aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Transforms/Scalar/LoopStrengthReduce.cpp
blob: 5603042617c63c61905736584f787ea34887cfbe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
//===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This transformation analyzes and transforms the induction variables (and
// computations derived from them) into forms suitable for efficient execution
// on the target.
//
// This pass performs a strength reduction on array references inside loops that
// have as one or more of their components the loop induction variable, it
// rewrites expressions to take advantage of scaled-index addressing modes
// available on the target, and it performs a variety of other optimizations
// related to loop induction variables.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "loop-reduce"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Type.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/IVUsers.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Transforms/Utils/AddrModeMatcher.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ValueHandle.h"
#include "llvm/Target/TargetLowering.h"
#include <algorithm>
using namespace llvm;

STATISTIC(NumReduced ,    "Number of IV uses strength reduced");
STATISTIC(NumInserted,    "Number of PHIs inserted");
STATISTIC(NumVariable,    "Number of PHIs with variable strides");
STATISTIC(NumEliminated,  "Number of strides eliminated");
STATISTIC(NumShadow,      "Number of Shadow IVs optimized");
STATISTIC(NumImmSunk,     "Number of common expr immediates sunk into uses");
STATISTIC(NumLoopCond,    "Number of loop terminating conds optimized");

static cl::opt<bool> EnableFullLSRMode("enable-full-lsr",
                                       cl::init(false),
                                       cl::Hidden);

namespace {

  struct BasedUser;

  /// IVInfo - This structure keeps track of one IV expression inserted during
  /// StrengthReduceStridedIVUsers. It contains the stride, the common base, as
  /// well as the PHI node and increment value created for rewrite.
  struct VISIBILITY_HIDDEN IVExpr {
    SCEVHandle  Stride;
    SCEVHandle  Base;
    PHINode    *PHI;

    IVExpr(const SCEVHandle &stride, const SCEVHandle &base, PHINode *phi)
      : Stride(stride), Base(base), PHI(phi) {}
  };

  /// IVsOfOneStride - This structure keeps track of all IV expression inserted
  /// during StrengthReduceStridedIVUsers for a particular stride of the IV.
  struct VISIBILITY_HIDDEN IVsOfOneStride {
    std::vector<IVExpr> IVs;

    void addIV(const SCEVHandle &Stride, const SCEVHandle &Base, PHINode *PHI) {
      IVs.push_back(IVExpr(Stride, Base, PHI));
    }
  };

  class VISIBILITY_HIDDEN LoopStrengthReduce : public LoopPass {
    IVUsers *IU;
    LoopInfo *LI;
    DominatorTree *DT;
    ScalarEvolution *SE;
    bool Changed;

    /// IVsByStride - Keep track of all IVs that have been inserted for a
    /// particular stride.
    std::map<SCEVHandle, IVsOfOneStride> IVsByStride;

    /// StrideNoReuse - Keep track of all the strides whose ivs cannot be
    /// reused (nor should they be rewritten to reuse other strides).
    SmallSet<SCEVHandle, 4> StrideNoReuse;

    /// DeadInsts - Keep track of instructions we may have made dead, so that
    /// we can remove them after we are done working.
    SmallVector<WeakVH, 16> DeadInsts;

    /// TLI - Keep a pointer of a TargetLowering to consult for determining
    /// transformation profitability.
    const TargetLowering *TLI;

  public:
    static char ID; // Pass ID, replacement for typeid
    explicit LoopStrengthReduce(const TargetLowering *tli = NULL) : 
      LoopPass(&ID), TLI(tli) {
    }

    bool runOnLoop(Loop *L, LPPassManager &LPM);

    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      // We split critical edges, so we change the CFG.  However, we do update
      // many analyses if they are around.
      AU.addPreservedID(LoopSimplifyID);
      AU.addPreserved<LoopInfo>();
      AU.addPreserved<DominanceFrontier>();
      AU.addPreserved<DominatorTree>();

      AU.addRequiredID(LoopSimplifyID);
      AU.addRequired<LoopInfo>();
      AU.addRequired<DominatorTree>();
      AU.addRequired<ScalarEvolution>();
      AU.addPreserved<ScalarEvolution>();
      AU.addRequired<IVUsers>();
      AU.addPreserved<IVUsers>();
    }

  private:
    ICmpInst *ChangeCompareStride(Loop *L, ICmpInst *Cond,
                                  IVStrideUse* &CondUse,
                                  const SCEVHandle* &CondStride);

    void OptimizeIndvars(Loop *L);
    void OptimizeLoopCountIV(Loop *L);
    void OptimizeLoopTermCond(Loop *L);

    /// OptimizeShadowIV - If IV is used in a int-to-float cast
    /// inside the loop then try to eliminate the cast opeation.
    void OptimizeShadowIV(Loop *L);

    /// OptimizeSMax - Rewrite the loop's terminating condition
    /// if it uses an smax computation.
    ICmpInst *OptimizeSMax(Loop *L, ICmpInst *Cond,
                           IVStrideUse* &CondUse);

    bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse,
                           const SCEVHandle *&CondStride);
    bool RequiresTypeConversion(const Type *Ty, const Type *NewTy);
    SCEVHandle CheckForIVReuse(bool, bool, bool, const SCEVHandle&,
                             IVExpr&, const Type*,
                             const std::vector<BasedUser>& UsersToProcess);
    bool ValidScale(bool, int64_t,
                    const std::vector<BasedUser>& UsersToProcess);
    bool ValidOffset(bool, int64_t, int64_t,
                     const std::vector<BasedUser>& UsersToProcess);
    SCEVHandle CollectIVUsers(const SCEVHandle &Stride,
                              IVUsersOfOneStride &Uses,
                              Loop *L,
                              bool &AllUsesAreAddresses,
                              bool &AllUsesAreOutsideLoop,
                              std::vector<BasedUser> &UsersToProcess);
    bool ShouldUseFullStrengthReductionMode(
                                const std::vector<BasedUser> &UsersToProcess,
                                const Loop *L,
                                bool AllUsesAreAddresses,
                                SCEVHandle Stride);
    void PrepareToStrengthReduceFully(
                             std::vector<BasedUser> &UsersToProcess,
                             SCEVHandle Stride,
                             SCEVHandle CommonExprs,
                             const Loop *L,
                             SCEVExpander &PreheaderRewriter);
    void PrepareToStrengthReduceFromSmallerStride(
                                         std::vector<BasedUser> &UsersToProcess,
                                         Value *CommonBaseV,
                                         const IVExpr &ReuseIV,
                                         Instruction *PreInsertPt);
    void PrepareToStrengthReduceWithNewPhi(
                                  std::vector<BasedUser> &UsersToProcess,
                                  SCEVHandle Stride,
                                  SCEVHandle CommonExprs,
                                  Value *CommonBaseV,
                                  Instruction *IVIncInsertPt,
                                  const Loop *L,
                                  SCEVExpander &PreheaderRewriter);
    void StrengthReduceStridedIVUsers(const SCEVHandle &Stride,
                                      IVUsersOfOneStride &Uses,
                                      Loop *L);
    void DeleteTriviallyDeadInstructions();
  };
}

char LoopStrengthReduce::ID = 0;
static RegisterPass<LoopStrengthReduce>
X("loop-reduce", "Loop Strength Reduction");

Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) {
  return new LoopStrengthReduce(TLI);
}

/// DeleteTriviallyDeadInstructions - If any of the instructions is the
/// specified set are trivially dead, delete them and see if this makes any of
/// their operands subsequently dead.
void LoopStrengthReduce::DeleteTriviallyDeadInstructions() {
  if (DeadInsts.empty()) return;
  
  while (!DeadInsts.empty()) {
    Instruction *I = dyn_cast_or_null<Instruction>(DeadInsts.back());
    DeadInsts.pop_back();
    
    if (I == 0 || !isInstructionTriviallyDead(I))
      continue;

    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) {
      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
        *OI = 0;
        if (U->use_empty())
          DeadInsts.push_back(U);
      }
    }
    
