aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Transforms/Scalar/LICM.cpp
blob: 416c83e357e0b7d25fac22fcb44a34687c02543e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
//===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
//
// This pass is a simple loop invariant code motion pass.  An interesting aspect
// of this pass is that it uses alias analysis for two purposes:
//
//  1. Moving loop invariant loads out of loops.  If we can determine that a
//     load inside of a loop never aliases anything stored to, we can hoist it
//     like any other instruction.
//  2. Scalar Promotion of Memory - If there is a store instruction inside of
//     the loop, we try to move the store to happen AFTER the loop instead of
//     inside of the loop.  This can only happen if a few conditions are true:
//       A. The pointer stored through is loop invariant
//       B. There are no stores or loads in the loop which _may_ alias the
//          pointer.  There are no calls in the loop which mod/ref the pointer.
//     If these conditions are true, we can promote the loads and stores in the
//     loop of the pointer to use a temporary alloca'd variable.  We then use
//     the mem2reg functionality to construct the appropriate SSA form for the
//     variable.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AliasSetTracker.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Instructions.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Support/InstVisitor.h"
#include "llvm/Support/CFG.h"
#include "Support/CommandLine.h"
#include "Support/Debug.h"
#include "Support/Statistic.h"
#include "llvm/Assembly/Writer.h"
#include <algorithm>

namespace {
  cl::opt<bool> DisablePromotion("disable-licm-promotion", cl::Hidden,
                             cl::desc("Disable memory promotion in LICM pass"));

  Statistic<> NumHoisted("licm", "Number of instructions hoisted out of loop");
  Statistic<> NumHoistedLoads("licm", "Number of load insts hoisted");
  Statistic<> NumPromoted("licm", "Number of memory locations promoted to registers");

  struct LICM : public FunctionPass, public InstVisitor<LICM> {
    virtual bool runOnFunction(Function &F);

    /// This transformation requires natural loop information & requires that
    /// loop preheaders be inserted into the CFG...
    ///
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.setPreservesCFG();
      AU.addRequiredID(LoopPreheadersID);
      AU.addRequired<LoopInfo>();
      AU.addRequired<DominatorTree>();
      AU.addRequired<DominanceFrontier>();  // For scalar promotion (mem2reg)
      AU.addRequired<AliasAnalysis>();
    }

  private:
    LoopInfo      *LI;       // Current LoopInfo
    AliasAnalysis *AA;       // Current AliasAnalysis information
    bool Changed;            // Set to true when we change anything.
    BasicBlock *Preheader;   // The preheader block of the current loop...
    Loop *CurLoop;           // The current loop we are working on...
    AliasSetTracker *CurAST; // AliasSet information for the current loop...
    DominatorTree *DT;       // Dominator Tree for the current Loop...

    /// visitLoop - Hoist expressions out of the specified loop...    
    ///
    void visitLoop(Loop *L, AliasSetTracker &AST);

    /// HoistRegion - Walk the specified region of the CFG (defined by all
    /// blocks dominated by the specified block, and that are in the current
    /// loop) in depth first order w.r.t the DominatorTree.  This allows us to
    /// visit defintions before uses, allowing us to hoist a loop body in one
    /// pass without iteration.
    ///
    void HoistRegion(DominatorTree::Node *N);

    /// inSubLoop - Little predicate that returns true if the specified basic
    /// block is in a subloop of the current one, not the current one itself.
    ///
    bool inSubLoop(BasicBlock *BB) {
      assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
      for (unsigned i = 0, e = CurLoop->getSubLoops().size(); i != e; ++i)
        if (CurLoop->getSubLoops()[i]->contains(BB))
          return true;  // A subloop actually contains this block!
      return false;
    }

    /// hoist - When an instruction is found to only use loop invariant operands
    /// that is safe to hoist, this instruction is called to do the dirty work.
    ///
    void hoist(Instruction &I);

    /// SafeToHoist - Only hoist an instruction if it is not a trapping instruction
    /// or if it is a trapping instruction and is guaranteed to execute
    ///
    bool SafeToHoist(Instruction &I);

    /// pointerInvalidatedByLoop - Return true if the body of this loop may
    /// store into the memory location pointed to by V.
    /// 
    bool pointerInvalidatedByLoop(Value *V) {
      // Check to see if any of the basic blocks in CurLoop invalidate *V.
      return CurAST->getAliasSetForPointer(V, 0).isMod();
    }

    /// isLoopInvariant - Return true if the specified value is loop invariant
    ///
    inline bool isLoopInvariant(Value *V) {
      if (Instruction *I = dyn_cast<Instruction>(V))
        return !CurLoop->contains(I->getParent());
      return true;  // All non-instructions are loop invariant
    }

