
  // div X, 1 == X
  if (ConstantInt *RHS = dyn_cast<ConstantInt>(I.getOperand(1))) {
    if (RHS->equalsInt(1))
      return ReplaceInstUsesWith(I, I.getOperand(0));

    // Check to see if this is an unsigned division with an exact power of 2,
    // if so, convert to a right shift.
    if (ConstantUInt *C = dyn_cast<ConstantUInt>(RHS))
      if (uint64_t Val = C->getValue())    // Don't break X / 0
        if (uint64_t C = Log2(Val))
          return new ShiftInst(Instruction::Shr, I.getOperand(0),
                               ConstantUInt::get(Type::UByteTy, C));
  }

  // 0 / X == 0, we don't need to preserve faults!
  if (ConstantInt *LHS = dyn_cast<ConstantInt>(I.getOperand(0)))
    if (LHS->equalsInt(0))
      return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));

  return 0;
}


Instruction *InstCombiner::visitRem(BinaryOperator &I) {
  if (ConstantInt *RHS = dyn_cast<ConstantInt>(I.getOperand(1))) {
    if (RHS->equalsInt(1))  // X % 1 == 0
      return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));

    // Check to see if this is an unsigned remainder with an exact power of 2,
    // if so, convert to a bitwise and.
    if (ConstantUInt *C = dyn_cast<ConstantUInt>(RHS))
      if (uint64_t Val = C->getValue())    // Don't break X % 0 (divide by zero)
        if (Log2(Val))
          return BinaryOperator::create(Instruction::And, I.getOperand(0),
                                        ConstantUInt::get(I.getType(), Val-1));
  }

  // 0 % X == 0, we don't need to preserve faults!
  if (ConstantInt *LHS = dyn_cast<ConstantInt>(I.getOperand(0)))
    if (LHS->equalsInt(0))
      return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));

  return 0;
}

// isMaxValueMinusOne - return true if this is Max-1
static bool isMaxValueMinusOne(const ConstantInt *C) {
  if (const ConstantUInt *CU = dyn_cast<ConstantUInt>(C)) {
    // Calculate -1 casted to the right type...
    unsigned TypeBits = C->getType()->getPrimitiveSize()*8;
    uint64_t Val = ~0ULL;                // All ones
    Val >>= 64-TypeBits;                 // Shift out unwanted 1 bits...
    return CU->getValue() == Val-1;
  }

  const ConstantSInt *CS = cast<ConstantSInt>(C);
  
  // Calculate 0111111111..11111
  unsigned TypeBits = C->getType()->getPrimitiveSize()*8;
  int64_t Val = INT64_MAX;             // All ones
  Val >>= 64-TypeBits;                 // Shift out unwanted 1 bits...
  return CS->getValue() == Val-1;
}

// isMinValuePlusOne - return true if this is Min+1
static bool isMinValuePlusOne(const ConstantInt *C) {
  if (const ConstantUInt *CU = dyn_cast<ConstantUInt>(C))
    return CU->getValue() == 1;

  const ConstantSInt *CS = cast<ConstantSInt>(C);
  
  // Calculate 1111111111000000000000 
  unsigned TypeBits = C->getType()->getPrimitiveSize()*8;
  int64_t Val = -1;                    // All ones
  Val <<= TypeBits-1;                  // Shift over to the right spot
  return CS->getValue() == Val+1;
}

/// getSetCondCode - Encode a setcc opcode into a three bit mask.  These bits
/// are carefully arranged to allow folding of expressions such as:
///
///      (A < B) | (A > B) --> (A != B)
///
/// Bit value '4' represents that the comparison is true if A > B, bit value '2'
/// represents that the comparison is true if A == B, and bit value '1' is true
/// if A < B.
///
static unsigned getSetCondCode(const SetCondInst *SCI) {
  switch (SCI->getOpcode()) {
    // False -> 0
  case Instruction::SetGT: return 1;
  case Instruction::SetEQ: return 2;
  case Instruction::SetGE: return 3;
  case Instruction::SetLT: return 4;
  case Instruction::SetNE: return 5;
  case Instruction::SetLE: return 6;
    // True -> 7
  default:
    assert(0 && "Invalid SetCC opcode!");
    return 0;
  }
}

/// getSetCCValue - This is the complement of getSetCondCode, which turns an
/// opcode and two operands into either a constant true or false, or a brand new
/// SetCC instruction.
static Value *getSetCCValue(unsigned Opcode, Value *LHS, Value *RHS) {
  switch (Opcode) {
  case 0: return ConstantBool::False;
  case 1: return new SetCondInst(Instruction::SetGT, LHS, RHS);
  case 2: return new SetCondInst(Instruction::SetEQ, LHS, RHS);
  case 3: return new SetCondInst(Instruction::SetGE, LHS, RHS);
  case 4: return new SetCondInst(Instruction::SetLT, LHS, RHS);
  case 5: return new SetCondInst(Instruction::SetNE, LHS, RHS);
  case 6: return new SetCondInst(Instruction::SetLE, LHS, RHS);
  case 7: return ConstantBool::True;
  default: assert(0 && "Illegal SetCCCode!"); return 0;
  }
}

// FoldSetCCLogical - Implements (setcc1 A, B) & (setcc2 A, B) --> (setcc3 A, B)
struct FoldSetCCLogical {
  InstCombiner &IC;
  Value *LHS, *RHS;
  FoldSetCCLogical(InstCombiner &ic, SetCondInst *SCI)
    : IC(ic), LHS(SCI->getOperand(0)), RHS(SCI->getOperand(1)) {}
  bool shouldApply(Value *V) const {
    if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
      return (SCI->getOperand(0) == LHS && SCI->getOperand(1) == RHS ||
              SCI->getOperand(0) == RHS && SCI->getOperand(1) == LHS);
    return false;
  }
  Instruction *apply(BinaryOperator &Log) const {
    SetCondInst *SCI = cast<SetCondInst>(Log.getOperand(0));
    if (SCI->getOperand(0) != LHS) {
      assert(SCI->getOperand(1) == LHS);
      SCI->swapOperands();  // Swap the LHS and RHS of the SetCC
    }

    unsigned LHSCode = getSetCondCode(SCI);
    unsigned RHSCode = getSetCondCode(cast<SetCondInst>(Log.getOperand(1)));
    unsigned Code;
    switch (Log.getOpcode()) {
    case Instruction::And: Code = LHSCode & RHSCode; break;
    case Instruction::Or:  Code = LHSCode | RHSCode; break;
    case Instruction::Xor: Code = LHSCode ^ RHSCode; break;
    default: assert(0 && "Illegal logical opcode!"); return 0;
    }

    Value *RV = getSetCCValue(Code, LHS, RHS);
    if (Instruction *I = dyn_cast<Instruction>(RV))
      return I;
    // Otherwise, it's a constant boolean value...
    return IC.ReplaceInstUsesWith(Log, RV);
  }
};


// OptAndOp - This handles expressions of the form ((val OP C1) & C2).  Where
// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'.  Op is
// guaranteed to be either a shift instruction or a binary operator.
Instruction *InstCombiner::OptAndOp(Instruction *Op,
                                    ConstantIntegral *OpRHS,
                                    ConstantIntegral *AndRHS,
                                    BinaryOperator &TheAnd) {
  Value *X = Op->getOperand(0);
  Constant *Together = 0;
  if (!isa<ShiftInst>(Op))
    Together = ConstantExpr::get(Instruction::And, AndRHS, OpRHS);

  switch (Op->getOpcode()) {
  case Instruction::Xor:
    if (Together->isNullValue()) {
      // (X ^ C1) & C2 --> (X & C2) iff (C1&C2) == 0
      return BinaryOperator::create(Instruction::And, X, AndRHS);
    } else if (Op->hasOneUse()) {
      // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
      std::string OpName = Op->getName(); Op->setName("");
      Instruction *And = BinaryOperator::create(Instruction::And,
                                                X, AndRHS, OpName);
      InsertNewInstBefore(And, TheAnd);
      return BinaryOperator::create(Instruction::Xor, And, Together);
    }
    break;
  case Instruction::Or:
    // (X | C1) & C2 --> X & C2 iff C1 & C1 == 0
    if (Together->isNullValue())
      return BinaryOperator::create(Instruction::And, X, AndRHS);
    else {
      if (Together == AndRHS) // (X | C) & C --> C
        return ReplaceInstUsesWith(TheAnd, AndRHS);
      
      if (Op->hasOneUse() && Together != OpRHS) {
        // (X | C1) & C2 --> (X | (C1&C2)) & C2
        std::string Op0Name = Op->getName(); Op->setName("");
        Instruction *Or = BinaryOperator::create(Instruction::Or, X,
                                                 Together, Op0Name);
        InsertNewInstBefore(Or, TheAnd);
        return BinaryOperator::create(Instruction::And, Or, AndRHS);
      }
    }
    break;
  case Instruction::Add:
    if (Op->hasOneUse()) {
      // Adding a one to a single bit bit-field should be turned into an XOR
      // of the bit.  First thing to check is to see if this AND is with a
      // single bit constant.
      unsigned long long AndRHSV = cast<ConstantInt>(AndRHS)->getRawValue();

