aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Transforms/Scalar/JumpThreading.cpp
blob: 5ff5d7de01684acb89650e9051f9727dae74c1b2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Jump Threading pass.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "jump-threading"
#include "llvm/Transforms/Scalar.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/LLVMContext.h"
#include "llvm/Pass.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LazyValueInfo.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/SSAUpdater.h"
#include "llvm/Target/TargetData.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ValueHandle.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;

STATISTIC(NumThreads, "Number of jumps threaded");
STATISTIC(NumFolds,   "Number of terminators folded");
STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");

static cl::opt<unsigned>
Threshold("jump-threading-threshold", 
          cl::desc("Max block size to duplicate for jump threading"),
          cl::init(6), cl::Hidden);

// Turn on use of LazyValueInfo.
static cl::opt<bool>
EnableLVI("enable-jump-threading-lvi",
          cl::desc("Use LVI for jump threading"),
          cl::init(true),
          cl::ReallyHidden);



namespace {
  /// This pass performs 'jump threading', which looks at blocks that have
  /// multiple predecessors and multiple successors.  If one or more of the
  /// predecessors of the block can be proven to always jump to one of the
  /// successors, we forward the edge from the predecessor to the successor by
  /// duplicating the contents of this block.
  ///
  /// An example of when this can occur is code like this:
  ///
  ///   if () { ...
  ///     X = 4;
  ///   }
  ///   if (X < 3) {
  ///
  /// In this case, the unconditional branch at the end of the first if can be
  /// revectored to the false side of the second if.
  ///
  class JumpThreading : public FunctionPass {
    TargetData *TD;
    LazyValueInfo *LVI;
#ifdef NDEBUG
    SmallPtrSet<BasicBlock*, 16> LoopHeaders;
#else
    SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
#endif
    DenseSet<std::pair<Value*, BasicBlock*> > RecursionSet;
    
    // RAII helper for updating the recursion stack.
    struct RecursionSetRemover {
      DenseSet<std::pair<Value*, BasicBlock*> > &TheSet;
      std::pair<Value*, BasicBlock*> ThePair;
      
      RecursionSetRemover(DenseSet<std::pair<Value*, BasicBlock*> > &S,
                          std::pair<Value*, BasicBlock*> P)
        : TheSet(S), ThePair(P) { }
      
      ~RecursionSetRemover() {
        TheSet.erase(ThePair);
      }
    };
  public:
    static char ID; // Pass identification
    JumpThreading() : FunctionPass(ID) {}

    bool runOnFunction(Function &F);
    
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      if (EnableLVI)
        AU.addRequired<LazyValueInfo>();
    }
    
    void FindLoopHeaders(Function &F);
    bool ProcessBlock(BasicBlock *BB);
    bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
                    BasicBlock *SuccBB);
    bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
                                  const SmallVectorImpl<BasicBlock *> &PredBBs);
    
    typedef SmallVectorImpl<std::pair<ConstantInt*,
                                      BasicBlock*> > PredValueInfo;
    
    bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
                                         PredValueInfo &Result);
    bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB);
    
    
    bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
    bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);

    bool ProcessBranchOnPHI(PHINode *PN);
    bool ProcessBranchOnXOR(BinaryOperator *BO);
    
    bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
  };
}

char JumpThreading::ID = 0;
INITIALIZE_PASS(JumpThreading, "jump-threading",
                "Jump Threading", false, false);

// Public interface to the Jump Threading pass
FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }

/// runOnFunction - Top level algorithm.
///
bool JumpThreading::runOnFunction(Function &F) {
  DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
  TD = getAnalysisIfAvailable<TargetData>();
  LVI = EnableLVI ? &getAnalysis<LazyValueInfo>() : 0;
  
  FindLoopHeaders(F);
  
  bool Changed, EverChanged = false;
  do {
    Changed = false;
    for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
      BasicBlock *BB = I;
      // Thread all of the branches we can over this block. 
      while (ProcessBlock(BB))
        Changed = true;
      
      ++I;
      
      // If the block is trivially dead, zap it.  This eliminates the successor
      // edges which simplifies the CFG.
      if (pred_begin(BB) == pred_end(BB) &&
          BB != &BB->getParent()->getEntryBlock()) {
        DEBUG(dbgs() << "  JT: Deleting dead block '" << BB->getName()
              << "' with terminator: " << *BB->getTerminator() << '\n');
        LoopHeaders.erase(BB);
        if (LVI) LVI->eraseBlock(BB);
        DeleteDeadBlock(BB);
        Changed = true;
      } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
        // Can't thread an unconditional jump, but if the block is "almost
        // empty", we can replace uses of it with uses of the successor and make
        // this dead.
        if (BI->isUnconditional() && 
            BB != &BB->getParent()->getEntryBlock()) {
          BasicBlock::iterator BBI = BB->getFirstNonPHI();
          // Ignore dbg intrinsics.
          while (isa<DbgInfoIntrinsic>(BBI))
            ++BBI;
          // If the terminator is the only non-phi instruction, try to nuke it.
          if (BBI->isTerminator()) {
            // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
            // block, we have to make sure it isn't in the LoopHeaders set.  We
            // reinsert afterward if needed.
            bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
            BasicBlock *Succ = BI->getSuccessor(0);
            
            // FIXME: It is always conservatively correct to drop the info
            // for a block even if it doesn't get erased.  This isn't totally
            // awesome, but it allows us to use AssertingVH to prevent nasty
            // dangling pointer issues within LazyValueInfo.
            if (LVI) LVI->eraseBlock(BB);
            if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) {
              Changed = true;
              // If we deleted BB and BB was the header of a loop, then the
              // successor is now the header of the loop.
              BB = Succ;
            }
            
            if (ErasedFromLoopHeaders)
              LoopHeaders.insert(BB);
          }
        }
      }
    }
    EverChanged |= Changed;
  } while (Changed);
  
  LoopHeaders.clear();
  return EverChanged;
}

/// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
/// thread across it.
static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
  /// Ignore PHI nodes, these will be flattened when duplication happens.
  BasicBlock::const_iterator I = BB->getFirstNonPHI();
  
  // FIXME: THREADING will delete values that are just used to compute the
  // branch, so they shouldn't count against the duplication cost.
  