    I->eraseFromParent();
    Changed = true;
  }
}

/// containsAddRecFromDifferentLoop - Determine whether expression S involves a 
/// subexpression that is an AddRec from a loop other than L.  An outer loop 
/// of L is OK, but not an inner loop nor a disjoint loop.
static bool containsAddRecFromDifferentLoop(SCEVHandle S, Loop *L) {
  // This is very common, put it first.
  if (isa<SCEVConstant>(S))
    return false;
  if (const SCEVCommutativeExpr *AE = dyn_cast<SCEVCommutativeExpr>(S)) {
    for (unsigned int i=0; i< AE->getNumOperands(); i++)
      if (containsAddRecFromDifferentLoop(AE->getOperand(i), L))
        return true;
    return false;
  }
  if (const SCEVAddRecExpr *AE = dyn_cast<SCEVAddRecExpr>(S)) {
    if (const Loop *newLoop = AE->getLoop()) {
      if (newLoop == L)
        return false;
      // if newLoop is an outer loop of L, this is OK.
      if (!LoopInfoBase<BasicBlock>::isNotAlreadyContainedIn(L, newLoop))
        return false;
    }
    return true;
  }
  if (const SCEVUDivExpr *DE = dyn_cast<SCEVUDivExpr>(S))
    return containsAddRecFromDifferentLoop(DE->getLHS(), L) ||
           containsAddRecFromDifferentLoop(DE->getRHS(), L);
#if 0
  // SCEVSDivExpr has been backed out temporarily, but will be back; we'll 
  // need this when it is.
  if (const SCEVSDivExpr *DE = dyn_cast<SCEVSDivExpr>(S))
    return containsAddRecFromDifferentLoop(DE->getLHS(), L) ||
           containsAddRecFromDifferentLoop(DE->getRHS(), L);
#endif
  if (const SCEVCastExpr *CE = dyn_cast<SCEVCastExpr>(S))
    return containsAddRecFromDifferentLoop(CE->getOperand(), L);
  return false;
}

/// isAddressUse - Returns true if the specified instruction is using the
/// specified value as an address.
static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
  bool isAddress = isa<LoadInst>(Inst);
  if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
    if (SI->getOperand(1) == OperandVal)
      isAddress = true;
  } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
    // Addressing modes can also be folded into prefetches and a variety
    // of intrinsics.
    switch (II->getIntrinsicID()) {
      default: break;
      case Intrinsic::prefetch:
      case Intrinsic::x86_sse2_loadu_dq:
      case Intrinsic::x86_sse2_loadu_pd:
      case Intrinsic::x86_sse_loadu_ps:
      case Intrinsic::x86_sse_storeu_ps:
      case Intrinsic::x86_sse2_storeu_pd:
      case Intrinsic::x86_sse2_storeu_dq:
      case Intrinsic::x86_sse2_storel_dq:
        if (II->getOperand(1) == OperandVal)
          isAddress = true;
        break;
    }
  }
  return isAddress;
}

/// getAccessType - Return the type of the memory being accessed.
static const Type *getAccessType(const Instruction *Inst) {
  const Type *AccessTy = Inst->getType();
  if (const StoreInst *SI = dyn_cast<StoreInst>(Inst))
    AccessTy = SI->getOperand(0)->getType();
  else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
    // Addressing modes can also be folded into prefetches and a variety
    // of intrinsics.
    switch (II->getIntrinsicID()) {
    default: break;
    case Intrinsic::x86_sse_storeu_ps:
    case Intrinsic::x86_sse2_storeu_pd:
    case Intrinsic::x86_sse2_storeu_dq:
    case Intrinsic::x86_sse2_storel_dq:
      AccessTy = II->getOperand(1)->getType();
      break;
    }
  }
  return AccessTy;
}

namespace {
  /// BasedUser - For a particular base value, keep information about how we've
  /// partitioned the expression so far.
  struct BasedUser {
    /// SE - The current ScalarEvolution object.
    ScalarEvolution *SE;

    /// Base - The Base value for the PHI node that needs to be inserted for
    /// this use.  As the use is processed, information gets moved from this
    /// field to the Imm field (below).  BasedUser values are sorted by this
    /// field.
    SCEVHandle Base;
    
    /// Inst - The instruction using the induction variable.
    Instruction *Inst;

    /// OperandValToReplace - The operand value of Inst to replace with the
    /// EmittedBase.
    Value *OperandValToReplace;

    /// isSigned - The stride (and thus also the Base) of this use may be in
    /// a narrower type than the use itself (OperandValToReplace->getType()).
    /// When this is the case, the isSigned field indicates whether the
    /// IV expression should be signed-extended instead of zero-extended to
    /// fit the type of the use.
    bool isSigned;

    /// Imm - The immediate value that should be added to the base immediately
    /// before Inst, because it will be folded into the imm field of the
    /// instruction.  This is also sometimes used for loop-variant values that
    /// must be added inside the loop.
    SCEVHandle Imm;

    /// Phi - The induction variable that performs the striding that
    /// should be used for this user.
    PHINode *Phi;

    // isUseOfPostIncrementedValue - True if this should use the
    // post-incremented version of this IV, not the preincremented version.
    // This can only be set in special cases, such as the terminating setcc
    // instruction for a loop and uses outside the loop that are dominated by
    // the loop.
    bool isUseOfPostIncrementedValue;
    
    BasedUser(IVStrideUse &IVSU, ScalarEvolution *se)
      : SE(se), Base(IVSU.getOffset()), Inst(IVSU.getUser()),
        OperandValToReplace(IVSU.getOperandValToReplace()),
        isSigned(IVSU.isSigned()),
        Imm(SE->getIntegerSCEV(0, Base->getType())), 
        isUseOfPostIncrementedValue(IVSU.isUseOfPostIncrementedValue()) {}

    // Once we rewrite the code to insert the new IVs we want, update the
    // operands of Inst to use the new expression 'NewBase', with 'Imm' added
    // to it.
    void RewriteInstructionToUseNewBase(const SCEVHandle &NewBase,
                                        Instruction *InsertPt,
                                       SCEVExpander &Rewriter, Loop *L, Pass *P,
                                        LoopInfo &LI,
                                        SmallVectorImpl<WeakVH> &DeadInsts);
    
    Value *InsertCodeForBaseAtPosition(const SCEVHandle &NewBase, 
                                       const Type *Ty,
                                       SCEVExpander &Rewriter,
                                       Instruction *IP, Loop *L,
                                       LoopInfo &LI);
    void dump() const;
  };
}

void BasedUser::dump() const {
  cerr << " Base=" << *Base;
  cerr << " Imm=" << *Imm;
  cerr << "   Inst: " << *Inst;
}

Value *BasedUser::InsertCodeForBaseAtPosition(const SCEVHandle &NewBase, 
                                              const Type *Ty,
                                              SCEVExpander &Rewriter,
                                              Instruction *IP, Loop *L,
                                              LoopInfo &LI) {
  // Figure out where we *really* want to insert this code.  In particular, if
  // the user is inside of a loop that is nested inside of L, we really don't
  // want to insert this expression before the user, we'd rather pull it out as
  // many loops as possible.
  Instruction *BaseInsertPt = IP;
  
  // Figure out the most-nested loop that IP is in.
  Loop *InsertLoop = LI.getLoopFor(IP->getParent());
  
  // If InsertLoop is not L, and InsertLoop is nested inside of L, figure out
  // the preheader of the outer-most loop where NewBase is not loop invariant.
  if (L->contains(IP->getParent()))
    while (InsertLoop && NewBase->isLoopInvariant(InsertLoop)) {
      BaseInsertPt = InsertLoop->getLoopPreheader()->getTerminator();
      InsertLoop = InsertLoop->getParentLoop();
    }
  
  Value *Base = Rewriter.expandCodeFor(NewBase, 0, BaseInsertPt);

  SCEVHandle NewValSCEV = SE->getUnknown(Base);

  // If there is no immediate value, skip the next part.
  if (!Imm->isZero()) {
    // If we are inserting the base and imm values in the same block, make sure
    // to adjust the IP position if insertion reused a result.
    if (IP == BaseInsertPt)
      IP = Rewriter.getInsertionPoint();

    // Always emit the immediate (if non-zero) into the same block as the user.
    NewValSCEV = SE->getAddExpr(NewValSCEV, Imm);
  }

  if (isSigned)
    NewValSCEV = SE->getTruncateOrSignExtend(NewValSCEV, Ty);
  else
    NewValSCEV = SE->getTruncateOrZeroExtend(NewValSCEV, Ty);

  return Rewriter.expandCodeFor(NewValSCEV, Ty, IP);
}


// Once we rewrite the code to insert the new IVs we want, update the
// operands of Inst to use the new expression 'NewBase', with 'Imm' added
// to it. NewBasePt is the last instruction which contributes to the
// value of NewBase in the case that it's a diffferent instruction from
// the PHI that NewBase is computed from, or null otherwise.
//
void BasedUser::RewriteInstructionToUseNewBase(const SCEVHandle &NewBase,
                                               Instruction *NewBasePt,
                                      SCEVExpander &Rewriter, Loop *L, Pass *P,
                                      LoopInfo &LI,
                                      SmallVectorImpl<WeakVH> &DeadInsts) {
  if (!isa<PHINode>(Inst)) {
    // By default, insert code at the user instruction.
    BasicBlock::iterator InsertPt = Inst;
    