    /// PromoteValuesInLoop - Look at the stores in the loop and promote as many
    /// to scalars as we can.
    ///
    void PromoteValuesInLoop();

    /// findPromotableValuesInLoop - Check the current loop for stores to
    /// definate pointers, which are not loaded and stored through may aliases.
    /// If these are found, create an alloca for the value, add it to the
    /// PromotedValues list, and keep track of the mapping from value to
    /// alloca...
    ///
    void findPromotableValuesInLoop(
                   std::vector<std::pair<AllocaInst*, Value*> > &PromotedValues,
                                    std::map<Value*, AllocaInst*> &Val2AlMap);
    

    /// Instruction visitation handlers... these basically control whether or
    /// not the specified instruction types are hoisted.
    ///
    friend class InstVisitor<LICM>;
    void visitBinaryOperator(Instruction &I) {
      if (isLoopInvariant(I.getOperand(0)) && isLoopInvariant(I.getOperand(1)) && SafeToHoist(I))
        hoist(I);
    }
    void visitCastInst(CastInst &CI) {
      Instruction &I = (Instruction&)CI;
      if (isLoopInvariant(I.getOperand(0)) && SafeToHoist(CI)) hoist(I);
    }
    void visitShiftInst(ShiftInst &I) { visitBinaryOperator((Instruction&)I); }

    void visitLoadInst(LoadInst &LI);

    void visitGetElementPtrInst(GetElementPtrInst &GEPI) {
      Instruction &I = (Instruction&)GEPI;
      for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
        if (!isLoopInvariant(I.getOperand(i))) return;
      if(SafeToHoist(GEPI))
        hoist(I);
    }
  };

  RegisterOpt<LICM> X("licm", "Loop Invariant Code Motion");
}

Pass *createLICMPass() { return new LICM(); }

/// runOnFunction - For LICM, this simply traverses the loop structure of the
/// function, hoisting expressions out of loops if possible.
///
bool LICM::runOnFunction(Function &) {
  Changed = false;

  // Get our Loop and Alias Analysis information...
  LI = &getAnalysis<LoopInfo>();
  AA = &getAnalysis<AliasAnalysis>();
  DT = &getAnalysis<DominatorTree>();

  // Hoist expressions out of all of the top-level loops.
  const std::vector<Loop*> &TopLevelLoops = LI->getTopLevelLoops();
  for (std::vector<Loop*>::const_iterator I = TopLevelLoops.begin(),
         E = TopLevelLoops.end(); I != E; ++I) {
    AliasSetTracker AST(*AA);
    LICM::visitLoop(*I, AST);
  }
  return Changed;
}


/// visitLoop - Hoist expressions out of the specified loop...    
///
void LICM::visitLoop(Loop *L, AliasSetTracker &AST) {
  // Recurse through all subloops before we process this loop...
  for (std::vector<Loop*>::const_iterator I = L->getSubLoops().begin(),
         E = L->getSubLoops().end(); I != E; ++I) {
    AliasSetTracker SubAST(*AA);
    LICM::visitLoop(*I, SubAST);

    // Incorporate information about the subloops into this loop...
    AST.add(SubAST);
  }
  CurLoop = L;
  CurAST = &AST;

  // Get the preheader block to move instructions into...
  Preheader = L->getLoopPreheader();
  assert(Preheader&&"Preheader insertion pass guarantees we have a preheader!");

  // Loop over the body of this loop, looking for calls, invokes, and stores.
  // Because subloops have already been incorporated into AST, we skip blocks in
  // subloops.
  //
  const std::vector<BasicBlock*> &LoopBBs = L->getBlocks();
  for (std::vector<BasicBlock*>::const_iterator I = LoopBBs.begin(),
         E = LoopBBs.end(); I != E; ++I)
    if (LI->getLoopFor(*I) == L)        // Ignore blocks in subloops...
      AST.add(**I);                     // Incorporate the specified basic block

  // We want to visit all of the instructions in this loop... that are not parts
  // of our subloops (they have already had their invariants hoisted out of
  // their loop, into this loop, so there is no need to process the BODIES of
  // the subloops).
  //
  // Traverse the body of the loop in depth first order on the dominator tree so
  // that we are guaranteed to see definitions before we see uses.  This allows
  // us to perform the LICM transformation in one pass, without iteration.
  //
  HoistRegion(DT->getNode(L->getHeader()));

  // Now that all loop invariants have been removed from the loop, promote any
  // memory references to scalars that we can...
  if (!DisablePromotion)
    PromoteValuesInLoop();