  
  // Sum up the cost of each instruction until we get to the terminator.  Don't
  // include the terminator because the copy won't include it.
  unsigned Size = 0;
  for (; !isa<TerminatorInst>(I); ++I) {
    // Debugger intrinsics don't incur code size.
    if (isa<DbgInfoIntrinsic>(I)) continue;
    
    // If this is a pointer->pointer bitcast, it is free.
    if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
      continue;
    
    // All other instructions count for at least one unit.
    ++Size;
    
    // Calls are more expensive.  If they are non-intrinsic calls, we model them
    // as having cost of 4.  If they are a non-vector intrinsic, we model them
    // as having cost of 2 total, and if they are a vector intrinsic, we model
    // them as having cost 1.
    if (const CallInst *CI = dyn_cast<CallInst>(I)) {
      if (!isa<IntrinsicInst>(CI))
        Size += 3;
      else if (!CI->getType()->isVectorTy())
        Size += 1;
    }
  }
  
  // Threading through a switch statement is particularly profitable.  If this
  // block ends in a switch, decrease its cost to make it more likely to happen.
  if (isa<SwitchInst>(I))
    Size = Size > 6 ? Size-6 : 0;
  
  return Size;
}

/// FindLoopHeaders - We do not want jump threading to turn proper loop
/// structures into irreducible loops.  Doing this breaks up the loop nesting
/// hierarchy and pessimizes later transformations.  To prevent this from
/// happening, we first have to find the loop headers.  Here we approximate this
/// by finding targets of backedges in the CFG.
///
/// Note that there definitely are cases when we want to allow threading of
/// edges across a loop header.  For example, threading a jump from outside the
/// loop (the preheader) to an exit block of the loop is definitely profitable.
/// It is also almost always profitable to thread backedges from within the loop
/// to exit blocks, and is often profitable to thread backedges to other blocks
/// within the loop (forming a nested loop).  This simple analysis is not rich
/// enough to track all of these properties and keep it up-to-date as the CFG
/// mutates, so we don't allow any of these transformations.
///
void JumpThreading::FindLoopHeaders(Function &F) {
  SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
  FindFunctionBackedges(F, Edges);
  
  for (unsigned i = 0, e = Edges.size(); i != e; ++i)
    LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
}

/// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
/// if we can infer that the value is a known ConstantInt in any of our
/// predecessors.  If so, return the known list of value and pred BB in the
/// result vector.  If a value is known to be undef, it is returned as null.
///
/// This returns true if there were any known values.
///
bool JumpThreading::
ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){
  // This method walks up use-def chains recursively.  Because of this, we could
  // get into an infinite loop going around loops in the use-def chain.  To
  // prevent this, keep track of what (value, block) pairs we've already visited
  // and terminate the search if we loop back to them
  if (!RecursionSet.insert(std::make_pair(V, BB)).second)
    return false;
  
  // An RAII help to remove this pair from the recursion set once the recursion
  // stack pops back out again.
  RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB));
  
  // If V is a constantint, then it is known in all predecessors.
  if (isa<ConstantInt>(V) || isa<UndefValue>(V)) {
    ConstantInt *CI = dyn_cast<ConstantInt>(V);
    
    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
      Result.push_back(std::make_pair(CI, *PI));
    
    return true;
  }
  
  // If V is a non-instruction value, or an instruction in a different block,
  // then it can't be derived from a PHI.
  Instruction *I = dyn_cast<Instruction>(V);
  if (I == 0 || I->getParent() != BB) {
    
    // Okay, if this is a live-in value, see if it has a known value at the end
    // of any of our predecessors.
    //
    // FIXME: This should be an edge property, not a block end property.
    /// TODO: Per PR2563, we could infer value range information about a
    /// predecessor based on its terminator.
    //
    if (LVI) {
      // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
      // "I" is a non-local compare-with-a-constant instruction.  This would be
      // able to handle value inequalities better, for example if the compare is
      // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
      // Perhaps getConstantOnEdge should be smart enough to do this?
      
      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
        BasicBlock *P = *PI;
        // If the value is known by LazyValueInfo to be a constant in a
        // predecessor, use that information to try to thread this block.
        Constant *PredCst = LVI->getConstantOnEdge(V, P, BB);
        if (PredCst == 0 ||
            (!isa<ConstantInt>(PredCst) && !isa<UndefValue>(PredCst)))
          continue;
        
        Result.push_back(std::make_pair(dyn_cast<ConstantInt>(PredCst), P));
      }
      
      return !Result.empty();
    }
    
    return false;
  }
  
  /// If I is a PHI node, then we know the incoming values for any constants.
  if (PHINode *PN = dyn_cast<PHINode>(I)) {
    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
      Value *InVal = PN->getIncomingValue(i);
      if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) {
        ConstantInt *CI = dyn_cast<ConstantInt>(InVal);
        Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i)));
      } else if (LVI) {
        Constant *CI = LVI->getConstantOnEdge(InVal,
                                              PN->getIncomingBlock(i), BB);
        // LVI returns null is no value could be determined.
        if (!CI) continue;
        if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI))
          Result.push_back(std::make_pair(CInt, PN->getIncomingBlock(i)));
        else if (isa<UndefValue>(CI))
           Result.push_back(std::make_pair((ConstantInt*)0,
                                           PN->getIncomingBlock(i)));
      }
    }
    
    return !Result.empty();
  }
  
  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals;

  // Handle some boolean conditions.
  if (I->getType()->getPrimitiveSizeInBits() == 1) { 
    // X | true -> true
    // X & false -> false
    if (I->getOpcode() == Instruction::Or ||
        I->getOpcode() == Instruction::And) {
      ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
      ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals);
      
      if (LHSVals.empty() && RHSVals.empty())
        return false;
      
      ConstantInt *InterestingVal;
      if (I->getOpcode() == Instruction::Or)
        InterestingVal = ConstantInt::getTrue(I->getContext());
      else
        InterestingVal = ConstantInt::getFalse(I->getContext());
      
      SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
      
      // Scan for the sentinel.  If we find an undef, force it to the
      // interesting value: x|undef -> true and x&undef -> false.
      for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
        if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0) {
          Result.push_back(LHSVals[i]);
          Result.back().first = InterestingVal;
          LHSKnownBBs.insert(LHSVals[i].second);
        }
      for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
        if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0) {
          // If we already inferred a value for this block on the LHS, don't
          // re-add it.
          if (!LHSKnownBBs.count(RHSVals[i].second)) {
            Result.push_back(RHSVals[i]);
            Result.back().first = InterestingVal;
          }
        }
      
      return !Result.empty();
    }
    
    // Handle the NOT form of XOR.
    if (I->getOpcode() == Instruction::Xor &&
        isa<ConstantInt>(I->getOperand(1)) &&
        cast<ConstantInt>(I->getOperand(1))->isOne()) {
      ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result);
      if (Result.empty())
        return false;

      // Invert the known values.
      for (unsigned i = 0, e = Result.size(); i != e; ++i)
        if (Result[i].first)
          Result[i].first =
            cast<ConstantInt>(ConstantExpr::getNot(Result[i].first));
      
      return true;
    }
  
  // Try to simplify some other binary operator values.
  } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
    ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1));
    if (CI) {
      SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals;
      ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals);
    