    // However, if the Operand is itself an instruction, the (potentially
    // complex) inserted code may be shared by many users.  Because of this, we
    // want to emit code for the computation of the operand right before its old
    // computation.  This is usually safe, because we obviously used to use the
    // computation when it was computed in its current block.  However, in some
    // cases (e.g. use of a post-incremented induction variable) the NewBase
    // value will be pinned to live somewhere after the original computation.
    // In this case, we have to back off.
    //
    // If this is a use outside the loop (which means after, since it is based
    // on a loop indvar) we use the post-incremented value, so that we don't
    // artificially make the preinc value live out the bottom of the loop. 
    if (!isUseOfPostIncrementedValue && L->contains(Inst->getParent())) {
      if (NewBasePt && isa<PHINode>(OperandValToReplace)) {
        InsertPt = NewBasePt;
        ++InsertPt;
      } else if (Instruction *OpInst
                 = dyn_cast<Instruction>(OperandValToReplace)) {
        InsertPt = OpInst;
        while (isa<PHINode>(InsertPt)) ++InsertPt;
      }
    }
    Value *NewVal = InsertCodeForBaseAtPosition(NewBase,
                                                OperandValToReplace->getType(),
                                                Rewriter, InsertPt, L, LI);
    // Replace the use of the operand Value with the new Phi we just created.
    Inst->replaceUsesOfWith(OperandValToReplace, NewVal);

    DOUT << "      Replacing with ";
    DEBUG(WriteAsOperand(*DOUT, NewVal, /*PrintType=*/false));
    DOUT << ", which has value " << *NewBase << " plus IMM " << *Imm << "\n";
    return;
  }

  // PHI nodes are more complex.  We have to insert one copy of the NewBase+Imm
  // expression into each operand block that uses it.  Note that PHI nodes can
  // have multiple entries for the same predecessor.  We use a map to make sure
  // that a PHI node only has a single Value* for each predecessor (which also
  // prevents us from inserting duplicate code in some blocks).
  DenseMap<BasicBlock*, Value*> InsertedCode;
  PHINode *PN = cast<PHINode>(Inst);
  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    if (PN->getIncomingValue(i) == OperandValToReplace) {
      // If the original expression is outside the loop, put the replacement
      // code in the same place as the original expression,
      // which need not be an immediate predecessor of this PHI.  This way we 
      // need only one copy of it even if it is referenced multiple times in
      // the PHI.  We don't do this when the original expression is inside the
      // loop because multiple copies sometimes do useful sinking of code in
      // that case(?).
      Instruction *OldLoc = dyn_cast<Instruction>(OperandValToReplace);
      if (L->contains(OldLoc->getParent())) {
        // If this is a critical edge, split the edge so that we do not insert
        // the code on all predecessor/successor paths.  We do this unless this
        // is the canonical backedge for this loop, as this can make some
        // inserted code be in an illegal position.
        BasicBlock *PHIPred = PN->getIncomingBlock(i);
        if (e != 1 && PHIPred->getTerminator()->getNumSuccessors() > 1 &&
            (PN->getParent() != L->getHeader() || !L->contains(PHIPred))) {

          // First step, split the critical edge.
          SplitCriticalEdge(PHIPred, PN->getParent(), P, false);

          // Next step: move the basic block.  In particular, if the PHI node
          // is outside of the loop, and PredTI is in the loop, we want to
          // move the block to be immediately before the PHI block, not
          // immediately after PredTI.
          if (L->contains(PHIPred) && !L->contains(PN->getParent())) {
            BasicBlock *NewBB = PN->getIncomingBlock(i);
            NewBB->moveBefore(PN->getParent());
          }

          // Splitting the edge can reduce the number of PHI entries we have.
          e = PN->getNumIncomingValues();
        }
      }
      Value *&Code = InsertedCode[PN->getIncomingBlock(i)];
      if (!Code) {
        // Insert the code into the end of the predecessor block.
        Instruction *InsertPt = (L->contains(OldLoc->getParent())) ?
                                PN->getIncomingBlock(i)->getTerminator() :
                                OldLoc->getParent()->getTerminator();
        Code = InsertCodeForBaseAtPosition(NewBase, PN->getType(),
                                           Rewriter, InsertPt, L, LI);

        DOUT << "      Changing PHI use to ";
        DEBUG(WriteAsOperand(*DOUT, Code, /*PrintType=*/false));
        DOUT << ", which has value " << *NewBase << " plus IMM " << *Imm << "\n";
      }

      // Replace the use of the operand Value with the new Phi we just created.
      PN->setIncomingValue(i, Code);
      Rewriter.clear();
    }
  }

  // PHI node might have become a constant value after SplitCriticalEdge.
  DeadInsts.push_back(Inst);
}


/// fitsInAddressMode - Return true if V can be subsumed within an addressing
/// mode, and does not need to be put in a register first.
static bool fitsInAddressMode(const SCEVHandle &V, const Type *AccessTy,
                             const TargetLowering *TLI, bool HasBaseReg) {
  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(V)) {
    int64_t VC = SC->getValue()->getSExtValue();
    if (TLI) {
      TargetLowering::AddrMode AM;
      AM.BaseOffs = VC;
      AM.HasBaseReg = HasBaseReg;
      return TLI->isLegalAddressingMode(AM, AccessTy);
    } else {
      // Defaults to PPC. PPC allows a sign-extended 16-bit immediate field.
      return (VC > -(1 << 16) && VC < (1 << 16)-1);
    }
  }

  if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V))
    if (GlobalValue *GV = dyn_cast<GlobalValue>(SU->getValue())) {
      if (TLI) {
        TargetLowering::AddrMode AM;
        AM.BaseGV = GV;
        AM.HasBaseReg = HasBaseReg;
        return TLI->isLegalAddressingMode(AM, AccessTy);
      } else {
        // Default: assume global addresses are not legal.
      }
    }

  return false;
}

/// MoveLoopVariantsToImmediateField - Move any subexpressions from Val that are
/// loop varying to the Imm operand.
static void MoveLoopVariantsToImmediateField(SCEVHandle &Val, SCEVHandle &Imm,
                                             Loop *L, ScalarEvolution *SE) {
  if (Val->isLoopInvariant(L)) return;  // Nothing to do.
  
  if (const SCEVAddExpr *SAE = dyn_cast<SCEVAddExpr>(Val)) {
    SmallVector<SCEVHandle, 4> NewOps;
    NewOps.reserve(SAE->getNumOperands());
    
    for (unsigned i = 0; i != SAE->getNumOperands(); ++i)
      if (!SAE->getOperand(i)->isLoopInvariant(L)) {
        // If this is a loop-variant expression, it must stay in the immediate
        // field of the expression.
        Imm = SE->getAddExpr(Imm, SAE->getOperand(i));
      } else {
        NewOps.push_back(SAE->getOperand(i));
      }

    if (NewOps.empty())
      Val = SE->getIntegerSCEV(0, Val->getType());
    else
      Val = SE->getAddExpr(NewOps);
  } else if (const SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Val)) {
    // Try to pull immediates out of the start value of nested addrec's.
    SCEVHandle Start = SARE->getStart();
    MoveLoopVariantsToImmediateField(Start, Imm, L, SE);
    
    SmallVector<SCEVHandle, 4> Ops(SARE->op_begin(), SARE->op_end());
    Ops[0] = Start;
    Val = SE->getAddRecExpr(Ops, SARE->getLoop());
  } else {
    // Otherwise, all of Val is variant, move the whole thing over.
    Imm = SE->getAddExpr(Imm, Val);
    Val = SE->getIntegerSCEV(0, Val->getType());
  }
}