  // Clear out loops state information for the next iteration
  CurLoop = 0;
  Preheader = 0;
}

/// HoistRegion - Walk the specified region of the CFG (defined by all blocks
/// dominated by the specified block, and that are in the current loop) in depth
/// first order w.r.t the DominatorTree.  This allows us to visit defintions
/// before uses, allowing us to hoist a loop body in one pass without iteration.
///
void LICM::HoistRegion(DominatorTree::Node *N) {
  assert(N != 0 && "Null dominator tree node?");

  // If this subregion is not in the top level loop at all, exit.
  if (!CurLoop->contains(N->getNode())) return;

  // Only need to hoist the contents of this block if it is not part of a
  // subloop (which would already have been hoisted)
  if (!inSubLoop(N->getNode()))
    visit(*N->getNode());

  const std::vector<DominatorTree::Node*> &Children = N->getChildren();
  for (unsigned i = 0, e = Children.size(); i != e; ++i)
    HoistRegion(Children[i]);
}


/// hoist - When an instruction is found to only use loop invariant operands
/// that is safe to hoist, this instruction is called to do the dirty work.
///
void LICM::hoist(Instruction &Inst) {
  DEBUG(std::cerr << "LICM hoisting to";
        WriteAsOperand(std::cerr, Preheader, false);
        std::cerr << ": " << Inst);

  // Remove the instruction from its current basic block... but don't delete the
  // instruction.
  Inst.getParent()->getInstList().remove(&Inst);

  // Insert the new node in Preheader, before the terminator.
  Preheader->getInstList().insert(Preheader->getTerminator(), &Inst);
  
  ++NumHoisted;
  Changed = true;
}

/// SafeToHoist - Only hoist an instruction if it is not a trapping instruction
/// or if it is a trapping instruction and is guaranteed to execute
///
bool LICM::SafeToHoist(Instruction &Inst) {

  //If it is a trapping instruction, then check if its guaranteed to execute.
  if(Inst.isTrapping()) {

    //Get the instruction's basic block.
    BasicBlock *InstBB = Inst.getParent();
    
    //Get the Dominator Tree Node for the instruction's basic block/
    DominatorTree::Node *InstDTNode = DT->getNode(InstBB);

    //Get the exit blocks for the current loop.
    const std::vector<BasicBlock* > &ExitBlocks = CurLoop->getExitBlocks();

    //For each exit block, get the DT node and walk up the DT until
    //the instruction's basic block is found or we exit the loop.
    for(unsigned i=0; i < ExitBlocks.size(); ++i) {
      DominatorTree::Node *IDom = DT->getNode(ExitBlocks[i]);
      
      while(IDom != InstDTNode) {
 
        //Get next Immediate Dominator.
        IDom = IDom->getIDom();

        //See if we exited the loop.
        if(!CurLoop->contains(IDom->getNode()))
          return false;
      }
    }
  }
  
  return true;
}


void LICM::visitLoadInst(LoadInst &LI) {
  if (isLoopInvariant(LI.getOperand(0)) && !LI.isVolatile() &&
      !pointerInvalidatedByLoop(LI.getOperand(0)) && SafeToHoist(LI)) {
    hoist(LI);
    ++NumHoistedLoads;
  }
}

/// PromoteValuesInLoop - Try to promote memory values to scalars by sinking
/// stores out of the loop and moving loads to before the loop.  We do this by
/// looping over the stores in the loop, looking for stores to Must pointers
/// which are loop invariant.  We promote these memory locations to use allocas
/// instead.  These allocas can easily be raised to register values by the
/// PromoteMem2Reg functionality.
///
void LICM::PromoteValuesInLoop() {
  // PromotedValues - List of values that are promoted out of the loop.  Each
  // value has an alloca instruction for it, and a canonical version of the
  // pointer.
  std::vector<std::pair<AllocaInst*, Value*> > PromotedValues;
  std::map<Value*, AllocaInst*> ValueToAllocaMap; // Map of ptr to alloca

  findPromotableValuesInLoop(PromotedValues, ValueToAllocaMap);
  if (ValueToAllocaMap.empty()) return;   // If there are values to promote...