      // Try to use constant folding to simplify the binary operator.
      for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
        Constant *Folded = 0;
        if (LHSVals[i].first == 0) {
          Folded = ConstantExpr::get(BO->getOpcode(),
                                     UndefValue::get(BO->getType()),
                                     CI);
        } else {
          Folded = ConstantExpr::get(BO->getOpcode(), LHSVals[i].first, CI);
        }
        
        if (ConstantInt *FoldedCInt = dyn_cast<ConstantInt>(Folded))
          Result.push_back(std::make_pair(FoldedCInt, LHSVals[i].second));
        else if (isa<UndefValue>(Folded))
          Result.push_back(std::make_pair((ConstantInt*)0, LHSVals[i].second));
      }
    }
      
    return !Result.empty();
  }
  
  // Handle compare with phi operand, where the PHI is defined in this block.
  if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
    PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
    if (PN && PN->getParent() == BB) {
      // We can do this simplification if any comparisons fold to true or false.
      // See if any do.
      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
        BasicBlock *PredBB = PN->getIncomingBlock(i);
        Value *LHS = PN->getIncomingValue(i);
        Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
        
        Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD);
        if (Res == 0) {
          if (!LVI || !isa<Constant>(RHS))
            continue;
          
          LazyValueInfo::Tristate 
            ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS,
                                           cast<Constant>(RHS), PredBB, BB);
          if (ResT == LazyValueInfo::Unknown)
            continue;
          Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
        }
        
        if (isa<UndefValue>(Res))
          Result.push_back(std::make_pair((ConstantInt*)0, PredBB));
        else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res))
          Result.push_back(std::make_pair(CI, PredBB));
      }
      
      return !Result.empty();
    }
    
    
    // If comparing a live-in value against a constant, see if we know the
    // live-in value on any predecessors.
    if (LVI && isa<Constant>(Cmp->getOperand(1)) &&
        Cmp->getType()->isIntegerTy()) {
      if (!isa<Instruction>(Cmp->getOperand(0)) ||
          cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) {
        Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));

        for (pred_iterator PI = pred_begin(BB), E = pred_end(BB);PI != E; ++PI){
          BasicBlock *P = *PI;
          // If the value is known by LazyValueInfo to be a constant in a
          // predecessor, use that information to try to thread this block.
          LazyValueInfo::Tristate Res =
            LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
                                    RHSCst, P, BB);
          if (Res == LazyValueInfo::Unknown)
            continue;

          Constant *ResC = ConstantInt::get(Cmp->getType(), Res);
          Result.push_back(std::make_pair(cast<ConstantInt>(ResC), P));
        }

        return !Result.empty();
      }
      
      // Try to find a constant value for the LHS of a comparison,
      // and evaluate it statically if we can.
      if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) {
        SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals;
        ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
        
        for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
          Constant * Folded = 0;
          if (LHSVals[i].first == 0)
            Folded = ConstantExpr::getCompare(Cmp->getPredicate(),
                                UndefValue::get(CmpConst->getType()), CmpConst);
          else
            Folded = ConstantExpr::getCompare(Cmp->getPredicate(),   
                                              LHSVals[i].first, CmpConst);
          
          if (ConstantInt *FoldedCInt = dyn_cast<ConstantInt>(Folded))
            Result.push_back(std::make_pair(FoldedCInt, LHSVals[i].second));
          else if (isa<UndefValue>(Folded))
            Result.push_back(std::make_pair((ConstantInt*)0,LHSVals[i].second));
        }
        
        return !Result.empty();
      }
    }
  }
  
  if (LVI) {
    // If all else fails, see if LVI can figure out a constant value for us.
    Constant *CI = LVI->getConstant(V, BB);
    ConstantInt *CInt = dyn_cast_or_null<ConstantInt>(CI);
    if (CInt) {
      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
        Result.push_back(std::make_pair(CInt, *PI));
    }
    
    return !Result.empty();
  }
  
  return false;
}



/// GetBestDestForBranchOnUndef - If we determine that the specified block ends
/// in an undefined jump, decide which block is best to revector to.
///
/// Since we can pick an arbitrary destination, we pick the successor with the
/// fewest predecessors.  This should reduce the in-degree of the others.
///
static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
  TerminatorInst *BBTerm = BB->getTerminator();
  unsigned MinSucc = 0;
  BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
  // Compute the successor with the minimum number of predecessors.
  unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
  for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
    TestBB = BBTerm->getSuccessor(i);
    unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
    if (NumPreds < MinNumPreds)
      MinSucc = i;
  }
  
  return MinSucc;
}

/// ProcessBlock - If there are any predecessors whose control can be threaded
/// through to a successor, transform them now.
bool JumpThreading::ProcessBlock(BasicBlock *BB) {
  // If the block is trivially dead, just return and let the caller nuke it.
  // This simplifies other transformations.
  if (pred_begin(BB) == pred_end(BB) &&
      BB != &BB->getParent()->getEntryBlock())
    return false;
  
  // If this block has a single predecessor, and if that pred has a single
  // successor, merge the blocks.  This encourages recursive jump threading
  // because now the condition in this block can be threaded through
  // predecessors of our predecessor block.
  if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
    if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
        SinglePred != BB) {
      // If SinglePred was a loop header, BB becomes one.
      if (LoopHeaders.erase(SinglePred))
        LoopHeaders.insert(BB);
      
      // Remember if SinglePred was the entry block of the function.  If so, we
      // will need to move BB back to the entry position.
      bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
      if (LVI) LVI->eraseBlock(SinglePred);
      MergeBasicBlockIntoOnlyPred(BB);
      
      if (isEntry && BB != &BB->getParent()->getEntryBlock())
        BB->moveBefore(&BB->getParent()->getEntryBlock());
      return true;
    }
  }

  // Look to see if the terminator is a branch of switch, if not we can't thread
  // it.
  Value *Condition;
  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
    // Can't thread an unconditional jump.
    if (BI->isUnconditional()) return false;
    Condition = BI->getCondition();
  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
    Condition = SI->getCondition();
  else
    return false; // Must be an invoke.
  
  // If the terminator of this block is branching on a constant, simplify the
  // terminator to an unconditional branch.  This can occur due to threading in
  // other blocks.
  if (isa<ConstantInt>(Condition)) {
    DEBUG(dbgs() << "  In block '" << BB->getName()
          << "' folding terminator: " << *BB->getTerminator() << '\n');
    ++NumFolds;
    ConstantFoldTerminator(BB);
    return true;
  }
  
  // If the terminator is branching on an undef, we can pick any of the
  // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
  if (isa<UndefValue>(Condition)) {
    unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
    
    // Fold the branch/switch.
    TerminatorInst *BBTerm = BB->getTerminator();
    for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
      if (i == BestSucc) continue;
      RemovePredecessorAndSimplify(BBTerm->getSuccessor(i), BB, TD);
    }
    
    DEBUG(dbgs() << "  In block '" << BB->getName()
          << "' folding undef terminator: " << *BBTerm << '\n');
    BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
    BBTerm->eraseFromParent();
    return true;
  }
  
  Instruction *CondInst = dyn_cast<Instruction>(Condition);