      // Clear bits that are not part of the constant.
      AndRHSV &= (1ULL << AndRHS->getType()->getPrimitiveSize()*8)-1;

      // If there is only one bit set...
      if ((AndRHSV & (AndRHSV-1)) == 0) {
        // Ok, at this point, we know that we are masking the result of the
        // ADD down to exactly one bit.  If the constant we are adding has
        // no bits set below this bit, then we can eliminate the ADD.
        unsigned long long AddRHS = cast<ConstantInt>(OpRHS)->getRawValue();
            
        // Check to see if any bits below the one bit set in AndRHSV are set.
        if ((AddRHS & (AndRHSV-1)) == 0) {
          // If not, the only thing that can effect the output of the AND is
          // the bit specified by AndRHSV.  If that bit is set, the effect of
          // the XOR is to toggle the bit.  If it is clear, then the ADD has
          // no effect.
          if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
            TheAnd.setOperand(0, X);
            return &TheAnd;
          } else {
            std::string Name = Op->getName(); Op->setName("");
            // Pull the XOR out of the AND.
            Instruction *NewAnd =
              BinaryOperator::create(Instruction::And, X, AndRHS, Name);
            InsertNewInstBefore(NewAnd, TheAnd);
            return BinaryOperator::create(Instruction::Xor, NewAnd, AndRHS);
          }
        }
      }
    }
    break;

  case Instruction::Shl: {
    // We know that the AND will not produce any of the bits shifted in, so if
    // the anded constant includes them, clear them now!
    //
    Constant *AllOne = ConstantIntegral::getAllOnesValue(AndRHS->getType());
    Constant *CI = ConstantExpr::get(Instruction::And, AndRHS,
                            ConstantExpr::get(Instruction::Shl, AllOne, OpRHS));
    if (CI != AndRHS) {
      TheAnd.setOperand(1, CI);
      return &TheAnd;
    }
    break;
  } 
  case Instruction::Shr:
    // We know that the AND will not produce any of the bits shifted in, so if
    // the anded constant includes them, clear them now!  This only applies to
    // unsigned shifts, because a signed shr may bring in set bits!
    //
    if (AndRHS->getType()->isUnsigned()) {
      Constant *AllOne = ConstantIntegral::getAllOnesValue(AndRHS->getType());
      Constant *CI = ConstantExpr::get(Instruction::And, AndRHS,
                            ConstantExpr::get(Instruction::Shr, AllOne, OpRHS));
      if (CI != AndRHS) {
        TheAnd.setOperand(1, CI);
        return &TheAnd;
      }
    }
    break;
  }
  return 0;
}


Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
  bool Changed = SimplifyCommutative(I);
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);

  // and X, X = X   and X, 0 == 0
  if (Op0 == Op1 || Op1 == Constant::getNullValue(I.getType()))
    return ReplaceInstUsesWith(I, Op1);

  // and X, -1 == X
  if (ConstantIntegral *RHS = dyn_cast<ConstantIntegral>(Op1)) {
    if (RHS->isAllOnesValue())
      return ReplaceInstUsesWith(I, Op0);

    // Optimize a variety of ((val OP C1) & C2) combinations...
    if (isa<BinaryOperator>(Op0) || isa<ShiftInst>(Op0)) {
      Instruction *Op0I = cast<Instruction>(Op0);
      Value *X = Op0I->getOperand(0);
      if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
        if (Instruction *Res = OptAndOp(Op0I, Op0CI, RHS, I))
          return Res;
    }
  }

  Value *Op0NotVal = dyn_castNotVal(Op0);
  Value *Op1NotVal = dyn_castNotVal(Op1);

  // (~A & ~B) == (~(A | B)) - Demorgan's Law
  if (Op0NotVal && Op1NotVal && isOnlyUse(Op0) && isOnlyUse(Op1)) {
    Instruction *Or = BinaryOperator::create(Instruction::Or, Op0NotVal,
                                             Op1NotVal,I.getName()+".demorgan");
    InsertNewInstBefore(Or, I);
    return BinaryOperator::createNot(Or);
  }

  if (Op0NotVal == Op1 || Op1NotVal == Op0)  // A & ~A  == ~A & A == 0
    return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));

  // (setcc1 A, B) & (setcc2 A, B) --> (setcc3 A, B)
  if (SetCondInst *RHS = dyn_cast<SetCondInst>(I.getOperand(1)))
    if (Instruction *R = AssociativeOpt(I, FoldSetCCLogical(*this, RHS)))
      return R;

  return Changed ? &I : 0;
}



Instruction *InstCombiner::visitOr(BinaryOperator &I) {
  bool Changed = SimplifyCommutative(I);
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);

  // or X, X = X   or X, 0 == X
  if (Op0 == Op1 || Op1 == Constant::getNullValue(I.getType()))
    return ReplaceInstUsesWith(I, Op0);

  // or X, -1 == -1
  if (ConstantIntegral *RHS = dyn_cast<ConstantIntegral>(Op1)) {
    if (RHS->isAllOnesValue())
      return ReplaceInstUsesWith(I, Op1);

    if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
      // (X & C1) | C2 --> (X | C2) & (C1|C2)
      if (Op0I->getOpcode() == Instruction::And && isOnlyUse(Op0))
        if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
          std::string Op0Name = Op0I->getName(); Op0I->setName("");
          Instruction *Or = BinaryOperator::create(Instruction::Or,
                                                   Op0I->getOperand(0), RHS,
                                                   Op0Name);
          InsertNewInstBefore(Or, I);
          return BinaryOperator::create(Instruction::And, Or,
                             ConstantExpr::get(Instruction::Or, RHS, Op0CI));
        }

      // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
      if (Op0I->getOpcode() == Instruction::Xor && isOnlyUse(Op0))
        if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
          std::string Op0Name = Op0I->getName(); Op0I->setName("");
          Instruction *Or = BinaryOperator::create(Instruction::Or,
                                                   Op0I->getOperand(0), RHS,
                                                   Op0Name);
          InsertNewInstBefore(Or, I);
          return BinaryOperator::create(Instruction::Xor, Or,
                            ConstantExpr::get(Instruction::And, Op0CI,
                                              NotConstant(RHS)));
        }
    }
  }

  // (A & C1)|(A & C2) == A & (C1|C2)
  if (Instruction *LHS = dyn_cast<BinaryOperator>(Op0))
    if (Instruction *RHS = dyn_cast<BinaryOperator>(Op1))
      if (LHS->getOperand(0) == RHS->getOperand(0))
        if (Constant *C0 = dyn_castMaskingAnd(LHS))
          if (Constant *C1 = dyn_castMaskingAnd(RHS))
            return BinaryOperator::create(Instruction::And, LHS->getOperand(0),
                                    ConstantExpr::get(Instruction::Or, C0, C1));

  Value *Op0NotVal = dyn_castNotVal(Op0);
  Value *Op1NotVal = dyn_castNotVal(Op1);

  if (Op1 == Op0NotVal)   // ~A | A == -1
    return ReplaceInstUsesWith(I, 
                               ConstantIntegral::getAllOnesValue(I.getType()));

  if (Op0 == Op1NotVal)   // A | ~A == -1
    return ReplaceInstUsesWith(I, 
                               ConstantIntegral::getAllOnesValue(I.getType()));

  // (~A | ~B) == (~(A & B)) - Demorgan's Law
  if (Op0NotVal && Op1NotVal && isOnlyUse(Op0) && isOnlyUse(Op1)) {
    Instruction *And = BinaryOperator::create(Instruction::And, Op0NotVal,
                                              Op1NotVal,I.getName()+".demorgan",
                                              &I);
    WorkList.push_back(And);
    return BinaryOperator::createNot(And);
  }

  // (setcc1 A, B) | (setcc2 A, B) --> (setcc3 A, B)
  if (SetCondInst *RHS = dyn_cast<SetCondInst>(I.getOperand(1)))
    if (Instruction *R = AssociativeOpt(I, FoldSetCCLogical(*this, RHS)))
      return R;

  return Changed ? &I : 0;
}

// XorSelf - Implements: X ^ X --> 0
struct XorSelf {
  Value *RHS;
  XorSelf(Value *rhs) : RHS(rhs) {}
  bool shouldApply(Value *LHS) const { return LHS == RHS; }
  Instruction *apply(BinaryOperator &Xor) const {
    return &Xor;
  }
};


Instruction *InstCombiner::visitXor(BinaryOperator &I) {
  bool Changed = SimplifyCommutative(I);
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);

