1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
|
//===- LoopIndexSplit.cpp - Loop Index Splitting Pass ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Devang Patel and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements Loop Index Splitting Pass.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "loop-index-split"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Function.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Support/Compiler.h"
#include "llvm/ADT/Statistic.h"
using namespace llvm;
STATISTIC(NumIndexSplit, "Number of loops index split");
namespace {
class VISIBILITY_HIDDEN LoopIndexSplit : public LoopPass {
public:
static char ID; // Pass ID, replacement for typeid
LoopIndexSplit() : LoopPass((intptr_t)&ID) {}
// Index split Loop L. Return true if loop is split.
bool runOnLoop(Loop *L, LPPassManager &LPM);
void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<ScalarEvolution>();
AU.addPreserved<ScalarEvolution>();
AU.addRequiredID(LCSSAID);
AU.addPreservedID(LCSSAID);
AU.addPreserved<LoopInfo>();
AU.addRequiredID(LoopSimplifyID);
AU.addPreservedID(LoopSimplifyID);
}
private:
class SplitInfo {
public:
SplitInfo() : IndVar(NULL), SplitValue(NULL), ExitValue(NULL),
SplitCondition(NULL), ExitCondition(NULL) {}
// Induction variable whose range is being split by this transformation.
PHINode *IndVar;
// Induction variable's range is split at this value.
Value *SplitValue;
// Induction variable's final loop exit value.
Value *ExitValue;
// This compare instruction compares IndVar against SplitValue.
ICmpInst *SplitCondition;
// Loop exit condition.
ICmpInst *ExitCondition;
// Clear split info.
void clear() {
IndVar = NULL;
SplitValue = NULL;
ExitValue = NULL;
SplitCondition = NULL;
ExitCondition = NULL;
}
};
private:
/// Find condition inside a loop that is suitable candidate for index split.
void findSplitCondition();
/// processOneIterationLoop - Current loop L contains compare instruction
/// that compares induction variable, IndVar, agains loop invariant. If
/// entire (i.e. meaningful) loop body is dominated by this compare
/// instruction then loop body is executed only for one iteration. In
/// such case eliminate loop structure surrounding this loop body. For
bool processOneIterationLoop(SplitInfo &SD, LPPassManager &LPM);
// If loop header includes loop variant instruction operands then
// this loop may not be eliminated.
bool safeHeader(SplitInfo &SD, BasicBlock *BB);
// If Exit block includes loop variant instructions then this
// loop may not be eliminated.
bool safeExitBlock(SplitInfo &SD, BasicBlock *BB);
bool splitLoop(SplitInfo &SD);
private:
// Current Loop.
Loop *L;
ScalarEvolution *SE;
SmallVector<SplitInfo, 4> SplitData;
};
char LoopIndexSplit::ID = 0;
RegisterPass<LoopIndexSplit> X ("loop-index-split", "Index Split Loops");
}
LoopPass *llvm::createLoopIndexSplitPass() {
return new LoopIndexSplit();
}
// Index split Loop L. Return true if loop is split.
bool LoopIndexSplit::runOnLoop(Loop *IncomingLoop, LPPassManager &LPM) {
bool Changed = false;
L = IncomingLoop;
SE = &getAnalysis<ScalarEvolution>();
findSplitCondition();
if (SplitData.empty())
return false;
// First see if it is possible to eliminate loop itself or not.
for (SmallVector<SplitInfo, 4>::iterator SI = SplitData.begin(),
E = SplitData.end(); SI != E; ++SI) {
SplitInfo &SD = *SI;
if (SD.SplitCondition->getPredicate() == ICmpInst::ICMP_EQ) {
Changed = processOneIterationLoop(SD,LPM);
if (Changed) {
++NumIndexSplit;
// If is loop is eliminated then nothing else to do here.
return Changed;
}
}
}
for (SmallVector<SplitInfo, 4>::iterator SI = SplitData.begin(),
E = SplitData.end(); SI != E; ++SI) {
SplitInfo &SD = *SI;
// ICM_EQs are already handled above.
if (SD.SplitCondition->getPredicate() == ICmpInst::ICMP_EQ)
continue;
// FIXME : Collect Spliting cost for all SD. Only operate on profitable SDs.