  // If the condition is an instruction defined in another block, see if a
  // predecessor has the same condition:
  //     br COND, BBX, BBY
  //  BBX:
  //     br COND, BBZ, BBW
  if (!LVI &&
      !Condition->hasOneUse() && // Multiple uses.
      (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition.
    pred_iterator PI = pred_begin(BB), E = pred_end(BB);
    if (isa<BranchInst>(BB->getTerminator())) {
      for (; PI != E; ++PI) {
        BasicBlock *P = *PI;
        if (BranchInst *PBI = dyn_cast<BranchInst>(P->getTerminator()))
          if (PBI->isConditional() && PBI->getCondition() == Condition &&
              ProcessBranchOnDuplicateCond(P, BB))
            return true;
      }
    } else {
      assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator");
      for (; PI != E; ++PI) {
        BasicBlock *P = *PI;
        if (SwitchInst *PSI = dyn_cast<SwitchInst>(P->getTerminator()))
          if (PSI->getCondition() == Condition &&
              ProcessSwitchOnDuplicateCond(P, BB))
            return true;
      }
    }
  }

  // All the rest of our checks depend on the condition being an instruction.
  if (CondInst == 0) {
    // FIXME: Unify this with code below.
    if (LVI && ProcessThreadableEdges(Condition, BB))
      return true;
    return false;
  }  
    
  
  if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
    if (!LVI &&
        (!isa<PHINode>(CondCmp->getOperand(0)) ||
         cast<PHINode>(CondCmp->getOperand(0))->getParent() != BB)) {
      // If we have a comparison, loop over the predecessors to see if there is
      // a condition with a lexically identical value.
      pred_iterator PI = pred_begin(BB), E = pred_end(BB);
      for (; PI != E; ++PI) {
        BasicBlock *P = *PI;
        if (BranchInst *PBI = dyn_cast<BranchInst>(P->getTerminator()))
          if (PBI->isConditional() && P != BB) {
            if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) {
              if (CI->getOperand(0) == CondCmp->getOperand(0) &&
                  CI->getOperand(1) == CondCmp->getOperand(1) &&
                  CI->getPredicate() == CondCmp->getPredicate()) {
                // TODO: Could handle things like (x != 4) --> (x == 17)
                if (ProcessBranchOnDuplicateCond(P, BB))
                  return true;
              }
            }
          }
      }
    }
    
    // For a comparison where the LHS is outside this block, it's possible
    // that we've branched on it before.  Used LVI to see if we can simplify
    // the branch based on that.
    BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
    Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
    pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
    if (LVI && CondBr && CondConst && CondBr->isConditional() && PI != PE &&
        (!isa<Instruction>(CondCmp->getOperand(0)) ||
         cast<Instruction>(CondCmp->getOperand(0))->getParent() != BB)) {
      // For predecessor edge, determine if the comparison is true or false
      // on that edge.  If they're all true or all false, we can simplify the
      // branch.
      // FIXME: We could handle mixed true/false by duplicating code.
      LazyValueInfo::Tristate Baseline =      
        LVI->getPredicateOnEdge(CondCmp->getPredicate(), CondCmp->getOperand(0),
                                CondConst, *PI, BB);
      if (Baseline != LazyValueInfo::Unknown) {
        // Check that all remaining incoming values match the first one.
        while (++PI != PE) {
          LazyValueInfo::Tristate Ret = LVI->getPredicateOnEdge(
                                          CondCmp->getPredicate(),
                                          CondCmp->getOperand(0),
                                          CondConst, *PI, BB);
          if (Ret != Baseline) break;
        }
        
        // If we terminated early, then one of the values didn't match.
        if (PI == PE) {
          unsigned ToRemove = Baseline == LazyValueInfo::True ? 1 : 0;
          unsigned ToKeep = Baseline == LazyValueInfo::True ? 0 : 1;
          RemovePredecessorAndSimplify(CondBr->getSuccessor(ToRemove), BB, TD);
          BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
          CondBr->eraseFromParent();
          return true;
        }
      }
    }
  }

  // Check for some cases that are worth simplifying.  Right now we want to look
  // for loads that are used by a switch or by the condition for the branch.  If
  // we see one, check to see if it's partially redundant.  If so, insert a PHI
  // which can then be used to thread the values.
  //
  Value *SimplifyValue = CondInst;
  if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
    if (isa<Constant>(CondCmp->getOperand(1)))
      SimplifyValue = CondCmp->getOperand(0);
  
  // TODO: There are other places where load PRE would be profitable, such as
  // more complex comparisons.
  if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
    if (SimplifyPartiallyRedundantLoad(LI))
      return true;
  
  
  // Handle a variety of cases where we are branching on something derived from
  // a PHI node in the current block.  If we can prove that any predecessors
  // compute a predictable value based on a PHI node, thread those predecessors.
  //
  if (ProcessThreadableEdges(CondInst, BB))
    return true;
  
  // If this is an otherwise-unfoldable branch on a phi node in the current
  // block, see if we can simplify.
  if (PHINode *PN = dyn_cast<PHINode>(CondInst))
    if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
      return ProcessBranchOnPHI(PN);
  
  
  // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
  if (CondInst->getOpcode() == Instruction::Xor &&
      CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
    return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
  
  
  // TODO: If we have: "br (X > 0)"  and we have a predecessor where we know
  // "(X == 4)", thread through this block.
  
  return false;
}

/// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that
/// block that jump on exactly the same condition.  This means that we almost
/// always know the direction of the edge in the DESTBB:
///  PREDBB:
///     br COND, DESTBB, BBY
///  DESTBB:
///     br COND, BBZ, BBW
///
/// If DESTBB has multiple predecessors, we can't just constant fold the branch
/// in DESTBB, we have to thread over it.
bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
                                                 BasicBlock *BB) {
  BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator());
  
  // If both successors of PredBB go to DESTBB, we don't know anything.  We can
  // fold the branch to an unconditional one, which allows other recursive
  // simplifications.
  bool BranchDir;
  if (PredBI->getSuccessor(1) != BB)
    BranchDir = true;
  else if (PredBI->getSuccessor(0) != BB)
    BranchDir = false;
  else {
    DEBUG(dbgs() << "  In block '" << PredBB->getName()
          << "' folding terminator: " << *PredBB->getTerminator() << '\n');
    ++NumFolds;
    ConstantFoldTerminator(PredBB);
    return true;
  }
   
  BranchInst *DestBI = cast<BranchInst>(BB->getTerminator());

  // If the dest block has one predecessor, just fix the branch condition to a
  // constant and fold it.
  if (BB->getSinglePredecessor()) {
    DEBUG(dbgs() << "  In block '" << BB->getName()
          << "' folding condition to '" << BranchDir << "': "
          << *BB->getTerminator() << '\n');
    ++NumFolds;
    Value *OldCond = DestBI->getCondition();
    DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
                                          BranchDir));
    // Delete dead instructions before we fold the branch.  Folding the branch
    // can eliminate edges from the CFG which can end up deleting OldCond.
    RecursivelyDeleteTriviallyDeadInstructions(OldCond);
    ConstantFoldTerminator(BB);
    return true;
  }
 
  
  // Next, figure out which successor we are threading to.
  BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
  
  SmallVector<BasicBlock*, 2> Preds;
  Preds.push_back(PredBB);
  
  // Ok, try to thread it!
  return ThreadEdge(BB, Preds, SuccBB);
}

/// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
/// block that switch on exactly the same condition.  This means that we almost
/// always know the direction of the edge in the DESTBB:
///  PREDBB:
///     switch COND [... DESTBB, BBY ... ]
///  DESTBB:
///     switch COND [... BBZ, BBW ]
///
/// Optimizing switches like this is very important, because simplifycfg builds
/// switches out of repeated 'if' conditions.
bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
                                                 BasicBlock *DestBB) {
  // Can't thread edge to self.
  if (PredBB == DestBB)
    return false;
  
  SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator());
  SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator());

  // There are a variety of optimizations that we can potentially do on these
  // blocks: we order them from most to least preferable.
  