  // xor X, X = 0, even if X is nested in a sequence of Xor's.
  if (Instruction *Result = AssociativeOpt(I, XorSelf(Op1))) {
    assert(Result == &I && "AssociativeOpt didn't work?");
    return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
  }

  if (ConstantIntegral *RHS = dyn_cast<ConstantIntegral>(Op1)) {
    // xor X, 0 == X
    if (RHS->isNullValue())
      return ReplaceInstUsesWith(I, Op0);

    if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
      // xor (setcc A, B), true = not (setcc A, B) = setncc A, B
      if (SetCondInst *SCI = dyn_cast<SetCondInst>(Op0I))
        if (RHS == ConstantBool::True && SCI->hasOneUse())
          return new SetCondInst(SCI->getInverseCondition(),
                                 SCI->getOperand(0), SCI->getOperand(1));

      // ~(c-X) == X-c-1 == X+(-c-1)
      if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
        if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
          Constant *NegOp0I0C = ConstantExpr::get(Instruction::Sub,
                             Constant::getNullValue(Op0I0C->getType()), Op0I0C);
          Constant *ConstantRHS = ConstantExpr::get(Instruction::Sub, NegOp0I0C,
                                              ConstantInt::get(I.getType(), 1));
          return BinaryOperator::create(Instruction::Add, Op0I->getOperand(1),
                                        ConstantRHS);
        }
          
      if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
        switch (Op0I->getOpcode()) {
        case Instruction::Add:
          // ~(X-c) --> (-c-1)-X
          if (RHS->isAllOnesValue()) {
            Constant *NegOp0CI = ConstantExpr::get(Instruction::Sub,
                               Constant::getNullValue(Op0CI->getType()), Op0CI);
            return BinaryOperator::create(Instruction::Sub,
                           ConstantExpr::get(Instruction::Sub, NegOp0CI,
                                             ConstantInt::get(I.getType(), 1)),
                                          Op0I->getOperand(0));
          }
          break;
        case Instruction::And:
          // (X & C1) ^ C2 --> (X & C1) | C2 iff (C1&C2) == 0
          if (ConstantExpr::get(Instruction::And, RHS, Op0CI)->isNullValue())
            return BinaryOperator::create(Instruction::Or, Op0, RHS);
          break;
        case Instruction::Or:
          // (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
          if (ConstantExpr::get(Instruction::And, RHS, Op0CI) == RHS)
            return BinaryOperator::create(Instruction::And, Op0,
                                          NotConstant(RHS));
          break;
        default: break;
        }
    }
  }

  if (Value *X = dyn_castNotVal(Op0))   // ~A ^ A == -1
    if (X == Op1)
      return ReplaceInstUsesWith(I,
                                ConstantIntegral::getAllOnesValue(I.getType()));

  if (Value *X = dyn_castNotVal(Op1))   // A ^ ~A == -1
    if (X == Op0)
      return ReplaceInstUsesWith(I,
                                ConstantIntegral::getAllOnesValue(I.getType()));

  if (Instruction *Op1I = dyn_cast<Instruction>(Op1))
    if (Op1I->getOpcode() == Instruction::Or) {
      if (Op1I->getOperand(0) == Op0) {              // B^(B|A) == (A|B)^B
        cast<BinaryOperator>(Op1I)->swapOperands();
        I.swapOperands();
        std::swap(Op0, Op1);
      } else if (Op1I->getOperand(1) == Op0) {       // B^(A|B) == (A|B)^B
        I.swapOperands();
        std::swap(Op0, Op1);
      }      
    } else if (Op1I->getOpcode() == Instruction::Xor) {
      if (Op0 == Op1I->getOperand(0))                        // A^(A^B) == B
        return ReplaceInstUsesWith(I, Op1I->getOperand(1));
      else if (Op0 == Op1I->getOperand(1))                   // A^(B^A) == B
        return ReplaceInstUsesWith(I, Op1I->getOperand(0));
    }

  if (Instruction *Op0I = dyn_cast<Instruction>(Op0))
    if (Op0I->getOpcode() == Instruction::Or && Op0I->hasOneUse()) {
      if (Op0I->getOperand(0) == Op1)                // (B|A)^B == (A|B)^B
        cast<BinaryOperator>(Op0I)->swapOperands();
      if (Op0I->getOperand(1) == Op1) {              // (A|B)^B == A & ~B
        Value *NotB = BinaryOperator::createNot(Op1, Op1->getName()+".not", &I);
        WorkList.push_back(cast<Instruction>(NotB));
        return BinaryOperator::create(Instruction::And, Op0I->getOperand(0),
                                      NotB);
      }
    } else if (Op0I->getOpcode() == Instruction::Xor) {
      if (Op1 == Op0I->getOperand(0))                        // (A^B)^A == B
        return ReplaceInstUsesWith(I, Op0I->getOperand(1));
      else if (Op1 == Op0I->getOperand(1))                   // (B^A)^A == B
        return ReplaceInstUsesWith(I, Op0I->getOperand(0));
    }

  // (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1^C2 == 0
  if (Constant *C1 = dyn_castMaskingAnd(Op0))
    if (Constant *C2 = dyn_castMaskingAnd(Op1))
      if (ConstantExpr::get(Instruction::And, C1, C2)->isNullValue())
        return BinaryOperator::create(Instruction::Or, Op0, Op1);

  // (setcc1 A, B) ^ (setcc2 A, B) --> (setcc3 A, B)
  if (SetCondInst *RHS = dyn_cast<SetCondInst>(I.getOperand(1)))
    if (Instruction *R = AssociativeOpt(I, FoldSetCCLogical(*this, RHS)))
      return R;

  return Changed ? &I : 0;
}

// AddOne, SubOne - Add or subtract a constant one from an integer constant...
static Constant *AddOne(ConstantInt *C) {
  Constant *Result = ConstantExpr::get(Instruction::Add, C,
                                       ConstantInt::get(C->getType(), 1));
  assert(Result && "Constant folding integer addition failed!");
  return Result;
}
static Constant *SubOne(ConstantInt *C) {
  Constant *Result = ConstantExpr::get(Instruction::Sub, C,
                                       ConstantInt::get(C->getType(), 1));
  assert(Result && "Constant folding integer addition failed!");
  return Result;
}

// isTrueWhenEqual - Return true if the specified setcondinst instruction is
// true when both operands are equal...
//
static bool isTrueWhenEqual(Instruction &I) {
  return I.getOpcode() == Instruction::SetEQ ||
         I.getOpcode() == Instruction::SetGE ||
         I.getOpcode() == Instruction::SetLE;
}

Instruction *InstCombiner::visitSetCondInst(BinaryOperator &I) {
  bool Changed = SimplifyCommutative(I);
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
  const Type *Ty = Op0->getType();

  // setcc X, X
  if (Op0 == Op1)
    return ReplaceInstUsesWith(I, ConstantBool::get(isTrueWhenEqual(I)));

  // setcc <global/alloca*>, 0 - Global/Stack value addresses are never null!
  if (isa<ConstantPointerNull>(Op1) && 
      (isa<GlobalValue>(Op0) || isa<AllocaInst>(Op0)))
    return ReplaceInstUsesWith(I, ConstantBool::get(!isTrueWhenEqual(I)));


  // setcc's with boolean values can always be turned into bitwise operations
  if (Ty == Type::BoolTy) {
    // If this is <, >, or !=, we can change this into a simple xor instruction
    if (!isTrueWhenEqual(I))
      return BinaryOperator::create(Instruction::Xor, Op0, Op1);

    // Otherwise we need to make a temporary intermediate instruction and insert
    // it into the instruction stream.  This is what we are after:
    //
    //  seteq bool %A, %B -> ~(A^B)
    //  setle bool %A, %B -> ~A | B
    //  setge bool %A, %B -> A | ~B
    //
    if (I.getOpcode() == Instruction::SetEQ) {  // seteq case
      Instruction *Xor = BinaryOperator::create(Instruction::Xor, Op0, Op1,
                                                I.getName()+"tmp");
      InsertNewInstBefore(Xor, I);
      return BinaryOperator::createNot(Xor);
    }

    // Handle the setXe cases...
    assert(I.getOpcode() == Instruction::SetGE ||
           I.getOpcode() == Instruction::SetLE);

    if (I.getOpcode() == Instruction::SetGE)
      std::swap(Op0, Op1);                   // Change setge -> setle

    // Now we just have the SetLE case.
    Instruction *Not = BinaryOperator::createNot(Op0, I.getName()+"tmp");
    InsertNewInstBefore(Not, I);
    return BinaryOperator::create(Instruction::Or, Not, Op1);
  }

  // Check to see if we are doing one of many comparisons against constant
  // integers at the end of their ranges...
  //
  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
    // Simplify seteq and setne instructions...
    if (I.getOpcode() == Instruction::SetEQ ||
        I.getOpcode() == Instruction::SetNE) {
      bool isSetNE = I.getOpcode() == Instruction::SetNE;