  Changed = true;
  NumPromoted += PromotedValues.size();

  // Emit a copy from the value into the alloca'd value in the loop preheader
  TerminatorInst *LoopPredInst = Preheader->getTerminator();
  for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i) {
    // Load from the memory we are promoting...
    LoadInst *LI = new LoadInst(PromotedValues[i].second, 
                                PromotedValues[i].second->getName()+".promoted",
                                LoopPredInst);
    // Store into the temporary alloca...
    new StoreInst(LI, PromotedValues[i].first, LoopPredInst);
  }
  
  // Scan the basic blocks in the loop, replacing uses of our pointers with
  // uses of the allocas in question.  If we find a branch that exits the
  // loop, make sure to put reload code into all of the successors of the
  // loop.
  //
  const std::vector<BasicBlock*> &LoopBBs = CurLoop->getBlocks();
  for (std::vector<BasicBlock*>::const_iterator I = LoopBBs.begin(),
         E = LoopBBs.end(); I != E; ++I) {
    // Rewrite all loads and stores in the block of the pointer...
    for (BasicBlock::iterator II = (*I)->begin(), E = (*I)->end();
         II != E; ++II) {
      if (LoadInst *L = dyn_cast<LoadInst>(II)) {
        std::map<Value*, AllocaInst*>::iterator
          I = ValueToAllocaMap.find(L->getOperand(0));
        if (I != ValueToAllocaMap.end())
          L->setOperand(0, I->second);    // Rewrite load instruction...
      } else if (StoreInst *S = dyn_cast<StoreInst>(II)) {
        std::map<Value*, AllocaInst*>::iterator
          I = ValueToAllocaMap.find(S->getOperand(1));
        if (I != ValueToAllocaMap.end())
          S->setOperand(1, I->second);    // Rewrite store instruction...
      }
    }

    // Check to see if any successors of this block are outside of the loop.
    // If so, we need to copy the value from the alloca back into the memory
    // location...
    //
    for (succ_iterator SI = succ_begin(*I), SE = succ_end(*I); SI != SE; ++SI)
      if (!CurLoop->contains(*SI)) {
        // Copy all of the allocas into their memory locations...
        BasicBlock::iterator BI = (*SI)->begin();
        while (isa<PHINode>(*BI))
          ++BI;             // Skip over all of the phi nodes in the block...
        Instruction *InsertPos = BI;
        for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i) {
          // Load from the alloca...
          LoadInst *LI = new LoadInst(PromotedValues[i].first, "", InsertPos);
          // Store into the memory we promoted...
          new StoreInst(LI, PromotedValues[i].second, InsertPos);
        }
      }
  }

  // Now that we have done the deed, use the mem2reg functionality to promote
  // all of the new allocas we just created into real SSA registers...
  //
  std::vector<AllocaInst*> PromotedAllocas;
  PromotedAllocas.reserve(PromotedValues.size());
  for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i)
    PromotedAllocas.push_back(PromotedValues[i].first);
  PromoteMemToReg(PromotedAllocas, getAnalysis<DominanceFrontier>(),
                  AA->getTargetData());
}

/// findPromotableValuesInLoop - Check the current loop for stores to definate
/// pointers, which are not loaded and stored through may aliases.  If these are
/// found, create an alloca for the value, add it to the PromotedValues list,
/// and keep track of the mapping from value to alloca...
///
void LICM::findPromotableValuesInLoop(
                   std::vector<std::pair<AllocaInst*, Value*> > &PromotedValues,
                             std::map<Value*, AllocaInst*> &ValueToAllocaMap) {
  Instruction *FnStart = CurLoop->getHeader()->getParent()->begin()->begin();

  // Loop over all of the alias sets in the tracker object...
  for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
       I != E; ++I) {
    AliasSet &AS = *I;
    // We can promote this alias set if it has a store, if it is a "Must" alias
    // set, and if the pointer is loop invariant.
    if (!AS.isForwardingAliasSet() && AS.isMod() && AS.isMustAlias() &&
        isLoopInvariant(AS.begin()->first)) {
      assert(AS.begin() != AS.end() &&
             "Must alias set should have at least one pointer element in it!");
      Value *V = AS.begin()->first;

      // Check that all of the pointers in the alias set have the same type.  We
      // cannot (yet) promote a memory location that is loaded and stored in
      // different sizes.
      bool PointerOk = true;
      for (AliasSet::iterator I = AS.begin(), E = AS.end(); I != E; ++I)
        if (V->getType() != I->first->getType()) {
          PointerOk = false;
          break;
        }

      if (PointerOk) {
        const Type *Ty = cast<PointerType>(V->getType())->getElementType();
        AllocaInst *AI = new AllocaInst(Ty, 0, V->getName()+".tmp", FnStart);
        PromotedValues.push_back(std::make_pair(AI, V));
        
        for (AliasSet::iterator I = AS.begin(), E = AS.end(); I != E; ++I)
          ValueToAllocaMap.insert(std::make_pair(I->first, AI));
        
        DEBUG(std::cerr << "LICM: Promoting value: " << *V << "\n");
      }
    }
  }
}