  // If DESTBB *just* contains the switch, then we can forward edges from PREDBB
  // directly to their destination.  This does not introduce *any* code size
  // growth.  Skip debug info first.
  BasicBlock::iterator BBI = DestBB->begin();
  while (isa<DbgInfoIntrinsic>(BBI))
    BBI++;
  
  // FIXME: Thread if it just contains a PHI.
  if (isa<SwitchInst>(BBI)) {
    bool MadeChange = false;
    // Ignore the default edge for now.
    for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) {
      ConstantInt *DestVal = DestSI->getCaseValue(i);
      BasicBlock *DestSucc = DestSI->getSuccessor(i);
      
      // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'.  See if
      // PredSI has an explicit case for it.  If so, forward.  If it is covered
      // by the default case, we can't update PredSI.
      unsigned PredCase = PredSI->findCaseValue(DestVal);
      if (PredCase == 0) continue;
      
      // If PredSI doesn't go to DestBB on this value, then it won't reach the
      // case on this condition.
      if (PredSI->getSuccessor(PredCase) != DestBB &&
          DestSI->getSuccessor(i) != DestBB)
        continue;
      
      // Do not forward this if it already goes to this destination, this would
      // be an infinite loop.
      if (PredSI->getSuccessor(PredCase) == DestSucc)
        continue;

      // Otherwise, we're safe to make the change.  Make sure that the edge from
      // DestSI to DestSucc is not critical and has no PHI nodes.
      DEBUG(dbgs() << "FORWARDING EDGE " << *DestVal << "   FROM: " << *PredSI);
      DEBUG(dbgs() << "THROUGH: " << *DestSI);

      // If the destination has PHI nodes, just split the edge for updating
      // simplicity.
      if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){
        SplitCriticalEdge(DestSI, i, this);
        DestSucc = DestSI->getSuccessor(i);
      }
      FoldSingleEntryPHINodes(DestSucc);
      PredSI->setSuccessor(PredCase, DestSucc);
      MadeChange = true;
    }
    
    if (MadeChange)
      return true;
  }
  
  return false;
}


/// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
/// load instruction, eliminate it by replacing it with a PHI node.  This is an
/// important optimization that encourages jump threading, and needs to be run
/// interlaced with other jump threading tasks.
bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
  // Don't hack volatile loads.
  if (LI->isVolatile()) return false;
  
  // If the load is defined in a block with exactly one predecessor, it can't be
  // partially redundant.
  BasicBlock *LoadBB = LI->getParent();
  if (LoadBB->getSinglePredecessor())
    return false;
  
  Value *LoadedPtr = LI->getOperand(0);

  // If the loaded operand is defined in the LoadBB, it can't be available.
  // TODO: Could do simple PHI translation, that would be fun :)
  if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
    if (PtrOp->getParent() == LoadBB)
      return false;
  
  // Scan a few instructions up from the load, to see if it is obviously live at
  // the entry to its block.
  BasicBlock::iterator BBIt = LI;

  if (Value *AvailableVal = 
        FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) {
    // If the value if the load is locally available within the block, just use
    // it.  This frequently occurs for reg2mem'd allocas.
    //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
    
    // If the returned value is the load itself, replace with an undef. This can
    // only happen in dead loops.
    if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
    LI->replaceAllUsesWith(AvailableVal);
    LI->eraseFromParent();
    return true;
  }

  // Otherwise, if we scanned the whole block and got to the top of the block,
  // we know the block is locally transparent to the load.  If not, something
  // might clobber its value.
  if (BBIt != LoadBB->begin())
    return false;
  
  
  SmallPtrSet<BasicBlock*, 8> PredsScanned;
  typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
  AvailablePredsTy AvailablePreds;
  BasicBlock *OneUnavailablePred = 0;
  
  // If we got here, the loaded value is transparent through to the start of the
  // block.  Check to see if it is available in any of the predecessor blocks.
  for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
       PI != PE; ++PI) {
    BasicBlock *PredBB = *PI;

    // If we already scanned this predecessor, skip it.
    if (!PredsScanned.insert(PredBB))
      continue;

    // Scan the predecessor to see if the value is available in the pred.
    BBIt = PredBB->end();
    Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
    if (!PredAvailable) {
      OneUnavailablePred = PredBB;
      continue;
    }
    
    // If so, this load is partially redundant.  Remember this info so that we
    // can create a PHI node.
    AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
  }
  
  // If the loaded value isn't available in any predecessor, it isn't partially
  // redundant.
  if (AvailablePreds.empty()) return false;
  
  // Okay, the loaded value is available in at least one (and maybe all!)
  // predecessors.  If the value is unavailable in more than one unique
  // predecessor, we want to insert a merge block for those common predecessors.
  // This ensures that we only have to insert one reload, thus not increasing
  // code size.
  BasicBlock *UnavailablePred = 0;
  
  // If there is exactly one predecessor where the value is unavailable, the
  // already computed 'OneUnavailablePred' block is it.  If it ends in an
  // unconditional branch, we know that it isn't a critical edge.
  if (PredsScanned.size() == AvailablePreds.size()+1 &&
      OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
    UnavailablePred = OneUnavailablePred;
  } else if (PredsScanned.size() != AvailablePreds.size()) {
    // Otherwise, we had multiple unavailable predecessors or we had a critical
    // edge from the one.
    SmallVector<BasicBlock*, 8> PredsToSplit;
    SmallPtrSet<BasicBlock*, 8> AvailablePredSet;

    for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
      AvailablePredSet.insert(AvailablePreds[i].first);

    // Add all the unavailable predecessors to the PredsToSplit list.
    for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
         PI != PE; ++PI) {
      BasicBlock *P = *PI;
      // If the predecessor is an indirect goto, we can't split the edge.
      if (isa<IndirectBrInst>(P->getTerminator()))
        return false;
      
      if (!AvailablePredSet.count(P))
        PredsToSplit.push_back(P);
    }
    
    // Split them out to their own block.
    UnavailablePred =
      SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
                             "thread-pre-split", this);
  }
  