      // If the first operand is (and|or|xor) with a constant, and the second
      // operand is a constant, simplify a bit.
      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0)) {
        switch (BO->getOpcode()) {
        case Instruction::Add:
          if (CI->isNullValue()) {
            // Replace ((add A, B) != 0) with (A != -B) if A or B is
            // efficiently invertible, or if the add has just this one use.
            Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
            if (Value *NegVal = dyn_castNegVal(BOp1))
              return new SetCondInst(I.getOpcode(), BOp0, NegVal);
            else if (Value *NegVal = dyn_castNegVal(BOp0))
              return new SetCondInst(I.getOpcode(), NegVal, BOp1);
            else if (BO->hasOneUse()) {
              Instruction *Neg = BinaryOperator::createNeg(BOp1, BO->getName());
              BO->setName("");
              InsertNewInstBefore(Neg, I);
              return new SetCondInst(I.getOpcode(), BOp0, Neg);
            }
          }
          break;
        case Instruction::Xor:
          // For the xor case, we can xor two constants together, eliminating
          // the explicit xor.
          if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1)))
            return BinaryOperator::create(I.getOpcode(), BO->getOperand(0),
                                  ConstantExpr::get(Instruction::Xor, CI, BOC));

          // FALLTHROUGH
        case Instruction::Sub:
          // Replace (([sub|xor] A, B) != 0) with (A != B)
          if (CI->isNullValue())
            return new SetCondInst(I.getOpcode(), BO->getOperand(0),
                                   BO->getOperand(1));
          break;

        case Instruction::Or:
          // If bits are being or'd in that are not present in the constant we
          // are comparing against, then the comparison could never succeed!
          if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
            Constant *NotCI = NotConstant(CI);
            if (!ConstantExpr::get(Instruction::And, BOC, NotCI)->isNullValue())
              return ReplaceInstUsesWith(I, ConstantBool::get(isSetNE));
          }
          break;

        case Instruction::And:
          if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
            // If bits are being compared against that are and'd out, then the
            // comparison can never succeed!
            if (!ConstantExpr::get(Instruction::And, CI,
                                   NotConstant(BOC))->isNullValue())
              return ReplaceInstUsesWith(I, ConstantBool::get(isSetNE));

            // Replace (and X, (1 << size(X)-1) != 0) with x < 0, converting X
            // to be a signed value as appropriate.
            if (isSignBit(BOC)) {
              Value *X = BO->getOperand(0);
              // If 'X' is not signed, insert a cast now...
              if (!BOC->getType()->isSigned()) {
                const Type *DestTy;
                switch (BOC->getType()->getPrimitiveID()) {
                case Type::UByteTyID:  DestTy = Type::SByteTy; break;
                case Type::UShortTyID: DestTy = Type::ShortTy; break;
                case Type::UIntTyID:   DestTy = Type::IntTy;   break;
                case Type::ULongTyID:  DestTy = Type::LongTy;  break;
                default: assert(0 && "Invalid unsigned integer type!"); abort();
                }
                CastInst *NewCI = new CastInst(X,DestTy,X->getName()+".signed");
                InsertNewInstBefore(NewCI, I);
                X = NewCI;
              }
              return new SetCondInst(isSetNE ? Instruction::SetLT :
                                         Instruction::SetGE, X,
                                     Constant::getNullValue(X->getType()));
            }
          }
        default: break;
        }
      }
    }

    // Check to see if we are comparing against the minimum or maximum value...
    if (CI->isMinValue()) {
      if (I.getOpcode() == Instruction::SetLT)       // A < MIN -> FALSE
        return ReplaceInstUsesWith(I, ConstantBool::False);
      if (I.getOpcode() == Instruction::SetGE)       // A >= MIN -> TRUE
        return ReplaceInstUsesWith(I, ConstantBool::True);
      if (I.getOpcode() == Instruction::SetLE)       // A <= MIN -> A == MIN
        return BinaryOperator::create(Instruction::SetEQ, Op0, Op1);
      if (I.getOpcode() == Instruction::SetGT)       // A > MIN -> A != MIN
        return BinaryOperator::create(Instruction::SetNE, Op0, Op1);

    } else if (CI->isMaxValue()) {
      if (I.getOpcode() == Instruction::SetGT)       // A > MAX -> FALSE
        return ReplaceInstUsesWith(I, ConstantBool::False);
      if (I.getOpcode() == Instruction::SetLE)       // A <= MAX -> TRUE
        return ReplaceInstUsesWith(I, ConstantBool::True);
      if (I.getOpcode() == Instruction::SetGE)       // A >= MAX -> A == MAX
        return BinaryOperator::create(Instruction::SetEQ, Op0, Op1);
      if (I.getOpcode() == Instruction::SetLT)       // A < MAX -> A != MAX
        return BinaryOperator::create(Instruction::SetNE, Op0, Op1);

      // Comparing against a value really close to min or max?
    } else if (isMinValuePlusOne(CI)) {
      if (I.getOpcode() == Instruction::SetLT)       // A < MIN+1 -> A == MIN
        return BinaryOperator::create(Instruction::SetEQ, Op0, SubOne(CI));
      if (I.getOpcode() == Instruction::SetGE)       // A >= MIN-1 -> A != MIN
        return BinaryOperator::create(Instruction::SetNE, Op0, SubOne(CI));

    } else if (isMaxValueMinusOne(CI)) {
      if (I.getOpcode() == Instruction::SetGT)       // A > MAX-1 -> A == MAX
        return BinaryOperator::create(Instruction::SetEQ, Op0, AddOne(CI));
      if (I.getOpcode() == Instruction::SetLE)       // A <= MAX-1 -> A != MAX
        return BinaryOperator::create(Instruction::SetNE, Op0, AddOne(CI));
    }
  }

  // Test to see if the operands of the setcc are casted versions of other
  // values.  If the cast can be stripped off both arguments, we do so now.
  if (CastInst *CI = dyn_cast<CastInst>(Op0)) {
    Value *CastOp0 = CI->getOperand(0);
    if (CastOp0->getType()->isLosslesslyConvertibleTo(CI->getType()) &&
        !isa<Argument>(Op1) &&
        (I.getOpcode() == Instruction::SetEQ ||
         I.getOpcode() == Instruction::SetNE)) {
      // We keep moving the cast from the left operand over to the right
      // operand, where it can often be eliminated completely.
      Op0 = CastOp0;
      
      // If operand #1 is a cast instruction, see if we can eliminate it as
      // well.
      if (CastInst *CI2 = dyn_cast<CastInst>(Op1))
        if (CI2->getOperand(0)->getType()->isLosslesslyConvertibleTo(
                                                               Op0->getType()))
          Op1 = CI2->getOperand(0);
      
      // If Op1 is a constant, we can fold the cast into the constant.
      if (Op1->getType() != Op0->getType())
        if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
          Op1 = ConstantExpr::getCast(Op1C, Op0->getType());
        } else {
          // Otherwise, cast the RHS right before the setcc
          Op1 = new CastInst(Op1, Op0->getType(), Op1->getName());
          InsertNewInstBefore(cast<Instruction>(Op1), I);
        }
      return BinaryOperator::create(I.getOpcode(), Op0, Op1);
    }

    // Handle the special case of: setcc (cast bool to X), <cst>
    // This comes up when you have code like
    //   int X = A < B;
    //   if (X) ...
    // For generality, we handle any zero-extension of any operand comparison
    // with a constant.
    if (ConstantInt *ConstantRHS = dyn_cast<ConstantInt>(Op1)) {
      const Type *SrcTy = CastOp0->getType();
      const Type *DestTy = Op0->getType();
      if (SrcTy->getPrimitiveSize() < DestTy->getPrimitiveSize() &&
          (SrcTy->isUnsigned() || SrcTy == Type::BoolTy)) {
        // Ok, we have an expansion of operand 0 into a new type.  Get the
        // constant value, masink off bits which are not set in the RHS.  These
        // could be set if the destination value is signed.
        uint64_t ConstVal = ConstantRHS->getRawValue();
        ConstVal &= (1ULL << DestTy->getPrimitiveSize()*8)-1;

        // If the constant we are comparing it with has high bits set, which
        // don't exist in the original value, the values could never be equal,
        // because the source would be zero extended.
        unsigned SrcBits =
          SrcTy == Type::BoolTy ? 1 : SrcTy->getPrimitiveSize()*8;
        bool HasSignBit = ConstVal & (1ULL << (DestTy->getPrimitiveSize()*8-1));
        if (ConstVal & ~((1ULL << SrcBits)-1)) {
          switch (I.getOpcode()) {
          default: assert(0 && "Unknown comparison type!");
          case Instruction::SetEQ:
            return ReplaceInstUsesWith(I, ConstantBool::False);
          case Instruction::SetNE:
            return ReplaceInstUsesWith(I, ConstantBool::True);
          case Instruction::SetLT:
          case Instruction::SetLE:
            if (DestTy->isSigned() && HasSignBit)
              return ReplaceInstUsesWith(I, ConstantBool::False);
            return ReplaceInstUsesWith(I, ConstantBool::True);
          case Instruction::SetGT:
          case Instruction::SetGE:
            if (DestTy->isSigned() && HasSignBit)
              return ReplaceInstUsesWith(I, ConstantBool::True);
            return ReplaceInstUsesWith(I, ConstantBool::False);
          }
        }
        