/// MoveImmediateValues - Look at Val, and pull out any additions of constants
/// that can fit into the immediate field of instructions in the target.
/// Accumulate these immediate values into the Imm value.
static void MoveImmediateValues(const TargetLowering *TLI,
                                const Type *AccessTy,
                                SCEVHandle &Val, SCEVHandle &Imm,
                                bool isAddress, Loop *L,
                                ScalarEvolution *SE) {
  if (const SCEVAddExpr *SAE = dyn_cast<SCEVAddExpr>(Val)) {
    SmallVector<SCEVHandle, 4> NewOps;
    NewOps.reserve(SAE->getNumOperands());
    
    for (unsigned i = 0; i != SAE->getNumOperands(); ++i) {
      SCEVHandle NewOp = SAE->getOperand(i);
      MoveImmediateValues(TLI, AccessTy, NewOp, Imm, isAddress, L, SE);
      
      if (!NewOp->isLoopInvariant(L)) {
        // If this is a loop-variant expression, it must stay in the immediate
        // field of the expression.
        Imm = SE->getAddExpr(Imm, NewOp);
      } else {
        NewOps.push_back(NewOp);
      }
    }

    if (NewOps.empty())
      Val = SE->getIntegerSCEV(0, Val->getType());
    else
      Val = SE->getAddExpr(NewOps);
    return;
  } else if (const SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Val)) {
    // Try to pull immediates out of the start value of nested addrec's.
    SCEVHandle Start = SARE->getStart();
    MoveImmediateValues(TLI, AccessTy, Start, Imm, isAddress, L, SE);
    
    if (Start != SARE->getStart()) {
      SmallVector<SCEVHandle, 4> Ops(SARE->op_begin(), SARE->op_end());
      Ops[0] = Start;
      Val = SE->getAddRecExpr(Ops, SARE->getLoop());
    }
    return;
  } else if (const SCEVMulExpr *SME = dyn_cast<SCEVMulExpr>(Val)) {
    // Transform "8 * (4 + v)" -> "32 + 8*V" if "32" fits in the immed field.
    if (isAddress &&
        fitsInAddressMode(SME->getOperand(0), AccessTy, TLI, false) &&
        SME->getNumOperands() == 2 && SME->isLoopInvariant(L)) {

      SCEVHandle SubImm = SE->getIntegerSCEV(0, Val->getType());
      SCEVHandle NewOp = SME->getOperand(1);
      MoveImmediateValues(TLI, AccessTy, NewOp, SubImm, isAddress, L, SE);
      
      // If we extracted something out of the subexpressions, see if we can 
      // simplify this!
      if (NewOp != SME->getOperand(1)) {
        // Scale SubImm up by "8".  If the result is a target constant, we are
        // good.
        SubImm = SE->getMulExpr(SubImm, SME->getOperand(0));
        if (fitsInAddressMode(SubImm, AccessTy, TLI, false)) {
          // Accumulate the immediate.
          Imm = SE->getAddExpr(Imm, SubImm);
          
          // Update what is left of 'Val'.
          Val = SE->getMulExpr(SME->getOperand(0), NewOp);
          return;
        }
      }
    }
  }

  // Loop-variant expressions must stay in the immediate field of the
  // expression.
  if ((isAddress && fitsInAddressMode(Val, AccessTy, TLI, false)) ||
      !Val->isLoopInvariant(L)) {
    Imm = SE->getAddExpr(Imm, Val);
    Val = SE->getIntegerSCEV(0, Val->getType());
    return;
  }

  // Otherwise, no immediates to move.
}

static void MoveImmediateValues(const TargetLowering *TLI,
                                Instruction *User,
                                SCEVHandle &Val, SCEVHandle &Imm,
                                bool isAddress, Loop *L,
                                ScalarEvolution *SE) {
  const Type *AccessTy = getAccessType(User);
  MoveImmediateValues(TLI, AccessTy, Val, Imm, isAddress, L, SE);
}

/// SeparateSubExprs - Decompose Expr into all of the subexpressions that are
/// added together.  This is used to reassociate common addition subexprs
/// together for maximal sharing when rewriting bases.
static void SeparateSubExprs(SmallVector<SCEVHandle, 16> &SubExprs,
                             SCEVHandle Expr,
                             ScalarEvolution *SE) {
  if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(Expr)) {
    for (unsigned j = 0, e = AE->getNumOperands(); j != e; ++j)
      SeparateSubExprs(SubExprs, AE->getOperand(j), SE);
  } else if (const SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Expr)) {
    SCEVHandle Zero = SE->getIntegerSCEV(0, Expr->getType());
    if (SARE->getOperand(0) == Zero) {
      SubExprs.push_back(Expr);
    } else {
      // Compute the addrec with zero as its base.
      SmallVector<SCEVHandle, 4> Ops(SARE->op_begin(), SARE->op_end());
      Ops[0] = Zero;   // Start with zero base.
      SubExprs.push_back(SE->getAddRecExpr(Ops, SARE->getLoop()));
      

      SeparateSubExprs(SubExprs, SARE->getOperand(0), SE);
    }
  } else if (!Expr->isZero()) {
    // Do not add zero.
    SubExprs.push_back(Expr);
  }
}

// This is logically local to the following function, but C++ says we have 
// to make it file scope.
struct SubExprUseData { unsigned Count; bool notAllUsesAreFree; };

/// RemoveCommonExpressionsFromUseBases - Look through all of the Bases of all
/// the Uses, removing any common subexpressions, except that if all such
/// subexpressions can be folded into an addressing mode for all uses inside
/// the loop (this case is referred to as "free" in comments herein) we do
/// not remove anything.  This looks for things like (a+b+c) and
/// (a+c+d) and computes the common (a+c) subexpression.  The common expression
/// is *removed* from the Bases and returned.
static SCEVHandle 
RemoveCommonExpressionsFromUseBases(std::vector<BasedUser> &Uses,
                                    ScalarEvolution *SE, Loop *L,
                                    const TargetLowering *TLI) {
  unsigned NumUses = Uses.size();

  // Only one use?  This is a very common case, so we handle it specially and
  // cheaply.
  SCEVHandle Zero = SE->getIntegerSCEV(0, Uses[0].Base->getType());
  SCEVHandle Result = Zero;
  SCEVHandle FreeResult = Zero;
  if (NumUses == 1) {
    // If the use is inside the loop, use its base, regardless of what it is:
    // it is clearly shared across all the IV's.  If the use is outside the loop
    // (which means after it) we don't want to factor anything *into* the loop,
    // so just use 0 as the base.
    if (L->contains(Uses[0].Inst->getParent()))
      std::swap(Result, Uses[0].Base);
    return Result;
  }

  // To find common subexpressions, count how many of Uses use each expression.
  // If any subexpressions are used Uses.size() times, they are common.
  // Also track whether all uses of each expression can be moved into an
  // an addressing mode "for free"; such expressions are left within the loop.
  // struct SubExprUseData { unsigned Count; bool notAllUsesAreFree; };
  std::map<SCEVHandle, SubExprUseData> SubExpressionUseData;
  
  // UniqueSubExprs - Keep track of all of the subexpressions we see in the
  // order we see them.
  SmallVector<SCEVHandle, 16> UniqueSubExprs;

  SmallVector<SCEVHandle, 16> SubExprs;
  unsigned NumUsesInsideLoop = 0;
  for (unsigned i = 0; i != NumUses; ++i) {
    // If the user is outside the loop, just ignore it for base computation.
    // Since the user is outside the loop, it must be *after* the loop (if it
    // were before, it could not be based on the loop IV).  We don't want users
    // after the loop to affect base computation of values *inside* the loop,
    // because we can always add their offsets to the result IV after the loop
    // is done, ensuring we get good code inside the loop.
    if (!L->contains(Uses[i].Inst->getParent()))
      continue;
    NumUsesInsideLoop++;
    
    // If the base is zero (which is common), return zero now, there are no
    // CSEs we can find.
    if (Uses[i].Base == Zero) return Zero;

    // If this use is as an address we may be able to put CSEs in the addressing
    // mode rather than hoisting them.
    bool isAddrUse = isAddressUse(Uses[i].Inst, Uses[i].OperandValToReplace);
    // We may need the AccessTy below, but only when isAddrUse, so compute it
    // only in that case.
    const Type *AccessTy = 0;
    if (isAddrUse)
      AccessTy = getAccessType(Uses[i].Inst);

    // Split the expression into subexprs.
    SeparateSubExprs(SubExprs, Uses[i].Base, SE);
    // Add one to SubExpressionUseData.Count for each subexpr present, and
    // if the subexpr is not a valid immediate within an addressing mode use,
    // set SubExpressionUseData.notAllUsesAreFree.  We definitely want to
    // hoist these out of the loop (if they are common to all uses).
    for (unsigned j = 0, e = SubExprs.size(); j != e; ++j) {
      if (++SubExpressionUseData[SubExprs[j]].Count == 1)
        UniqueSubExprs.push_back(SubExprs[j]);
      if (!isAddrUse || !fitsInAddressMode(SubExprs[j], AccessTy, TLI, false))
        SubExpressionUseData[SubExprs[j]].notAllUsesAreFree = true;
    }
    SubExprs.clear();
  }