  // If the value isn't available in all predecessors, then there will be
  // exactly one where it isn't available.  Insert a load on that edge and add
  // it to the AvailablePreds list.
  if (UnavailablePred) {
    assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
           "Can't handle critical edge here!");
    Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false,
                                 LI->getAlignment(),
                                 UnavailablePred->getTerminator());
    AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
  }
  
  // Now we know that each predecessor of this block has a value in
  // AvailablePreds, sort them for efficient access as we're walking the preds.
  array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
  
  // Create a PHI node at the start of the block for the PRE'd load value.
  PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
  PN->takeName(LI);
  
  // Insert new entries into the PHI for each predecessor.  A single block may
  // have multiple entries here.
  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
       ++PI) {
    BasicBlock *P = *PI;
    AvailablePredsTy::iterator I = 
      std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
                       std::make_pair(P, (Value*)0));
    
    assert(I != AvailablePreds.end() && I->first == P &&
           "Didn't find entry for predecessor!");
    
    PN->addIncoming(I->second, I->first);
  }
  
  //cerr << "PRE: " << *LI << *PN << "\n";
  
  LI->replaceAllUsesWith(PN);
  LI->eraseFromParent();
  
  return true;
}

/// FindMostPopularDest - The specified list contains multiple possible
/// threadable destinations.  Pick the one that occurs the most frequently in
/// the list.
static BasicBlock *
FindMostPopularDest(BasicBlock *BB,
                    const SmallVectorImpl<std::pair<BasicBlock*,
                                  BasicBlock*> > &PredToDestList) {
  assert(!PredToDestList.empty());
  
  // Determine popularity.  If there are multiple possible destinations, we
  // explicitly choose to ignore 'undef' destinations.  We prefer to thread
  // blocks with known and real destinations to threading undef.  We'll handle
  // them later if interesting.
  DenseMap<BasicBlock*, unsigned> DestPopularity;
  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
    if (PredToDestList[i].second)
      DestPopularity[PredToDestList[i].second]++;
  
  // Find the most popular dest.
  DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
  BasicBlock *MostPopularDest = DPI->first;
  unsigned Popularity = DPI->second;
  SmallVector<BasicBlock*, 4> SamePopularity;
  
  for (++DPI; DPI != DestPopularity.end(); ++DPI) {
    // If the popularity of this entry isn't higher than the popularity we've
    // seen so far, ignore it.
    if (DPI->second < Popularity)
      ; // ignore.
    else if (DPI->second == Popularity) {
      // If it is the same as what we've seen so far, keep track of it.
      SamePopularity.push_back(DPI->first);
    } else {
      // If it is more popular, remember it.
      SamePopularity.clear();
      MostPopularDest = DPI->first;
      Popularity = DPI->second;
    }      
  }
  
  // Okay, now we know the most popular destination.  If there is more than
  // destination, we need to determine one.  This is arbitrary, but we need
  // to make a deterministic decision.  Pick the first one that appears in the
  // successor list.
  if (!SamePopularity.empty()) {
    SamePopularity.push_back(MostPopularDest);
    TerminatorInst *TI = BB->getTerminator();
    for (unsigned i = 0; ; ++i) {
      assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
      
      if (std::find(SamePopularity.begin(), SamePopularity.end(),
                    TI->getSuccessor(i)) == SamePopularity.end())
        continue;
      
      MostPopularDest = TI->getSuccessor(i);
      break;
    }
  }
  
  // Okay, we have finally picked the most popular destination.
  return MostPopularDest;
}

bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB) {
  // If threading this would thread across a loop header, don't even try to
  // thread the edge.
  if (LoopHeaders.count(BB))
    return false;
  
  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues;
  if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues)) {
    return false;
  }
  assert(!PredValues.empty() &&
         "ComputeValueKnownInPredecessors returned true with no values");

  DEBUG(dbgs() << "IN BB: " << *BB;
        for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
          dbgs() << "  BB '" << BB->getName() << "': FOUND condition = ";
          if (PredValues[i].first)
            dbgs() << *PredValues[i].first;
          else
            dbgs() << "UNDEF";
          dbgs() << " for pred '" << PredValues[i].second->getName()
          << "'.\n";
        });
  
  // Decide what we want to thread through.  Convert our list of known values to
  // a list of known destinations for each pred.  This also discards duplicate
  // predecessors and keeps track of the undefined inputs (which are represented
  // as a null dest in the PredToDestList).
  SmallPtrSet<BasicBlock*, 16> SeenPreds;
  SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
  
  BasicBlock *OnlyDest = 0;
  BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
  
  for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
    BasicBlock *Pred = PredValues[i].second;
    if (!SeenPreds.insert(Pred))
      continue;  // Duplicate predecessor entry.
    
    // If the predecessor ends with an indirect goto, we can't change its
    // destination.
    if (isa<IndirectBrInst>(Pred->getTerminator()))
      continue;
    
    ConstantInt *Val = PredValues[i].first;
    
    BasicBlock *DestBB;
    if (Val == 0)      // Undef.
      DestBB = 0;
    else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
      DestBB = BI->getSuccessor(Val->isZero());
    else {
      SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
      DestBB = SI->getSuccessor(SI->findCaseValue(Val));
    }

    // If we have exactly one destination, remember it for efficiency below.
    if (i == 0)
      OnlyDest = DestBB;
    else if (OnlyDest != DestBB)
      OnlyDest = MultipleDestSentinel;
    
    PredToDestList.push_back(std::make_pair(Pred, DestBB));
  }
  
  // If all edges were unthreadable, we fail.
  if (PredToDestList.empty())
    return false;
  
  // Determine which is the most common successor.  If we have many inputs and
  // this block is a switch, we want to start by threading the batch that goes
  // to the most popular destination first.  If we only know about one
  // threadable destination (the common case) we can avoid this.
  BasicBlock *MostPopularDest = OnlyDest;
  
  if (MostPopularDest == MultipleDestSentinel)
    MostPopularDest = FindMostPopularDest(BB, PredToDestList);
  
  // Now that we know what the most popular destination is, factor all
  // predecessors that will jump to it into a single predecessor.
  SmallVector<BasicBlock*, 16> PredsToFactor;
  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
    if (PredToDestList[i].second == MostPopularDest) {
      BasicBlock *Pred = PredToDestList[i].first;
      
      // This predecessor may be a switch or something else that has multiple
      // edges to the block.  Factor each of these edges by listing them
      // according to # occurrences in PredsToFactor.
      TerminatorInst *PredTI = Pred->getTerminator();
      for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
        if (PredTI->getSuccessor(i) == BB)
          PredsToFactor.push_back(Pred);
    }

  // If the threadable edges are branching on an undefined value, we get to pick
  // the destination that these predecessors should get to.
  if (MostPopularDest == 0)
    MostPopularDest = BB->getTerminator()->
                            getSuccessor(GetBestDestForJumpOnUndef(BB));
        
  // Ok, try to thread it!
  return ThreadEdge(BB, PredsToFactor, MostPopularDest);
}

/// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
/// a PHI node in the current block.  See if there are any simplifications we
/// can do based on inputs to the phi node.
/// 
bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) {
  BasicBlock *BB = PN->getParent();
  