        // Otherwise, we can replace the setcc with a setcc of the smaller
        // operand value.
        Op1 = ConstantExpr::getCast(cast<Constant>(Op1), SrcTy);
        return BinaryOperator::create(I.getOpcode(), CastOp0, Op1);
      }
    }
  }
  return Changed ? &I : 0;
}



Instruction *InstCombiner::visitShiftInst(ShiftInst &I) {
  assert(I.getOperand(1)->getType() == Type::UByteTy);
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
  bool isLeftShift = I.getOpcode() == Instruction::Shl;

  // shl X, 0 == X and shr X, 0 == X
  // shl 0, X == 0 and shr 0, X == 0
  if (Op1 == Constant::getNullValue(Type::UByteTy) ||
      Op0 == Constant::getNullValue(Op0->getType()))
    return ReplaceInstUsesWith(I, Op0);

  // shr int -1, X = -1   (for any arithmetic shift rights of ~0)
  if (!isLeftShift)
    if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(Op0))
      if (CSI->isAllOnesValue())
        return ReplaceInstUsesWith(I, CSI);

  if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(Op1)) {
    // shl uint X, 32 = 0 and shr ubyte Y, 9 = 0, ... just don't eliminate shr
    // of a signed value.
    //
    unsigned TypeBits = Op0->getType()->getPrimitiveSize()*8;
    if (CUI->getValue() >= TypeBits &&
        (!Op0->getType()->isSigned() || isLeftShift))
      return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType()));

    // ((X*C1) << C2) == (X * (C1 << C2))
    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0))
      if (BO->getOpcode() == Instruction::Mul && isLeftShift)
        if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1)))
          return BinaryOperator::create(Instruction::Mul, BO->getOperand(0),
                                ConstantExpr::get(Instruction::Shl, BOOp, CUI));
    

    // If the operand is an bitwise operator with a constant RHS, and the
    // shift is the only use, we can pull it out of the shift.
    if (Op0->hasOneUse())
      if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0))
        if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
          bool isValid = true;     // Valid only for And, Or, Xor
          bool highBitSet = false; // Transform if high bit of constant set?

          switch (Op0BO->getOpcode()) {
          default: isValid = false; break;   // Do not perform transform!
          case Instruction::Or:
          case Instruction::Xor:
            highBitSet = false;
            break;
          case Instruction::And:
            highBitSet = true;
            break;
          }

          // If this is a signed shift right, and the high bit is modified
          // by the logical operation, do not perform the transformation.
          // The highBitSet boolean indicates the value of the high bit of
          // the constant which would cause it to be modified for this
          // operation.
          //
          if (isValid && !isLeftShift && !I.getType()->isUnsigned()) {
            uint64_t Val = Op0C->getRawValue();
            isValid = ((Val & (1 << (TypeBits-1))) != 0) == highBitSet;
          }

          if (isValid) {
            Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, CUI);

            Instruction *NewShift =
              new ShiftInst(I.getOpcode(), Op0BO->getOperand(0), CUI,
                            Op0BO->getName());
            Op0BO->setName("");
            InsertNewInstBefore(NewShift, I);

            return BinaryOperator::create(Op0BO->getOpcode(), NewShift,
                                          NewRHS);
          }
        }

    // If this is a shift of a shift, see if we can fold the two together...
    if (ShiftInst *Op0SI = dyn_cast<ShiftInst>(Op0))
      if (ConstantUInt *ShiftAmt1C =
                                 dyn_cast<ConstantUInt>(Op0SI->getOperand(1))) {
        unsigned ShiftAmt1 = ShiftAmt1C->getValue();
        unsigned ShiftAmt2 = CUI->getValue();
        
        // Check for (A << c1) << c2   and   (A >> c1) >> c2
        if (I.getOpcode() == Op0SI->getOpcode()) {
          unsigned Amt = ShiftAmt1+ShiftAmt2;   // Fold into one big shift...
          return new ShiftInst(I.getOpcode(), Op0SI->getOperand(0),
                               ConstantUInt::get(Type::UByteTy, Amt));
        }
        
        // Check for (A << c1) >> c2 or visaversa.  If we are dealing with
        // signed types, we can only support the (A >> c1) << c2 configuration,
        // because it can not turn an arbitrary bit of A into a sign bit.
        if (I.getType()->isUnsigned() || isLeftShift) {
          // Calculate bitmask for what gets shifted off the edge...
          Constant *C = ConstantIntegral::getAllOnesValue(I.getType());
          if (isLeftShift)
            C = ConstantExpr::get(Instruction::Shl, C, ShiftAmt1C);
          else
            C = ConstantExpr::get(Instruction::Shr, C, ShiftAmt1C);
          
          Instruction *Mask =
            BinaryOperator::create(Instruction::And, Op0SI->getOperand(0),
                                   C, Op0SI->getOperand(0)->getName()+".mask");
          InsertNewInstBefore(Mask, I);
          
          // Figure out what flavor of shift we should use...
          if (ShiftAmt1 == ShiftAmt2)
            return ReplaceInstUsesWith(I, Mask);  // (A << c) >> c  === A & c2
          else if (ShiftAmt1 < ShiftAmt2) {
            return new ShiftInst(I.getOpcode(), Mask,
                         ConstantUInt::get(Type::UByteTy, ShiftAmt2-ShiftAmt1));
          } else {
            return new ShiftInst(Op0SI->getOpcode(), Mask,
                         ConstantUInt::get(Type::UByteTy, ShiftAmt1-ShiftAmt2));
          }
        }
      }
  }

  return 0;
}


// isEliminableCastOfCast - Return true if it is valid to eliminate the CI
// instruction.
//
static inline bool isEliminableCastOfCast(const Type *SrcTy, const Type *MidTy,
                                          const Type *DstTy) {

  // It is legal to eliminate the instruction if casting A->B->A if the sizes
  // are identical and the bits don't get reinterpreted (for example 
  // int->float->int would not be allowed)
  if (SrcTy == DstTy && SrcTy->isLosslesslyConvertibleTo(MidTy))
    return true;

  // Allow free casting and conversion of sizes as long as the sign doesn't
  // change...
  if (SrcTy->isIntegral() && MidTy->isIntegral() && DstTy->isIntegral()) {
    unsigned SrcSize = SrcTy->getPrimitiveSize();
    unsigned MidSize = MidTy->getPrimitiveSize();
    unsigned DstSize = DstTy->getPrimitiveSize();

    // Cases where we are monotonically decreasing the size of the type are
    // always ok, regardless of what sign changes are going on.
    //
    if (SrcSize >= MidSize && MidSize >= DstSize)
      return true;

    // Cases where the source and destination type are the same, but the middle
    // type is bigger are noops.
    //
    if (SrcSize == DstSize && MidSize > SrcSize)
      return true;

    // If we are monotonically growing, things are more complex.
    //
    if (SrcSize <= MidSize && MidSize <= DstSize) {
      // We have eight combinations of signedness to worry about. Here's the
      // table:
      static const int SignTable[8] = {
        // CODE, SrcSigned, MidSigned, DstSigned, Comment
        1,     //   U          U          U       Always ok
        1,     //   U          U          S       Always ok
        3,     //   U          S          U       Ok iff SrcSize != MidSize
        3,     //   U          S          S       Ok iff SrcSize != MidSize
        0,     //   S          U          U       Never ok
        2,     //   S          U          S       Ok iff MidSize == DstSize
        1,     //   S          S          U       Always ok
        1,     //   S          S          S       Always ok
      };

      // Choose an action based on the current entry of the signtable that this
      // cast of cast refers to...
      unsigned Row = SrcTy->isSigned()*4+MidTy->isSigned()*2+DstTy->isSigned();
      switch (SignTable[Row]) {
      case 0: return false;              // Never ok
      case 1: return true;               // Always ok
      case 2: return MidSize == DstSize; // Ok iff MidSize == DstSize
      case 3:                            // Ok iff SrcSize != MidSize
        return SrcSize != MidSize || SrcTy == Type::BoolTy;
      default: assert(0 && "Bad entry in sign table!");
      }
    }
  }

  // Otherwise, we cannot succeed.  Specifically we do not want to allow things
  // like:  short -> ushort -> uint, because this can create wrong results if
  // the input short is negative!
  //
  return false;
}

static bool ValueRequiresCast(const Value *V, const Type *Ty) {
  if (V->getType() == Ty || isa<Constant>(V)) return false;
  if (const CastInst *CI = dyn_cast<CastInst>(V))
    if (isEliminableCastOfCast(CI->getOperand(0)->getType(), CI->getType(), Ty))
      return false;
  return true;
}

/// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
/// InsertBefore instruction.  This is specialized a bit to avoid inserting
/// casts that are known to not do anything...
///
Value *InstCombiner::InsertOperandCastBefore(Value *V, const Type *DestTy,
                                             Instruction *InsertBefore) {
  if (V->getType() == DestTy) return V;
  if (Constant *C = dyn_cast<Constant>(V))
    return ConstantExpr::getCast(C, DestTy);

  CastInst *CI = new CastInst(V, DestTy, V->getName());
  InsertNewInstBefore(CI, *InsertBefore);
  return CI;
}

// CastInst simplification
//
Instruction *InstCombiner::visitCastInst(CastInst &CI) {
  Value *Src = CI.getOperand(0);

  // If the user is casting a value to the same type, eliminate this cast
  // instruction...
  if (CI.getType() == Src->getType())
    return ReplaceInstUsesWith(CI, Src);

  // If casting the result of another cast instruction, try to eliminate this
  // one!
  //
  if (CastInst *CSrc = dyn_cast<CastInst>(Src)) {
    if (isEliminableCastOfCast(CSrc->getOperand(0)->getType(),
                               CSrc->getType(), CI.getType())) {
      // This instruction now refers directly to the cast's src operand.  This
      // has a good chance of making CSrc dead.
      CI.setOperand(0, CSrc->getOperand(0));
      return &CI;
    }

    // If this is an A->B->A cast, and we are dealing with integral types, try
    // to convert this into a logical 'and' instruction.
    //
    if (CSrc->getOperand(0)->getType() == CI.getType() &&
        CI.getType()->isInteger() && CSrc->getType()->isInteger() &&
        CI.getType()->isUnsigned() && CSrc->getType()->isUnsigned() &&
        CSrc->getType()->getPrimitiveSize() < CI.getType()->getPrimitiveSize()){
      assert(CSrc->getType() != Type::ULongTy &&
             "Cannot have type bigger than ulong!");
      uint64_t AndValue = (1ULL << CSrc->getType()->getPrimitiveSize()*8)-1;
      Constant *AndOp = ConstantUInt::get(CI.getType(), AndValue);
      return BinaryOperator::create(Instruction::And, CSrc->getOperand(0),
                                    AndOp);
    }
  }

  // If casting the result of a getelementptr instruction with no offset, turn
  // this into a cast of the original pointer!
  //
  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
    bool AllZeroOperands = true;
    for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i)
      if (!isa<Constant>(GEP->getOperand(i)) ||
          !cast<Constant>(GEP->getOperand(i))->isNullValue()) {
        AllZeroOperands = false;
        break;
      }
    if (AllZeroOperands) {
      CI.setOperand(0, GEP->getOperand(0));
      return &CI;
    }
  }

  // If we are casting a malloc or alloca to a pointer to a type of the same
  // size, rewrite the allocation instruction to allocate the "right" type.
  //
  if (AllocationInst *AI = dyn_cast<AllocationInst>(Src))
    if (AI->hasOneUse() && !AI->isArrayAllocation())
      if (const PointerType *PTy = dyn_cast<PointerType>(CI.getType())) {
        // Get the type really allocated and the type casted to...
        const Type *AllocElTy = AI->getAllocatedType();
        unsigned AllocElTySize = TD->getTypeSize(AllocElTy);
        const Type *CastElTy = PTy->getElementType();
        unsigned CastElTySize = TD->getTypeSize(CastElTy);

        // If the allocation is for an even multiple of the cast type size
        if (CastElTySize && (AllocElTySize % CastElTySize == 0)) {
          Value *Amt = ConstantUInt::get(Type::UIntTy, 
                                         AllocElTySize/CastElTySize);
          std::string Name = AI->getName(); AI->setName("");
          AllocationInst *New;
          if (isa<MallocInst>(AI))
            New = new MallocInst(CastElTy, Amt, Name);
          else
            New = new AllocaInst(CastElTy, Amt, Name);
          InsertNewInstBefore(New, CI);
          return ReplaceInstUsesWith(CI, New);
        }
      }

  // If the source value is an instruction with only this use, we can attempt to
  // propagate the cast into the instruction.  Also, only handle integral types
  // for now.
  if (Instruction *SrcI = dyn_cast<Instruction>(Src))
    if (SrcI->hasOneUse() && Src->getType()->isIntegral() &&
        CI.getType()->isInteger()) {  // Don't mess with casts to bool here
      const Type *DestTy = CI.getType();
      unsigned SrcBitSize = getTypeSizeInBits(Src->getType());
      unsigned DestBitSize = getTypeSizeInBits(DestTy);

      Value *Op0 = SrcI->getNumOperands() > 0 ? SrcI->getOperand(0) : 0;
      Value *Op1 = SrcI->getNumOperands() > 1 ? SrcI->getOperand(1) : 0;

      switch (SrcI->getOpcode()) {
      case Instruction::Add:
      case Instruction::Mul:
      case Instruction::And:
      case Instruction::Or:
      case Instruction::Xor:
        // If we are discarding information, or just changing the sign, rewrite.
        if (DestBitSize <= SrcBitSize && DestBitSize != 1) {
          // Don't insert two casts if they cannot be eliminated.  We allow two
          // casts to be inserted if the sizes are the same.  This could only be
          // converting signedness, which is a noop.
          if (DestBitSize == SrcBitSize || !ValueRequiresCast(Op1, DestTy) ||
              !ValueRequiresCast(Op0, DestTy)) {
            Value *Op0c = InsertOperandCastBefore(Op0, DestTy, SrcI);
            Value *Op1c = InsertOperandCastBefore(Op1, DestTy, SrcI);
            return BinaryOperator::create(cast<BinaryOperator>(SrcI)
                             ->getOpcode(), Op0c, Op1c);
          }
        }
        break;
      case Instruction::Shl:
        // Allow changing the sign of the source operand.  Do not allow changing
        // the size of the shift, UNLESS the shift amount is a constant.  We
        // mush not change variable sized shifts to a smaller size, because it
        // is undefined to shift more bits out than exist in the value.
        if (DestBitSize == SrcBitSize ||
            (DestBitSize < SrcBitSize && isa<Constant>(Op1))) {
          Value *Op0c = InsertOperandCastBefore(Op0, DestTy, SrcI);
          return new ShiftInst(Instruction::Shl, Op0c, Op1);
        }
        break;
      }
    }
  
  return 0;
}

// CallInst simplification
//
Instruction *InstCombiner::visitCallInst(CallInst &CI) {
  return visitCallSite(&CI);
}

// InvokeInst simplification
//
Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
  return visitCallSite(&II);
}

// getPromotedType - Return the specified type promoted as it would be to pass
// though a va_arg area...
static const Type *getPromotedType(const Type *Ty) {
  switch (Ty->getPrimitiveID()) {
  case Type::SByteTyID:
  case Type::ShortTyID:  return Type::IntTy;
  case Type::UByteTyID:
  case Type::UShortTyID: return Type::UIntTy;
  case Type::FloatTyID:  return Type::DoubleTy;
  default:               return Ty;
  }
}

// visitCallSite - Improvements for call and invoke instructions.
//
Instruction *InstCombiner::visitCallSite(CallSite CS) {
  bool Changed = false;

  // If the callee is a constexpr cast of a function, attempt to move the cast
  // to the arguments of the call/invoke.
  if (transformConstExprCastCall(CS)) return 0;

  Value *Callee = CS.getCalledValue();
  const PointerType *PTy = cast<PointerType>(Callee->getType());
  const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
  if (FTy->isVarArg()) {
    // See if we can optimize any arguments passed through the varargs area of
    // the call.
    for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
           E = CS.arg_end(); I != E; ++I)
      if (CastInst *CI = dyn_cast<CastInst>(*I)) {
        // If this cast does not effect the value passed through the varargs
        // area, we can eliminate the use of the cast.
        Value *Op = CI->getOperand(0);
        if (CI->getType()->isLosslesslyConvertibleTo(Op->getType())) {
          *I = Op;
          Changed = true;
        }
      }
  }
  
  return Changed ? CS.getInstruction() : 0;
}

// transformConstExprCastCall - If the callee is a constexpr cast of a function,
// attempt to move the cast to the arguments of the call/invoke.
//
bool InstCombiner::transformConstExprCastCall(CallSite CS) {
  if (!isa<ConstantExpr>(CS.getCalledValue())) return false;
  ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue());
  if (CE->getOpcode() != Instruction::Cast ||
      !isa<ConstantPointerRef>(CE->getOperand(0)))
    return false;
  ConstantPointerRef *CPR = cast<ConstantPointerRef>(CE->getOperand(0));
  if (!isa<Function>(CPR->getValue())) return false;
  Function *Callee = cast<Function>(CPR->getValue());
  Instruction *Caller = CS.getInstruction();

  // Okay, this is a cast from a function to a different type.  Unless doing so
  // would cause a type conversion of one of our arguments, change this call to
  // be a direct call with arguments casted to the appropriate types.
  //
  const FunctionType *FT = Callee->getFunctionType();
  const Type *OldRetTy = Caller->getType();

  // Check to see if we are changing the return type...
  if (OldRetTy != FT->getReturnType()) {
    if (Callee->isExternal() &&
        !OldRetTy->isLosslesslyConvertibleTo(FT->getReturnType()) &&
        !Caller->use_empty())
      return false;   // Cannot transform this return value...