  // Now that we know how many times each is used, build Result.  Iterate over
  // UniqueSubexprs so that we have a stable ordering.
  for (unsigned i = 0, e = UniqueSubExprs.size(); i != e; ++i) {
    std::map<SCEVHandle, SubExprUseData>::iterator I = 
       SubExpressionUseData.find(UniqueSubExprs[i]);
    assert(I != SubExpressionUseData.end() && "Entry not found?");
    if (I->second.Count == NumUsesInsideLoop) { // Found CSE! 
      if (I->second.notAllUsesAreFree)
        Result = SE->getAddExpr(Result, I->first);
      else 
        FreeResult = SE->getAddExpr(FreeResult, I->first);
    } else
      // Remove non-cse's from SubExpressionUseData.
      SubExpressionUseData.erase(I);
  }

  if (FreeResult != Zero) {
    // We have some subexpressions that can be subsumed into addressing
    // modes in every use inside the loop.  However, it's possible that
    // there are so many of them that the combined FreeResult cannot
    // be subsumed, or that the target cannot handle both a FreeResult
    // and a Result in the same instruction (for example because it would
    // require too many registers).  Check this.
    for (unsigned i=0; i<NumUses; ++i) {
      if (!L->contains(Uses[i].Inst->getParent()))
        continue;
      // We know this is an addressing mode use; if there are any uses that
      // are not, FreeResult would be Zero.
      const Type *AccessTy = getAccessType(Uses[i].Inst);
      if (!fitsInAddressMode(FreeResult, AccessTy, TLI, Result!=Zero)) {
        // FIXME:  could split up FreeResult into pieces here, some hoisted
        // and some not.  There is no obvious advantage to this.
        Result = SE->getAddExpr(Result, FreeResult);
        FreeResult = Zero;
        break;
      }
    }
  }

  // If we found no CSE's, return now.
  if (Result == Zero) return Result;
  
  // If we still have a FreeResult, remove its subexpressions from
  // SubExpressionUseData.  This means they will remain in the use Bases.
  if (FreeResult != Zero) {
    SeparateSubExprs(SubExprs, FreeResult, SE);
    for (unsigned j = 0, e = SubExprs.size(); j != e; ++j) {
      std::map<SCEVHandle, SubExprUseData>::iterator I = 
         SubExpressionUseData.find(SubExprs[j]);
      SubExpressionUseData.erase(I);
    }
    SubExprs.clear();
  }

  // Otherwise, remove all of the CSE's we found from each of the base values.
  for (unsigned i = 0; i != NumUses; ++i) {
    // Uses outside the loop don't necessarily include the common base, but
    // the final IV value coming into those uses does.  Instead of trying to
    // remove the pieces of the common base, which might not be there,
    // subtract off the base to compensate for this.
    if (!L->contains(Uses[i].Inst->getParent())) {
      Uses[i].Base = SE->getMinusSCEV(Uses[i].Base, Result);
      continue;
    }

    // Split the expression into subexprs.
    SeparateSubExprs(SubExprs, Uses[i].Base, SE);

    // Remove any common subexpressions.
    for (unsigned j = 0, e = SubExprs.size(); j != e; ++j)
      if (SubExpressionUseData.count(SubExprs[j])) {
        SubExprs.erase(SubExprs.begin()+j);
        --j; --e;
      }
    
    // Finally, add the non-shared expressions together.
    if (SubExprs.empty())
      Uses[i].Base = Zero;
    else
      Uses[i].Base = SE->getAddExpr(SubExprs);
    SubExprs.clear();
  }
 
  return Result;
}

/// ValidScale - Check whether the given Scale is valid for all loads and 
/// stores in UsersToProcess.
///
bool LoopStrengthReduce::ValidScale(bool HasBaseReg, int64_t Scale,
                               const std::vector<BasedUser>& UsersToProcess) {
  if (!TLI)
    return true;

  for (unsigned i = 0, e = UsersToProcess.size(); i!=e; ++i) {
    // If this is a load or other access, pass the type of the access in.
    const Type *AccessTy = Type::VoidTy;
    if (isAddressUse(UsersToProcess[i].Inst,
                     UsersToProcess[i].OperandValToReplace))
      AccessTy = getAccessType(UsersToProcess[i].Inst);
    else if (isa<PHINode>(UsersToProcess[i].Inst))
      continue;
    
    TargetLowering::AddrMode AM;
    if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(UsersToProcess[i].Imm))
      AM.BaseOffs = SC->getValue()->getSExtValue();
    AM.HasBaseReg = HasBaseReg || !UsersToProcess[i].Base->isZero();
    AM.Scale = Scale;

    // If load[imm+r*scale] is illegal, bail out.
    if (!TLI->isLegalAddressingMode(AM, AccessTy))
      return false;
  }
  return true;
}

/// ValidOffset - Check whether the given Offset is valid for all loads and
/// stores in UsersToProcess.
///
bool LoopStrengthReduce::ValidOffset(bool HasBaseReg,
                               int64_t Offset,
                               int64_t Scale,
                               const std::vector<BasedUser>& UsersToProcess) {
  if (!TLI)
    return true;

  for (unsigned i=0, e = UsersToProcess.size(); i!=e; ++i) {
    // If this is a load or other access, pass the type of the access in.
    const Type *AccessTy = Type::VoidTy;
    if (isAddressUse(UsersToProcess[i].Inst,
                     UsersToProcess[i].OperandValToReplace))
      AccessTy = getAccessType(UsersToProcess[i].Inst);
    else if (isa<PHINode>(UsersToProcess[i].Inst))
      continue;

    TargetLowering::AddrMode AM;
    if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(UsersToProcess[i].Imm))
      AM.BaseOffs = SC->getValue()->getSExtValue();
    AM.BaseOffs = (uint64_t)AM.BaseOffs + (uint64_t)Offset;
    AM.HasBaseReg = HasBaseReg || !UsersToProcess[i].Base->isZero();
    AM.Scale = Scale;

    // If load[imm+r*scale] is illegal, bail out.
    if (!TLI->isLegalAddressingMode(AM, AccessTy))
      return false;
  }
  return true;
}

/// RequiresTypeConversion - Returns true if converting Ty1 to Ty2 is not
/// a nop.
bool LoopStrengthReduce::RequiresTypeConversion(const Type *Ty1,
                                                const Type *Ty2) {
  if (Ty1 == Ty2)
    return false;
  Ty1 = SE->getEffectiveSCEVType(Ty1);
  Ty2 = SE->getEffectiveSCEVType(Ty2);
  if (Ty1 == Ty2)
    return false;
  if (Ty1->canLosslesslyBitCastTo(Ty2))
    return false;
  if (TLI && TLI->isTruncateFree(Ty1, Ty2))
    return false;
  return true;
}

/// CheckForIVReuse - Returns the multiple if the stride is the multiple
/// of a previous stride and it is a legal value for the target addressing
/// mode scale component and optional base reg. This allows the users of
/// this stride to be rewritten as prev iv * factor. It returns 0 if no
/// reuse is possible.  Factors can be negative on same targets, e.g. ARM.
///
/// If all uses are outside the loop, we don't require that all multiplies
/// be folded into the addressing mode, nor even that the factor be constant; 
/// a multiply (executed once) outside the loop is better than another IV 
/// within.  Well, usually.
SCEVHandle LoopStrengthReduce::CheckForIVReuse(bool HasBaseReg,
                                bool AllUsesAreAddresses,
                                bool AllUsesAreOutsideLoop,
                                const SCEVHandle &Stride, 
                                IVExpr &IV, const Type *Ty,
                                const std::vector<BasedUser>& UsersToProcess) {
  if (StrideNoReuse.count(Stride))
    return SE->getIntegerSCEV(0, Stride->getType());