  // TODO: We could make use of this to do it once for blocks with common PHI
  // values.
  SmallVector<BasicBlock*, 1> PredBBs;
  PredBBs.resize(1);
  
  // If any of the predecessor blocks end in an unconditional branch, we can
  // *duplicate* the conditional branch into that block in order to further
  // encourage jump threading and to eliminate cases where we have branch on a
  // phi of an icmp (branch on icmp is much better).
  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    BasicBlock *PredBB = PN->getIncomingBlock(i);
    if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
      if (PredBr->isUnconditional()) {
        PredBBs[0] = PredBB;
        // Try to duplicate BB into PredBB.
        if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
          return true;
      }
  }

  return false;
}

/// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
/// a xor instruction in the current block.  See if there are any
/// simplifications we can do based on inputs to the xor.
/// 
bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) {
  BasicBlock *BB = BO->getParent();
  
  // If either the LHS or RHS of the xor is a constant, don't do this
  // optimization.
  if (isa<ConstantInt>(BO->getOperand(0)) ||
      isa<ConstantInt>(BO->getOperand(1)))
    return false;
  
  // If the first instruction in BB isn't a phi, we won't be able to infer
  // anything special about any particular predecessor.
  if (!isa<PHINode>(BB->front()))
    return false;
  
  // If we have a xor as the branch input to this block, and we know that the
  // LHS or RHS of the xor in any predecessor is true/false, then we can clone
  // the condition into the predecessor and fix that value to true, saving some
  // logical ops on that path and encouraging other paths to simplify.
  //
  // This copies something like this:
  //
  //  BB:
  //    %X = phi i1 [1],  [%X']
  //    %Y = icmp eq i32 %A, %B
  //    %Z = xor i1 %X, %Y
  //    br i1 %Z, ...
  //
  // Into:
  //  BB':
  //    %Y = icmp ne i32 %A, %B
  //    br i1 %Z, ...

  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> XorOpValues;
  bool isLHS = true;
  if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues)) {
    assert(XorOpValues.empty());
    if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues))
      return false;
    isLHS = false;
  }
  
  assert(!XorOpValues.empty() &&
         "ComputeValueKnownInPredecessors returned true with no values");

  // Scan the information to see which is most popular: true or false.  The
  // predecessors can be of the set true, false, or undef.
  unsigned NumTrue = 0, NumFalse = 0;
  for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
    if (!XorOpValues[i].first) continue;  // Ignore undefs for the count.
    if (XorOpValues[i].first->isZero())
      ++NumFalse;
    else
      ++NumTrue;
  }
  
  // Determine which value to split on, true, false, or undef if neither.
  ConstantInt *SplitVal = 0;
  if (NumTrue > NumFalse)
    SplitVal = ConstantInt::getTrue(BB->getContext());
  else if (NumTrue != 0 || NumFalse != 0)
    SplitVal = ConstantInt::getFalse(BB->getContext());
  
  // Collect all of the blocks that this can be folded into so that we can
  // factor this once and clone it once.
  SmallVector<BasicBlock*, 8> BlocksToFoldInto;
  for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
    if (XorOpValues[i].first != SplitVal && XorOpValues[i].first != 0) continue;

    BlocksToFoldInto.push_back(XorOpValues[i].second);
  }
  
  // If we inferred a value for all of the predecessors, then duplication won't
  // help us.  However, we can just replace the LHS or RHS with the constant.
  if (BlocksToFoldInto.size() ==
      cast<PHINode>(BB->front()).getNumIncomingValues()) {
    if (SplitVal == 0) {
      // If all preds provide undef, just nuke the xor, because it is undef too.
      BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
      BO->eraseFromParent();
    } else if (SplitVal->isZero()) {
      // If all preds provide 0, replace the xor with the other input.
      BO->replaceAllUsesWith(BO->getOperand(isLHS));
      BO->eraseFromParent();
    } else {
      // If all preds provide 1, set the computed value to 1.
      BO->setOperand(!isLHS, SplitVal);
    }
    
    return true;
  }
  
  // Try to duplicate BB into PredBB.
  return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
}


/// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
/// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
/// NewPred using the entries from OldPred (suitably mapped).
static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
                                            BasicBlock *OldPred,
                                            BasicBlock *NewPred,
                                     DenseMap<Instruction*, Value*> &ValueMap) {
  for (BasicBlock::iterator PNI = PHIBB->begin();
       PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
    // Ok, we have a PHI node.  Figure out what the incoming value was for the
    // DestBlock.
    Value *IV = PN->getIncomingValueForBlock(OldPred);
    
    // Remap the value if necessary.
    if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
      DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
      if (I != ValueMap.end())
        IV = I->second;
    }
    
    PN->addIncoming(IV, NewPred);
  }
}

/// ThreadEdge - We have decided that it is safe and profitable to factor the
/// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
/// across BB.  Transform the IR to reflect this change.
bool JumpThreading::ThreadEdge(BasicBlock *BB, 
                               const SmallVectorImpl<BasicBlock*> &PredBBs, 
                               BasicBlock *SuccBB) {
  // If threading to the same block as we come from, we would infinite loop.
  if (SuccBB == BB) {
    DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
          << "' - would thread to self!\n");
    return false;
  }
  
  // If threading this would thread across a loop header, don't thread the edge.
  // See the comments above FindLoopHeaders for justifications and caveats.
  if (LoopHeaders.count(BB)) {
    DEBUG(dbgs() << "  Not threading across loop header BB '" << BB->getName()
          << "' to dest BB '" << SuccBB->getName()
          << "' - it might create an irreducible loop!\n");
    return false;
  }

  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
  if (JumpThreadCost > Threshold) {
    DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
          << "' - Cost is too high: " << JumpThreadCost << "\n");
    return false;
  }
  
  // And finally, do it!  Start by factoring the predecessors is needed.
  BasicBlock *PredBB;
  if (PredBBs.size() == 1)
    PredBB = PredBBs[0];
  else {
    DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
          << " common predecessors.\n");
    PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
                                    ".thr_comm", this);
  }
  
  // And finally, do it!
  DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName() << "' to '"
        << SuccBB->getName() << "' with cost: " << JumpThreadCost
        << ", across block:\n    "
        << *BB << "\n");
  
  if (LVI)
    LVI->threadEdge(PredBB, BB, SuccBB);
  
  // We are going to have to map operands from the original BB block to the new
  // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
  // account for entry from PredBB.
  DenseMap<Instruction*, Value*> ValueMapping;
  
  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 
                                         BB->getName()+".thread", 
                                         BB->getParent(), BB);
  NewBB->moveAfter(PredBB);
  
  BasicBlock::iterator BI = BB->begin();
  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
  
  // Clone the non-phi instructions of BB into NewBB, keeping track of the
  // mapping and using it to remap operands in the cloned instructions.
  for (; !isa<TerminatorInst>(BI); ++BI) {
    Instruction *New = BI->clone();
    New->setName(BI->getName());
    NewBB->getInstList().push_back(New);
    ValueMapping[BI] = New;
   