    // If the callsite is an invoke instruction, and the return value is used by
    // a PHI node in a successor, we cannot change the return type of the call
    // because there is no place to put the cast instruction (without breaking
    // the critical edge).  Bail out in this case.
    if (!Caller->use_empty())
      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
        for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
             UI != E; ++UI)
          if (PHINode *PN = dyn_cast<PHINode>(*UI))
            if (PN->getParent() == II->getNormalDest() ||
                PN->getParent() == II->getUnwindDest())
              return false;
  }

  unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
  unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
                                    
  CallSite::arg_iterator AI = CS.arg_begin();
  for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
    const Type *ParamTy = FT->getParamType(i);
    bool isConvertible = (*AI)->getType()->isLosslesslyConvertibleTo(ParamTy);
    if (Callee->isExternal() && !isConvertible) return false;    
  }

  if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() &&
      Callee->isExternal())
    return false;   // Do not delete arguments unless we have a function body...

  // Okay, we decided that this is a safe thing to do: go ahead and start
  // inserting cast instructions as necessary...
  std::vector<Value*> Args;
  Args.reserve(NumActualArgs);

  AI = CS.arg_begin();
  for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
    const Type *ParamTy = FT->getParamType(i);
    if ((*AI)->getType() == ParamTy) {
      Args.push_back(*AI);
    } else {
      Instruction *Cast = new CastInst(*AI, ParamTy, "tmp");
      InsertNewInstBefore(Cast, *Caller);
      Args.push_back(Cast);
    }
  }

  // If the function takes more arguments than the call was taking, add them
  // now...
  for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
    Args.push_back(Constant::getNullValue(FT->getParamType(i)));

  // If we are removing arguments to the function, emit an obnoxious warning...
  if (FT->getNumParams() < NumActualArgs)
    if (!FT->isVarArg()) {
      std::cerr << "WARNING: While resolving call to function '"
                << Callee->getName() << "' arguments were dropped!\n";
    } else {
      // Add all of the arguments in their promoted form to the arg list...
      for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
        const Type *PTy = getPromotedType((*AI)->getType());
        if (PTy != (*AI)->getType()) {
          // Must promote to pass through va_arg area!
          Instruction *Cast = new CastInst(*AI, PTy, "tmp");
          InsertNewInstBefore(Cast, *Caller);
          Args.push_back(Cast);
        } else {
          Args.push_back(*AI);
        }
      }
    }

  if (FT->getReturnType() == Type::VoidTy)
    Caller->setName("");   // Void type should not have a name...

  Instruction *NC;
  if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
    NC = new InvokeInst(Callee, II->getNormalDest(), II->getUnwindDest(),
                        Args, Caller->getName(), Caller);
  } else {
    NC = new CallInst(Callee, Args, Caller->getName(), Caller);
  }

  // Insert a cast of the return type as necessary...
  Value *NV = NC;
  if (Caller->getType() != NV->getType() && !Caller->use_empty()) {
    if (NV->getType() != Type::VoidTy) {
      NV = NC = new CastInst(NC, Caller->getType(), "tmp");

      // If this is an invoke instruction, we should insert it after the first
      // non-phi, instruction in the normal successor block.
      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
        BasicBlock::iterator I = II->getNormalDest()->begin();
        while (isa<PHINode>(I)) ++I;
        InsertNewInstBefore(NC, *I);
      } else {
        // Otherwise, it's a call, just insert cast right after the call instr
        InsertNewInstBefore(NC, *Caller);
      }
      AddUsesToWorkList(*Caller);
    } else {
      NV = Constant::getNullValue(Caller->getType());
    }
  }

  if (Caller->getType() != Type::VoidTy && !Caller->use_empty())
    Caller->replaceAllUsesWith(NV);
  Caller->getParent()->getInstList().erase(Caller);
  removeFromWorkList(Caller);
  return true;
}



// PHINode simplification
//
Instruction *InstCombiner::visitPHINode(PHINode &PN) {
  if (Value *V = hasConstantValue(&PN))
    return ReplaceInstUsesWith(PN, V);

  // If the only user of this instruction is a cast instruction, and all of the
  // incoming values are constants, change this PHI to merge together the casted
  // constants.
  if (PN.hasOneUse())
    if (CastInst *CI = dyn_cast<CastInst>(PN.use_back()))
      if (CI->getType() != PN.getType()) {  // noop casts will be folded
        bool AllConstant = true;
        for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
          if (!isa<Constant>(PN.getIncomingValue(i))) {
            AllConstant = false;
            break;
          }
        if (AllConstant) {
          // Make a new PHI with all casted values.
          PHINode *New = new PHINode(CI->getType(), PN.getName(), &PN);
          for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
            Constant *OldArg = cast<Constant>(PN.getIncomingValue(i));
            New->addIncoming(ConstantExpr::getCast(OldArg, New->getType()),
                             PN.getIncomingBlock(i));
          }

          // Update the cast instruction.
          CI->setOperand(0, New);
          WorkList.push_back(CI);    // revisit the cast instruction to fold.
          WorkList.push_back(New);   // Make sure to revisit the new Phi
          return &PN;                // PN is now dead!
        }
      }
  return 0;
}


Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
  // Is it 'getelementptr %P, long 0'  or 'getelementptr %P'
  // If so, eliminate the noop.
  if (GEP.getNumOperands() == 1)
    return ReplaceInstUsesWith(GEP, GEP.getOperand(0));

  bool HasZeroPointerIndex = false;
  if (Constant *C = dyn_cast<Constant>(GEP.getOperand(1)))
    HasZeroPointerIndex = C->isNullValue();

  if (GEP.getNumOperands() == 2 && HasZeroPointerIndex)
    return ReplaceInstUsesWith(GEP, GEP.getOperand(0));

  // Combine Indices - If the source pointer to this getelementptr instruction
  // is a getelementptr instruction, combine the indices of the two
  // getelementptr instructions into a single instruction.
  //
  if (GetElementPtrInst *Src = dyn_cast<GetElementPtrInst>(GEP.getOperand(0))) {
    std::vector<Value *> Indices;
  
    // Can we combine the two pointer arithmetics offsets?
    if (Src->getNumOperands() == 2 && isa<Constant>(Src->getOperand(1)) &&
        isa<Constant>(GEP.getOperand(1))) {
      // Replace: gep (gep %P, long C1), long C2, ...
      // With:    gep %P, long (C1+C2), ...
      Value *Sum = ConstantExpr::get(Instruction::Add,
                                     cast<Constant>(Src->getOperand(1)),
                                     cast<Constant>(GEP.getOperand(1)));
      assert(Sum && "Constant folding of longs failed!?");
      GEP.setOperand(0, Src->getOperand(0));
      GEP.setOperand(1, Sum);
      AddUsesToWorkList(*Src);   // Reduce use count of Src
      return &GEP;
    } else if (Src->getNumOperands() == 2) {
      // Replace: gep (gep %P, long B), long A, ...
      // With:    T = long A+B; gep %P, T, ...
      //
      Value *Sum = BinaryOperator::create(Instruction::Add, Src->getOperand(1),
                                          GEP.getOperand(1),
                                          Src->getName()+".sum", &GEP);
      GEP.setOperand(0, Src->getOperand(0));
      GEP.setOperand(1, Sum);
      WorkList.push_back(cast<Instruction>(Sum));
      return &GEP;
    } else if (*GEP.idx_begin() == Constant::getNullValue(Type::LongTy) &&
               Src->getNumOperands() != 1) { 
      // Otherwise we can do the fold if the first index of the GEP is a zero
      Indices.insert(Indices.end(), Src->idx_begin(), Src->idx_end());
      Indices.insert(Indices.end(), GEP.idx_begin()+1, GEP.idx_end());
    } else if (Src->getOperand(Src->getNumOperands()-1) == 
               Constant::getNullValue(Type::LongTy)) {
      // If the src gep ends with a constant array index, merge this get into
      // it, even if we have a non-zero array index.
      Indices.insert(Indices.end(), Src->idx_begin(), Src->idx_end()-1);
      Indices.insert(Indices.end(), GEP.idx_begin(), GEP.idx_end());
    }

    if (!Indices.empty())
      return new GetElementPtrInst(Src->getOperand(0), Indices, GEP.getName());

  } else if (GlobalValue *GV = dyn_cast<GlobalValue>(GEP.getOperand(0))) {
    // GEP of global variable.  If all of the indices for this GEP are
    // constants, we can promote this to a constexpr instead of an instruction.