  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Stride)) {
    int64_t SInt = SC->getValue()->getSExtValue();
    for (unsigned NewStride = 0, e = IU->StrideOrder.size();
         NewStride != e; ++NewStride) {
      std::map<SCEVHandle, IVsOfOneStride>::iterator SI = 
                IVsByStride.find(IU->StrideOrder[NewStride]);
      if (SI == IVsByStride.end() || !isa<SCEVConstant>(SI->first) ||
          StrideNoReuse.count(SI->first))
        continue;
      int64_t SSInt = cast<SCEVConstant>(SI->first)->getValue()->getSExtValue();
      if (SI->first != Stride &&
          (unsigned(abs64(SInt)) < SSInt || (SInt % SSInt) != 0))
        continue;
      int64_t Scale = SInt / SSInt;
      // Check that this stride is valid for all the types used for loads and
      // stores; if it can be used for some and not others, we might as well use
      // the original stride everywhere, since we have to create the IV for it
      // anyway. If the scale is 1, then we don't need to worry about folding
      // multiplications.
      if (Scale == 1 ||
          (AllUsesAreAddresses &&
           ValidScale(HasBaseReg, Scale, UsersToProcess))) {
        // Prefer to reuse an IV with a base of zero.
        for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(),
               IE = SI->second.IVs.end(); II != IE; ++II)
          // Only reuse previous IV if it would not require a type conversion
          // and if the base difference can be folded.
          if (II->Base->isZero() &&
              !RequiresTypeConversion(II->Base->getType(), Ty)) {
            IV = *II;
            return SE->getIntegerSCEV(Scale, Stride->getType());
          }
        // Otherwise, settle for an IV with a foldable base.
        if (AllUsesAreAddresses)
          for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(),
                 IE = SI->second.IVs.end(); II != IE; ++II)
            // Only reuse previous IV if it would not require a type conversion
            // and if the base difference can be folded.
            if (SE->getEffectiveSCEVType(II->Base->getType()) ==
                SE->getEffectiveSCEVType(Ty) &&
                isa<SCEVConstant>(II->Base)) {
              int64_t Base =
                cast<SCEVConstant>(II->Base)->getValue()->getSExtValue();
              if (Base > INT32_MIN && Base <= INT32_MAX &&
                  ValidOffset(HasBaseReg, -Base * Scale,
                              Scale, UsersToProcess)) {
                IV = *II;
                return SE->getIntegerSCEV(Scale, Stride->getType());
              }
            }
      }
    }
  } else if (AllUsesAreOutsideLoop) {
    // Accept nonconstant strides here; it is really really right to substitute
    // an existing IV if we can.
    for (unsigned NewStride = 0, e = IU->StrideOrder.size();
         NewStride != e; ++NewStride) {
      std::map<SCEVHandle, IVsOfOneStride>::iterator SI = 
                IVsByStride.find(IU->StrideOrder[NewStride]);
      if (SI == IVsByStride.end() || !isa<SCEVConstant>(SI->first))
        continue;
      int64_t SSInt = cast<SCEVConstant>(SI->first)->getValue()->getSExtValue();
      if (SI->first != Stride && SSInt != 1)
        continue;
      for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(),
             IE = SI->second.IVs.end(); II != IE; ++II)
        // Accept nonzero base here.
        // Only reuse previous IV if it would not require a type conversion.
        if (!RequiresTypeConversion(II->Base->getType(), Ty)) {
          IV = *II;
          return Stride;
        }
    }
    // Special case, old IV is -1*x and this one is x.  Can treat this one as
    // -1*old.
    for (unsigned NewStride = 0, e = IU->StrideOrder.size();
         NewStride != e; ++NewStride) {
      std::map<SCEVHandle, IVsOfOneStride>::iterator SI = 
                IVsByStride.find(IU->StrideOrder[NewStride]);
      if (SI == IVsByStride.end()) 
        continue;
      if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(SI->first))
        if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(ME->getOperand(0)))
          if (Stride == ME->getOperand(1) &&
              SC->getValue()->getSExtValue() == -1LL)
            for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(),
                   IE = SI->second.IVs.end(); II != IE; ++II)
              // Accept nonzero base here.
              // Only reuse previous IV if it would not require type conversion.
              if (!RequiresTypeConversion(II->Base->getType(), Ty)) {
                IV = *II;
                return SE->getIntegerSCEV(-1LL, Stride->getType());
              }
    }
  }
  return SE->getIntegerSCEV(0, Stride->getType());
}

/// PartitionByIsUseOfPostIncrementedValue - Simple boolean predicate that
/// returns true if Val's isUseOfPostIncrementedValue is true.
static bool PartitionByIsUseOfPostIncrementedValue(const BasedUser &Val) {
  return Val.isUseOfPostIncrementedValue;
}

/// isNonConstantNegative - Return true if the specified scev is negated, but
/// not a constant.
static bool isNonConstantNegative(const SCEVHandle &Expr) {
  const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Expr);
  if (!Mul) return false;
  
  // If there is a constant factor, it will be first.
  const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
  if (!SC) return false;
  
  // Return true if the value is negative, this matches things like (-42 * V).
  return SC->getValue()->getValue().isNegative();
}

// CollectIVUsers - Transform our list of users and offsets to a bit more
// complex table. In this new vector, each 'BasedUser' contains 'Base', the base
// of the strided accesses, as well as the old information from Uses. We
// progressively move information from the Base field to the Imm field, until
// we eventually have the full access expression to rewrite the use.
SCEVHandle LoopStrengthReduce::CollectIVUsers(const SCEVHandle &Stride,
                                              IVUsersOfOneStride &Uses,
                                              Loop *L,
                                              bool &AllUsesAreAddresses,
                                              bool &AllUsesAreOutsideLoop,
                                       std::vector<BasedUser> &UsersToProcess) {
  // FIXME: Generalize to non-affine IV's.
  if (!Stride->isLoopInvariant(L))
    return SE->getIntegerSCEV(0, Stride->getType());

  UsersToProcess.reserve(Uses.Users.size());
  for (ilist<IVStrideUse>::iterator I = Uses.Users.begin(),
       E = Uses.Users.end(); I != E; ++I) {
    UsersToProcess.push_back(BasedUser(*I, SE));

    // Move any loop variant operands from the offset field to the immediate
    // field of the use, so that we don't try to use something before it is
    // computed.
    MoveLoopVariantsToImmediateField(UsersToProcess.back().Base,
                                     UsersToProcess.back().Imm, L, SE);
    assert(UsersToProcess.back().Base->isLoopInvariant(L) &&
           "Base value is not loop invariant!");
  }

  // We now have a whole bunch of uses of like-strided induction variables, but
  // they might all have different bases.  We want to emit one PHI node for this
  // stride which we fold as many common expressions (between the IVs) into as
  // possible.  Start by identifying the common expressions in the base values 
  // for the strides (e.g. if we have "A+C+B" and "A+B+D" as our bases, find
  // "A+B"), emit it to the preheader, then remove the expression from the
  // UsersToProcess base values.
  SCEVHandle CommonExprs =
    RemoveCommonExpressionsFromUseBases(UsersToProcess, SE, L, TLI);

  // Next, figure out what we can represent in the immediate fields of
  // instructions.  If we can represent anything there, move it to the imm
  // fields of the BasedUsers.  We do this so that it increases the commonality
  // of the remaining uses.
  unsigned NumPHI = 0;
  bool HasAddress = false;
  for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) {
    // If the user is not in the current loop, this means it is using the exit
    // value of the IV.  Do not put anything in the base, make sure it's all in
    // the immediate field to allow as much factoring as possible.
    if (!L->contains(UsersToProcess[i].Inst->getParent())) {
      UsersToProcess[i].Imm = SE->getAddExpr(UsersToProcess[i].Imm,
                                             UsersToProcess[i].Base);
      UsersToProcess[i].Base = 
        SE->getIntegerSCEV(0, UsersToProcess[i].Base->getType());
    } else {
      // Not all uses are outside the loop.
      AllUsesAreOutsideLoop = false; 

      // Addressing modes can be folded into loads and stores.  Be careful that
      // the store is through the expression, not of the expression though.
      bool isPHI = false;
      bool isAddress = isAddressUse(UsersToProcess[i].Inst,
                                    UsersToProcess[i].OperandValToReplace);
      if (isa<PHINode>(UsersToProcess[i].Inst)) {
        isPHI = true;
        ++NumPHI;
      }

      if (isAddress)
        HasAddress = true;
     
      // If this use isn't an address, then not all uses are addresses.
      if (!isAddress && !isPHI)
        AllUsesAreAddresses = false;
      
      MoveImmediateValues(TLI, UsersToProcess[i].Inst, UsersToProcess[i].Base,
                          UsersToProcess[i].Imm, isAddress, L, SE);
    }
  }

  // If one of the use is a PHI node and all other uses are addresses, still
  // allow iv reuse. Essentially we are trading one constant multiplication
  // for one fewer iv.
  if (NumPHI > 1)
    AllUsesAreAddresses = false;
    