Changed = splitLoop(SD);
}
if (Changed)
++NumIndexSplit;
return Changed;
}
/// Find condition inside a loop that is suitable candidate for index split.
void LoopIndexSplit::findSplitCondition() {
SplitInfo SD;
BasicBlock *Header = L->getHeader();
for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
PHINode *PN = cast<PHINode>(I);
if (!PN->getType()->isInteger())
continue;
SCEVHandle SCEV = SE->getSCEV(PN);
if (!isa<SCEVAddRecExpr>(SCEV))
continue;
// If this phi node is used in a compare instruction then it is a
// split condition candidate.
for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
UI != E; ++UI) {
if (ICmpInst *CI = dyn_cast<ICmpInst>(*UI)) {
SD.SplitCondition = CI;
break;
}
}
// Valid SplitCondition's one operand is phi node and the other operand
// is loop invariant.
if (SD.SplitCondition) {
if (SD.SplitCondition->getOperand(0) != PN)
SD.SplitValue = SD.SplitCondition->getOperand(0);
else
SD.SplitValue = SD.SplitCondition->getOperand(1);
SCEVHandle ValueSCEV = SE->getSCEV(SD.SplitValue);
// If SplitValue is not invariant then SplitCondition is not appropriate.
if (!ValueSCEV->isLoopInvariant(L))
SD.SplitCondition = NULL;
}
// We are looking for only one split condition.
if (SD.SplitCondition) {
SD.IndVar = PN;
SplitData.push_back(SD);
// Before reusing SD for next split condition clear its content.
SD.clear();
}
}
}
/// processOneIterationLoop - Current loop L contains compare instruction
/// that compares induction variable, IndVar, against loop invariant. If
/// entire (i.e. meaningful) loop body is dominated by this compare
/// instruction then loop body is executed only once. In such case eliminate
/// loop structure surrounding this loop body. For example,
/// for (int i = start; i < end; ++i) {
/// if ( i == somevalue) {
/// loop_body
/// }
/// }
/// can be transformed into
/// if (somevalue >= start && somevalue < end) {
/// i = somevalue;
/// loop_body
/// }
bool LoopIndexSplit::processOneIterationLoop(SplitInfo &SD, LPPassManager &LPM) {
BasicBlock *Header = L->getHeader();
// First of all, check if SplitCondition dominates entire loop body
// or not.
// If SplitCondition is not in loop header then this loop is not suitable
// for this transformation.
if (SD.SplitCondition->getParent() != Header)
return false;
// If one of the Header block's successor is not an exit block then this
// loop is not a suitable candidate.
BasicBlock *ExitBlock = NULL;
for (succ_iterator SI = succ_begin(Header), E = succ_end(Header); SI != E; ++SI) {
if (L->isLoopExit(*SI)) {
ExitBlock = *SI;
break;
}
}
if (!ExitBlock)
return false;
// If loop header includes loop variant instruction operands then
// this loop may not be eliminated.
if (!safeHeader(SD, Header))
return false;
// If Exit block includes loop variant instructions then this
// loop may not be eliminated.
if (!safeExitBlock(SD, ExitBlock))
return false;
// Update CFG.
// As a first step to break this loop, remove Latch to Header edge.
BasicBlock *Latch = L->getLoopLatch();
BasicBlock *LatchSucc = NULL;
BranchInst *BR = dyn_cast<BranchInst>(Latch->getTerminator());
if (!BR)
return false;
Header->removePredecessor(Latch);
for (succ_iterator SI = succ_begin(Latch), E = succ_end(Latch);
SI != E; ++SI) {
if (Header != *SI)
LatchSucc = *SI;
}
BR->setUnconditionalDest(LatchSucc);
BasicBlock *Preheader = L->getLoopPreheader();
Instruction *Terminator = Header->getTerminator();
Value *StartValue = SD.IndVar->getIncomingValueForBlock(Preheader);
// Replace split condition in header.
// Transform
// SplitCondition : icmp eq i32 IndVar, SplitValue
// into
// c1 = icmp uge i32 SplitValue, StartValue
// c2 = icmp ult i32 vSplitValue, ExitValue
// and i32 c1, c2
bool SignedPredicate = SD.ExitCondition->isSignedPredicate();
Instruction *C1 = new ICmpInst(SignedPredicate ?
ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE,
SD.SplitValue, StartValue, "lisplit",
Terminator);
Instruction *C2 = new ICmpInst(SignedPredicate ?
ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
SD.SplitValue, SD.ExitValue, "lisplit",
Terminator);
Instruction *NSplitCond = BinaryOperator::createAnd(C1, C2, "lisplit",
Terminator);
SD.SplitCondition->replaceAllUsesWith(NSplitCond);
SD.SplitCondition->eraseFromParent();
// Now, clear latch block. Remove instructions that are responsible
// to increment induction variable.
Instruction *LTerminator = Latch->getTerminator();
for (BasicBlock::iterator LB = Latch->begin(), LE = Latch->end();
LB != LE; ) {
Instruction *I = LB;
++LB;
if (isa<PHINode>(I) || I == LTerminator)
continue;
I->replaceAllUsesWith(UndefValue::get(I->getType()));
I->eraseFromParent();
}
LPM.deleteLoopFromQueue(L);
return true;
}
// If loop header includes loop variant instruction operands then
// this loop can not be eliminated. This is used by processOneIterationLoop().
bool LoopIndexSplit::safeHeader(SplitInfo &SD, BasicBlock *Header) {
Instruction *Terminator = Header->getTerminator();
for(BasicBlock::iterator BI = Header->begin(), BE = Header->end();
BI != BE; ++BI) {
Instruction *I = BI;
// PHI Nodes are OK. FIXME : Handle last value assignments.
if (isa<PHINode>(I))
continue;
// SplitCondition itself is OK.
if (I == SD.SplitCondition)
continue;
// Terminator is also harmless.
if (I == Terminator)
continue;
// Otherwise we have a instruction that may not be safe.
return false;
}
return true;
}
// If Exit block includes loop variant instructions then this
// loop may not be eliminated. This is used by processOneIterationLoop().
bool LoopIndexSplit::safeExitBlock(SplitInfo &SD, BasicBlock *ExitBlock) {
Instruction *IndVarIncrement = NULL;
for (BasicBlock::iterator BI = ExitBlock->begin(), BE = ExitBlock->end();
BI != BE; ++BI) {
Instruction *I = BI;
// PHI Nodes are OK. FIXME : Handle last value assignments.
if (isa<PHINode>(I))
continue;
// Check if I is induction variable increment instruction.
if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(I)) {
if (BOp->getOpcode() != Instruction::Add)
return false;
Value *Op0 = BOp->getOperand(0);
Value *Op1 = BOp->getOperand(1);
PHINode *PN = NULL;
ConstantInt *CI = NULL;
if ((PN = dyn_cast<PHINode>(Op0))) {
if ((CI = dyn_cast<ConstantInt>(Op1)))
IndVarIncrement = I;
} else
if ((PN = dyn_cast<PHINode>(Op1))) {
if ((CI = dyn_cast<ConstantInt>(Op0)))
IndVarIncrement = I;
}
if (IndVarIncrement && PN == SD.IndVar && CI->isOne())
continue;
}
// I is an Exit condition if next instruction is block terminator.
// Exit condition is OK if it compares loop invariant exit value,
// which is checked below.
else if (ICmpInst *EC = dyn_cast<ICmpInst>(I)) {
++BI;
Instruction *N = BI;
if (N == ExitBlock->getTerminator()) {
SD.ExitCondition = EC;
continue;
}
}
// Otherwise we have instruction that may not be safe.
return false;
}
// Check if Exit condition is comparing induction variable against
// loop invariant value. If one operand is induction variable and
// the other operand is loop invaraint then Exit condition is safe.
if (SD.ExitCondition) {
Value *Op0 = SD.ExitCondition->getOperand(0);
Value *Op1 = SD.ExitCondition->getOperand(1);
Instruction *Insn0 = dyn_cast<Instruction>(Op0);
Instruction *Insn1 = dyn_cast<Instruction>(Op1);
if (Insn0 && Insn0 == IndVarIncrement)
SD.ExitValue = Op1;
else if (Insn1 && Insn1 == IndVarIncrement)
SD.ExitValue = Op0;
SCEVHandle ValueSCEV = SE->getSCEV(SD.ExitValue);
if (!ValueSCEV->isLoopInvariant(L))
return false;
}
// We could not find any reason to consider ExitBlock unsafe.
return true;
}
bool LoopIndexSplit::splitLoop(SplitInfo &SD) {
// FIXME :)
return false;
}
|