    // Remap operands to patch up intra-block references.
    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
        if (I != ValueMapping.end())
          New->setOperand(i, I->second);
      }
  }
  
  // We didn't copy the terminator from BB over to NewBB, because there is now
  // an unconditional jump to SuccBB.  Insert the unconditional jump.
  BranchInst::Create(SuccBB, NewBB);
  
  // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
  // PHI nodes for NewBB now.
  AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
  
  // If there were values defined in BB that are used outside the block, then we
  // now have to update all uses of the value to use either the original value,
  // the cloned value, or some PHI derived value.  This can require arbitrary
  // PHI insertion, of which we are prepared to do, clean these up now.
  SSAUpdater SSAUpdate;
  SmallVector<Use*, 16> UsesToRename;
  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
    // Scan all uses of this instruction to see if it is used outside of its
    // block, and if so, record them in UsesToRename.
    for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
         ++UI) {
      Instruction *User = cast<Instruction>(*UI);
      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
        if (UserPN->getIncomingBlock(UI) == BB)
          continue;
      } else if (User->getParent() == BB)
        continue;
      
      UsesToRename.push_back(&UI.getUse());
    }
    
    // If there are no uses outside the block, we're done with this instruction.
    if (UsesToRename.empty())
      continue;
    
    DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");

    // We found a use of I outside of BB.  Rename all uses of I that are outside
    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
    // with the two values we know.
    SSAUpdate.Initialize(I);
    SSAUpdate.AddAvailableValue(BB, I);
    SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
    
    while (!UsesToRename.empty())
      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
    DEBUG(dbgs() << "\n");
  }
  
  
  // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
  // NewBB instead of BB.  This eliminates predecessors from BB, which requires
  // us to simplify any PHI nodes in BB.
  TerminatorInst *PredTerm = PredBB->getTerminator();
  for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
    if (PredTerm->getSuccessor(i) == BB) {
      RemovePredecessorAndSimplify(BB, PredBB, TD);
      PredTerm->setSuccessor(i, NewBB);
    }
  
  // At this point, the IR is fully up to date and consistent.  Do a quick scan
  // over the new instructions and zap any that are constants or dead.  This
  // frequently happens because of phi translation.
  SimplifyInstructionsInBlock(NewBB, TD);
  
  // Threaded an edge!
  ++NumThreads;
  return true;
}

/// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
/// to BB which contains an i1 PHI node and a conditional branch on that PHI.
/// If we can duplicate the contents of BB up into PredBB do so now, this
/// improves the odds that the branch will be on an analyzable instruction like
/// a compare.
bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
                                 const SmallVectorImpl<BasicBlock *> &PredBBs) {
  assert(!PredBBs.empty() && "Can't handle an empty set");

  // If BB is a loop header, then duplicating this block outside the loop would
  // cause us to transform this into an irreducible loop, don't do this.
  // See the comments above FindLoopHeaders for justifications and caveats.
  if (LoopHeaders.count(BB)) {
    DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
          << "' into predecessor block '" << PredBBs[0]->getName()
          << "' - it might create an irreducible loop!\n");
    return false;
  }
  
  unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
  if (DuplicationCost > Threshold) {
    DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
          << "' - Cost is too high: " << DuplicationCost << "\n");
    return false;
  }
  
  // And finally, do it!  Start by factoring the predecessors is needed.
  BasicBlock *PredBB;
  if (PredBBs.size() == 1)
    PredBB = PredBBs[0];
  else {
    DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
          << " common predecessors.\n");
    PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
                                    ".thr_comm", this);
  }
  
  // Okay, we decided to do this!  Clone all the instructions in BB onto the end
  // of PredBB.
  DEBUG(dbgs() << "  Duplicating block '" << BB->getName() << "' into end of '"
        << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
        << DuplicationCost << " block is:" << *BB << "\n");
  
  // Unless PredBB ends with an unconditional branch, split the edge so that we
  // can just clone the bits from BB into the end of the new PredBB.
  BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
  
  if (OldPredBranch == 0 || !OldPredBranch->isUnconditional()) {
    PredBB = SplitEdge(PredBB, BB, this);
    OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
  }
  
  // We are going to have to map operands from the original BB block into the
  // PredBB block.  Evaluate PHI nodes in BB.
  DenseMap<Instruction*, Value*> ValueMapping;
  
  BasicBlock::iterator BI = BB->begin();
  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
  
  // Clone the non-phi instructions of BB into PredBB, keeping track of the
  // mapping and using it to remap operands in the cloned instructions.
  for (; BI != BB->end(); ++BI) {
    Instruction *New = BI->clone();
    
    // Remap operands to patch up intra-block references.
    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
        if (I != ValueMapping.end())
          New->setOperand(i, I->second);
      }

    // If this instruction can be simplified after the operands are updated,
    // just use the simplified value instead.  This frequently happens due to
    // phi translation.
    if (Value *IV = SimplifyInstruction(New, TD)) {
      delete New;
      ValueMapping[BI] = IV;
    } else {
      // Otherwise, insert the new instruction into the block.
      New->setName(BI->getName());
      PredBB->getInstList().insert(OldPredBranch, New);
      ValueMapping[BI] = New;
    }
  }
  
  // Check to see if the targets of the branch had PHI nodes. If so, we need to
  // add entries to the PHI nodes for branch from PredBB now.
  BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
                                  ValueMapping);
  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
                                  ValueMapping);
  
  // If there were values defined in BB that are used outside the block, then we
  // now have to update all uses of the value to use either the original value,
  // the cloned value, or some PHI derived value.  This can require arbitrary
  // PHI insertion, of which we are prepared to do, clean these up now.
  SSAUpdater SSAUpdate;
  SmallVector<Use*, 16> UsesToRename;
  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
    // Scan all uses of this instruction to see if it is used outside of its
    // block, and if so, record them in UsesToRename.
    for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
         ++UI) {
      Instruction *User = cast<Instruction>(*UI);
      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
        if (UserPN->getIncomingBlock(UI) == BB)
          continue;
      } else if (User->getParent() == BB)
        continue;
      
      UsesToRename.push_back(&UI.getUse());
    }
    
    // If there are no uses outside the block, we're done with this instruction.
    if (UsesToRename.empty())
      continue;
    
    DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
    
    // We found a use of I outside of BB.  Rename all uses of I that are outside
    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
    // with the two values we know.
    SSAUpdate.Initialize(I);
    SSAUpdate.AddAvailableValue(BB, I);
    SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
    
    while (!UsesToRename.empty())
      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
    DEBUG(dbgs() << "\n");
  }
  
  // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
  // that we nuked.
  RemovePredecessorAndSimplify(BB, PredBB, TD);
  
  // Remove the unconditional branch at the end of the PredBB block.
  OldPredBranch->eraseFromParent();
  
  ++NumDupes;
  return true;
}