  // There are no in-loop address uses.
  if (AllUsesAreAddresses && (!HasAddress && !AllUsesAreOutsideLoop))
    AllUsesAreAddresses = false;

  return CommonExprs;
}

/// ShouldUseFullStrengthReductionMode - Test whether full strength-reduction
/// is valid and profitable for the given set of users of a stride. In
/// full strength-reduction mode, all addresses at the current stride are
/// strength-reduced all the way down to pointer arithmetic.
///
bool LoopStrengthReduce::ShouldUseFullStrengthReductionMode(
                                   const std::vector<BasedUser> &UsersToProcess,
                                   const Loop *L,
                                   bool AllUsesAreAddresses,
                                   SCEVHandle Stride) {
  if (!EnableFullLSRMode)
    return false;

  // The heuristics below aim to avoid increasing register pressure, but
  // fully strength-reducing all the addresses increases the number of
  // add instructions, so don't do this when optimizing for size.
  // TODO: If the loop is large, the savings due to simpler addresses
  // may oughtweight the costs of the extra increment instructions.
  if (L->getHeader()->getParent()->hasFnAttr(Attribute::OptimizeForSize))
    return false;

  // TODO: For now, don't do full strength reduction if there could
  // potentially be greater-stride multiples of the current stride
  // which could reuse the current stride IV.
  if (IU->StrideOrder.back() != Stride)
    return false;

  // Iterate through the uses to find conditions that automatically rule out
  // full-lsr mode.
  for (unsigned i = 0, e = UsersToProcess.size(); i != e; ) {
    const SCEV *Base = UsersToProcess[i].Base;
    const SCEV *Imm = UsersToProcess[i].Imm;
    // If any users have a loop-variant component, they can't be fully
    // strength-reduced.
    if (Imm && !Imm->isLoopInvariant(L))
      return false;
    // If there are to users with the same base and the difference between
    // the two Imm values can't be folded into the address, full
    // strength reduction would increase register pressure.
    do {
      const SCEV *CurImm = UsersToProcess[i].Imm;
      if ((CurImm || Imm) && CurImm != Imm) {
        if (!CurImm) CurImm = SE->getIntegerSCEV(0, Stride->getType());
        if (!Imm)       Imm = SE->getIntegerSCEV(0, Stride->getType());
        const Instruction *Inst = UsersToProcess[i].Inst;
        const Type *AccessTy = getAccessType(Inst);
        SCEVHandle Diff = SE->getMinusSCEV(UsersToProcess[i].Imm, Imm);
        if (!Diff->isZero() &&
            (!AllUsesAreAddresses ||
             !fitsInAddressMode(Diff, AccessTy, TLI, /*HasBaseReg=*/true)))
          return false;
      }
    } while (++i != e && Base == UsersToProcess[i].Base);
  }

  // If there's exactly one user in this stride, fully strength-reducing it
  // won't increase register pressure. If it's starting from a non-zero base,
  // it'll be simpler this way.
  if (UsersToProcess.size() == 1 && !UsersToProcess[0].Base->isZero())
    return true;

  // Otherwise, if there are any users in this stride that don't require
  // a register for their base, full strength-reduction will increase
  // register pressure.
  for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i)
    if (UsersToProcess[i].Base->isZero())
      return false;

  // Otherwise, go for it.
  return true;
}

/// InsertAffinePhi Create and insert a PHI node for an induction variable
/// with the specified start and step values in the specified loop.
///
/// If NegateStride is true, the stride should be negated by using a
/// subtract instead of an add.
///
/// Return the created phi node.
///
static PHINode *InsertAffinePhi(SCEVHandle Start, SCEVHandle Step,
                                Instruction *IVIncInsertPt,
                                const Loop *L,
                                SCEVExpander &Rewriter) {
  assert(Start->isLoopInvariant(L) && "New PHI start is not loop invariant!");
  assert(Step->isLoopInvariant(L) && "New PHI stride is not loop invariant!");

  BasicBlock *Header = L->getHeader();
  BasicBlock *Preheader = L->getLoopPreheader();
  BasicBlock *LatchBlock = L->getLoopLatch();
  const Type *Ty = Start->getType();
  Ty = Rewriter.SE.getEffectiveSCEVType(Ty);

  PHINode *PN = PHINode::Create(Ty, "lsr.iv", Header->begin());
  PN->addIncoming(Rewriter.expandCodeFor(Start, Ty, Preheader->getTerminator()),
                  Preheader);

  // If the stride is negative, insert a sub instead of an add for the
  // increment.
  bool isNegative = isNonConstantNegative(Step);
  SCEVHandle IncAmount = Step;
  if (isNegative)
    IncAmount = Rewriter.SE.getNegativeSCEV(Step);

  // Insert an add instruction right before the terminator corresponding
  // to the back-edge or just before the only use. The location is determined
  // by the caller and passed in as IVIncInsertPt.
  Value *StepV = Rewriter.expandCodeFor(IncAmount, Ty,
                                        Preheader->getTerminator());
  Instruction *IncV;
  if (isNegative) {
    IncV = BinaryOperator::CreateSub(PN, StepV, "lsr.iv.next",
                                     IVIncInsertPt);
  } else {
    IncV = BinaryOperator::CreateAdd(PN, StepV, "lsr.iv.next",
                                     IVIncInsertPt);
  }
  if (!isa<ConstantInt>(StepV)) ++NumVariable;

  PN->addIncoming(IncV, LatchBlock);

  ++NumInserted;
  return PN;
}

static void SortUsersToProcess(std::vector<BasedUser> &UsersToProcess) {
  // We want to emit code for users inside the loop first.  To do this, we
  // rearrange BasedUser so that the entries at the end have
  // isUseOfPostIncrementedValue = false, because we pop off the end of the
  // vector (so we handle them first).
  std::partition(UsersToProcess.begin(), UsersToProcess.end(),
                 PartitionByIsUseOfPostIncrementedValue);

  // Sort this by base, so that things with the same base are handled
  // together.  By partitioning first and stable-sorting later, we are
  // guaranteed that within each base we will pop off users from within the
  // loop before users outside of the loop with a particular base.
  //
  // We would like to use stable_sort here, but we can't.  The problem is that
  // SCEVHandle's don't have a deterministic ordering w.r.t to each other, so
  // we don't have anything to do a '<' comparison on.  Because we think the
  // number of uses is small, do a horrible bubble sort which just relies on
  // ==.
  for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) {
    // Get a base value.
    SCEVHandle Base = UsersToProcess[i].Base;

    // Compact everything with this base to be consecutive with this one.
    for (unsigned j = i+1; j != e; ++j) {
      if (UsersToProcess[j].Base == Base) {
        std::swap(UsersToProcess[i+1], UsersToProcess[j]);
        ++i;
      }
    }
  }
}

/// PrepareToStrengthReduceFully - Prepare to fully strength-reduce
/// UsersToProcess, meaning lowering addresses all the way down to direct
/// pointer arithmetic.
///
void
LoopStrengthReduce::PrepareToStrengthReduceFully(
                                        std::vector<BasedUser> &UsersToProcess,
                                        SCEVHandle Stride,
                                        SCEVHandle CommonExprs,
                                        const Loop *L,
                                        SCEVExpander &PreheaderRewriter) {
  DOUT << "  Fully reducing all users\n";

  // Rewrite the UsersToProcess records, creating a separate PHI for each
  // unique Base value.
  Instruction *IVIncInsertPt = L->getLoopLatch()->getTerminator();
  for (unsigned i = 0, e = UsersToProcess.size(); i != e; ) {
    // TODO: The uses are grouped by base, but not sorted. We arbitrarily
    // pick the first Imm value here to start with, and adjust it for the
    // other uses.
    SCEVHandle Imm = UsersToProcess[i].Imm;
    SCEVHandle Base = UsersToProcess[i].Base;
    SCEVHandle Start = SE->getAddExpr(CommonExprs, Base, Imm);
    PHINode *Phi = InsertAffinePhi(Start, Stride, IVIncInsertPt, L,
                                   PreheaderRewriter);
    // Loop over all the users with the same base.
    do {
      UsersToProcess[i].Base = SE->getIntegerSCEV(0, Stride->getType());
      UsersToProcess[i].Imm = SE->getMinusSCEV(UsersToProcess[i].Imm, Imm);
      UsersToProcess[i].Phi = Phi;
      assert(UsersToProcess[i].Imm->isLoopInvariant(L) &&
             "ShouldUseFullStrengthReductionMode should reject this!");
    } while (++i != e && Base == UsersToProcess[i].Base);
  }
}