    // Scan for nonconstants...
    std::vector<Constant*> Indices;
    User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end();
    for (; I != E && isa<Constant>(*I); ++I)
      Indices.push_back(cast<Constant>(*I));

    if (I == E) {  // If they are all constants...
      Constant *CE =
        ConstantExpr::getGetElementPtr(ConstantPointerRef::get(GV), Indices);

      // Replace all uses of the GEP with the new constexpr...
      return ReplaceInstUsesWith(GEP, CE);
    }
  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP.getOperand(0))) {
    if (CE->getOpcode() == Instruction::Cast) {
      if (HasZeroPointerIndex) {
        // transform: GEP (cast [10 x ubyte]* X to [0 x ubyte]*), long 0, ...
        // into     : GEP [10 x ubyte]* X, long 0, ...
        //
        // This occurs when the program declares an array extern like "int X[];"
        //
        Constant *X = CE->getOperand(0);
        const PointerType *CPTy = cast<PointerType>(CE->getType());
        if (const PointerType *XTy = dyn_cast<PointerType>(X->getType()))
          if (const ArrayType *XATy =
              dyn_cast<ArrayType>(XTy->getElementType()))
            if (const ArrayType *CATy =
                dyn_cast<ArrayType>(CPTy->getElementType()))
              if (CATy->getElementType() == XATy->getElementType()) {
                // At this point, we know that the cast source type is a pointer
                // to an array of the same type as the destination pointer
                // array.  Because the array type is never stepped over (there
                // is a leading zero) we can fold the cast into this GEP.
                GEP.setOperand(0, X);
                return &GEP;
              }
      }
    }
  }

  return 0;
}

Instruction *InstCombiner::visitAllocationInst(AllocationInst &AI) {
  // Convert: malloc Ty, C - where C is a constant != 1 into: malloc [C x Ty], 1
  if (AI.isArrayAllocation())    // Check C != 1
    if (const ConstantUInt *C = dyn_cast<ConstantUInt>(AI.getArraySize())) {
      const Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getValue());
      AllocationInst *New = 0;

      // Create and insert the replacement instruction...
      if (isa<MallocInst>(AI))
        New = new MallocInst(NewTy, 0, AI.getName(), &AI);
      else {
        assert(isa<AllocaInst>(AI) && "Unknown type of allocation inst!");
        New = new AllocaInst(NewTy, 0, AI.getName(), &AI);
      }
      
      // Scan to the end of the allocation instructions, to skip over a block of
      // allocas if possible...
      //
      BasicBlock::iterator It = New;
      while (isa<AllocationInst>(*It)) ++It;

      // Now that I is pointing to the first non-allocation-inst in the block,
      // insert our getelementptr instruction...
      //
      std::vector<Value*> Idx(2, Constant::getNullValue(Type::LongTy));
      Value *V = new GetElementPtrInst(New, Idx, New->getName()+".sub", It);

      // Now make everything use the getelementptr instead of the original
      // allocation.
      ReplaceInstUsesWith(AI, V);
      return &AI;
    }
  return 0;
}

Instruction *InstCombiner::visitFreeInst(FreeInst &FI) {
  Value *Op = FI.getOperand(0);

  // Change free <ty>* (cast <ty2>* X to <ty>*) into free <ty2>* X
  if (CastInst *CI = dyn_cast<CastInst>(Op))
    if (isa<PointerType>(CI->getOperand(0)->getType())) {
      FI.setOperand(0, CI->getOperand(0));
      return &FI;
    }

  return 0;
}


/// GetGEPGlobalInitializer - Given a constant, and a getelementptr
/// constantexpr, return the constant value being addressed by the constant
/// expression, or null if something is funny.
///
static Constant *GetGEPGlobalInitializer(Constant *C, ConstantExpr *CE) {
  if (CE->getOperand(1) != Constant::getNullValue(Type::LongTy))
    return 0;  // Do not allow stepping over the value!

  // Loop over all of the operands, tracking down which value we are
  // addressing...
  for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i)
    if (ConstantUInt *CU = dyn_cast<ConstantUInt>(CE->getOperand(i))) {
      ConstantStruct *CS = dyn_cast<ConstantStruct>(C);
      if (CS == 0) return 0;
      if (CU->getValue() >= CS->getValues().size()) return 0;
      C = cast<Constant>(CS->getValues()[CU->getValue()]);
    } else if (ConstantSInt *CS = dyn_cast<ConstantSInt>(CE->getOperand(i))) {
      ConstantArray *CA = dyn_cast<ConstantArray>(C);
      if (CA == 0) return 0;
      if ((uint64_t)CS->getValue() >= CA->getValues().size()) return 0;
      C = cast<Constant>(CA->getValues()[CS->getValue()]);
    } else 
      return 0;
  return C;
}

Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
  Value *Op = LI.getOperand(0);
  if (LI.isVolatile()) return 0;

  if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Op))
    Op = CPR->getValue();

  // Instcombine load (constant global) into the value loaded...
  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op))
    if (GV->isConstant() && !GV->isExternal())
      return ReplaceInstUsesWith(LI, GV->getInitializer());

  // Instcombine load (constantexpr_GEP global, 0, ...) into the value loaded...
  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op))
    if (CE->getOpcode() == Instruction::GetElementPtr)
      if (ConstantPointerRef *G=dyn_cast<ConstantPointerRef>(CE->getOperand(0)))
        if (GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getValue()))
          if (GV->isConstant() && !GV->isExternal())
            if (Constant *V = GetGEPGlobalInitializer(GV->getInitializer(), CE))
              return ReplaceInstUsesWith(LI, V);
  return 0;
}


Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
  // Change br (not X), label True, label False to: br X, label False, True
  if (BI.isConditional() && !isa<Constant>(BI.getCondition()))
    if (Value *V = dyn_castNotVal(BI.getCondition())) {
      BasicBlock *TrueDest = BI.getSuccessor(0);
      BasicBlock *FalseDest = BI.getSuccessor(1);
      // Swap Destinations and condition...
      BI.setCondition(V);
      BI.setSuccessor(0, FalseDest);
      BI.setSuccessor(1, TrueDest);
      return &BI;
    }
  return 0;
}


void InstCombiner::removeFromWorkList(Instruction *I) {
  WorkList.erase(std::remove(WorkList.begin(), WorkList.end(), I),
                 WorkList.end());
}

bool InstCombiner::runOnFunction(Function &F) {
  bool Changed = false;
  TD = &getAnalysis<TargetData>();

  WorkList.insert(WorkList.end(), inst_begin(F), inst_end(F));

  while (!WorkList.empty()) {
    Instruction *I = WorkList.back();  // Get an instruction from the worklist
    WorkList.pop_back();

    // Check to see if we can DCE or ConstantPropagate the instruction...
    // Check to see if we can DIE the instruction...
    if (isInstructionTriviallyDead(I)) {
      // Add operands to the worklist...
      if (I->getNumOperands() < 4)
        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
          if (Instruction *Op = dyn_cast<Instruction>(I->getOperand(i)))
            WorkList.push_back(Op);
      ++NumDeadInst;

      I->getParent()->getInstList().erase(I);
      removeFromWorkList(I);
      continue;
    }

    // Instruction isn't dead, see if we can constant propagate it...
    if (Constant *C = ConstantFoldInstruction(I)) {
      // Add operands to the worklist...
      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
        if (Instruction *Op = dyn_cast<Instruction>(I->getOperand(i)))
          WorkList.push_back(Op);
      ReplaceInstUsesWith(*I, C);

      ++NumConstProp;
      I->getParent()->getInstList().erase(I);
      removeFromWorkList(I);
      continue;
    }

    // Now that we have an instruction, try combining it to simplify it...
    if (Instruction *Result = visit(*I)) {
      ++NumCombined;
      // Should we replace the old instruction with a new one?
      if (Result != I) {
        // Instructions can end up on the worklist more than once.  Make sure
        // we do not process an instruction that has been deleted.
        removeFromWorkList(I);

        // Move the name to the new instruction first...
        std::string OldName = I->getName(); I->setName("");
        Result->setName(OldName);

        // Insert the new instruction into the basic block...
        BasicBlock *InstParent = I->getParent();
        InstParent->getInstList().insert(I, Result);

        // Everything uses the new instruction now...
        I->replaceAllUsesWith(Result);

        // Erase the old instruction.
        InstParent->getInstList().erase(I);
      } else {
        BasicBlock::iterator II = I;

        // If the instruction was modified, it's possible that it is now dead.
        // if so, remove it.
        if (dceInstruction(II)) {
          // Instructions may end up in the worklist more than once.  Erase them
          // all.
          removeFromWorkList(I);
          Result = 0;
        }
      }

      if (Result) {
        WorkList.push_back(Result);
        AddUsesToWorkList(*Result);
      }
      Changed = true;
    }
  }

  return Changed;
}

Pass *llvm::createInstructionCombiningPass() {
  return new InstCombiner();
}