/// FindIVIncInsertPt - Return the location to insert the increment instruction.
/// If the only use if a use of postinc value, (must be the loop termination
/// condition), then insert it just before the use.
static Instruction *FindIVIncInsertPt(std::vector<BasedUser> &UsersToProcess,
                                      const Loop *L) {
  if (UsersToProcess.size() == 1 &&
      UsersToProcess[0].isUseOfPostIncrementedValue &&
      L->contains(UsersToProcess[0].Inst->getParent()))
    return UsersToProcess[0].Inst;
  return L->getLoopLatch()->getTerminator();
}

/// PrepareToStrengthReduceWithNewPhi - Insert a new induction variable for the
/// given users to share.
///
void
LoopStrengthReduce::PrepareToStrengthReduceWithNewPhi(
                                         std::vector<BasedUser> &UsersToProcess,
                                         SCEVHandle Stride,
                                         SCEVHandle CommonExprs,
                                         Value *CommonBaseV,
                                         Instruction *IVIncInsertPt,
                                         const Loop *L,
                                         SCEVExpander &PreheaderRewriter) {
  DOUT << "  Inserting new PHI:\n";

  PHINode *Phi = InsertAffinePhi(SE->getUnknown(CommonBaseV),
                                 Stride, IVIncInsertPt, L,
                                 PreheaderRewriter);

  // Remember this in case a later stride is multiple of this.
  IVsByStride[Stride].addIV(Stride, CommonExprs, Phi);

  // All the users will share this new IV.
  for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i)
    UsersToProcess[i].Phi = Phi;

  DOUT << "    IV=";
  DEBUG(WriteAsOperand(*DOUT, Phi, /*PrintType=*/false));
  DOUT << "\n";
}

/// PrepareToStrengthReduceFromSmallerStride - Prepare for the given users to
/// reuse an induction variable with a stride that is a factor of the current
/// induction variable.
///
void
LoopStrengthReduce::PrepareToStrengthReduceFromSmallerStride(
                                         std::vector<BasedUser> &UsersToProcess,
                                         Value *CommonBaseV,
                                         const IVExpr &ReuseIV,
                                         Instruction *PreInsertPt) {
  DOUT << "  Rewriting in terms of existing IV of STRIDE " << *ReuseIV.Stride
       << " and BASE " << *ReuseIV.Base << "\n";

  // All the users will share the reused IV.
  for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i)
    UsersToProcess[i].Phi = ReuseIV.PHI;

  Constant *C = dyn_cast<Constant>(CommonBaseV);
  if (C &&
      (!C->isNullValue() &&
       !fitsInAddressMode(SE->getUnknown(CommonBaseV), CommonBaseV->getType(),
                         TLI, false)))
    // We want the common base emitted into the preheader! This is just
    // using cast as a copy so BitCast (no-op cast) is appropriate
    CommonBaseV = new BitCastInst(CommonBaseV, CommonBaseV->getType(),
                                  "commonbase", PreInsertPt);
}

static bool IsImmFoldedIntoAddrMode(GlobalValue *GV, int64_t Offset,
                                    const Type *AccessTy,
                                   std::vector<BasedUser> &UsersToProcess,
                                   const TargetLowering *TLI) {
  SmallVector<Instruction*, 16> AddrModeInsts;
  for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) {
    if (UsersToProcess[i].isUseOfPostIncrementedValue)
      continue;
    ExtAddrMode AddrMode =
      AddressingModeMatcher::Match(UsersToProcess[i].OperandValToReplace,
                                   AccessTy, UsersToProcess[i].Inst,
                                   AddrModeInsts, *TLI);
    if (GV && GV != AddrMode.BaseGV)
      return false;
    if (Offset && !AddrMode.BaseOffs)
      // FIXME: How to accurate check it's immediate offset is folded.
      return false;
    AddrModeInsts.clear();
  }
  return true;
}

/// StrengthReduceStridedIVUsers - Strength reduce all of the users of a single
/// stride of IV.  All of the users may have different starting values, and this
/// may not be the only stride.
void LoopStrengthReduce::StrengthReduceStridedIVUsers(const SCEVHandle &Stride,
                                                      IVUsersOfOneStride &Uses,
                                                      Loop *L) {
  // If all the users are moved to another stride, then there is nothing to do.
  if (Uses.Users.empty())
    return;

  // Keep track if every use in UsersToProcess is an address. If they all are,
  // we may be able to rewrite the entire collection of them in terms of a
  // smaller-stride IV.
  bool AllUsesAreAddresses = true;

  // Keep track if every use of a single stride is outside the loop.  If so,
  // we want to be more aggressive about reusing a smaller-stride IV; a
  // multiply outside the loop is better than another IV inside.  Well, usually.
  bool AllUsesAreOutsideLoop = true;

  // Transform our list of users and offsets to a bit more complex table.  In
  // this new vector, each 'BasedUser' contains 'Base' the base of the
  // strided accessas well as the old information from Uses.  We progressively
  // move information from the Base field to the Imm field, until we eventually
  // have the full access expression to rewrite the use.
  std::vector<BasedUser> UsersToProcess;
  SCEVHandle CommonExprs = CollectIVUsers(Stride, Uses, L, AllUsesAreAddresses,
                                          AllUsesAreOutsideLoop,
                                          UsersToProcess);

  // Sort the UsersToProcess array so that users with common bases are
  // next to each other.
  SortUsersToProcess(UsersToProcess);

  // If we managed to find some expressions in common, we'll need to carry
  // their value in a register and add it in for each use. This will take up
  // a register operand, which potentially restricts what stride values are
  // valid.
  bool HaveCommonExprs = !CommonExprs->isZero();
  const Type *ReplacedTy = CommonExprs->getType();

  // If all uses are addresses, consider sinking the immediate part of the
  // common expression back into uses if they can fit in the immediate fields.
  if (TLI && HaveCommonExprs && AllUsesAreAddresses) {
    SCEVHandle NewCommon = CommonExprs;
    SCEVHandle Imm = SE->getIntegerSCEV(0, ReplacedTy);
    MoveImmediateValues(TLI, Type::VoidTy, NewCommon, Imm, true, L, SE);
    if (!Imm->isZero()) {
      bool DoSink = true;

      // If the immediate part of the common expression is a GV, check if it's
      // possible to fold it into the target addressing mode.
      GlobalValue *GV = 0;
      if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(Imm))
        GV = dyn_cast<GlobalValue>(SU->getValue());
      int64_t Offset = 0;
      if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Imm))
        Offset = SC->getValue()->getSExtValue();
      if (GV || Offset)
        // Pass VoidTy as the AccessTy to be conservative, because
        // there could be multiple access types among all the uses.
        DoSink = IsImmFoldedIntoAddrMode(GV, Offset, Type::VoidTy,
                                         UsersToProcess, TLI);

      if (DoSink) {
        DOUT << "  Sinking " << *Imm << " back down into uses\n";
        for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i)
          UsersToProcess[i].Imm = SE->getAddExpr(UsersToProcess[i].Imm, Imm);
        CommonExprs = NewCommon;
        HaveCommonExprs = !CommonExprs->isZero();
        ++NumImmSunk;
      }
    }
  }

  // Now that we know what we need to do, insert the PHI node itself.
  //
  DOUT << "LSR: Examining IVs of TYPE " << *ReplacedTy << " of STRIDE "
       << *Stride << ":\n"
       << "  Common base: " << *CommonExprs << "\n";

  SCEVExpander Rewriter(*SE);
  SCEVExpander PreheaderRewriter(*SE);

  BasicBlock  *Preheader = L->getLoopPreheader();
  Instruction *PreInsertPt = Preheader->getTerminator();
  BasicBlock *LatchBlock = L->getLoopLatch();
  Instruction *IVIncInsertPt = LatchBlock->getTerminator();

  Value *CommonBaseV = Constant::getNullValue(ReplacedTy);

  SCEVHandle RewriteFactor = SE->getIntegerSCEV(0, ReplacedTy);
  IVExpr   ReuseIV(SE->getIntegerSCEV(0, Type::Int32Ty),
                   SE->getIntegerSCEV(0, Type::Int32Ty),
                   0);

  /// Choose a strength-reduction strategy and prepare for it by creating
  /// the necessary PHIs and adjusting the bookkeeping.
  if (ShouldUseFullStrengthReductionMode(UsersToProcess, L,
                                         AllUsesAreAddresses, Stride)) {
    PrepareToStrengthReduceFully(UsersToProcess, Stride, CommonExprs, L,
                                 PreheaderRewriter);
  } else {
    // Emit the initial base value into the loop preheader.
    CommonBaseV = PreheaderRewriter.expandCodeFor(CommonExprs, ReplacedTy,
                                                  PreInsertPt);

    // If all uses are addresses, check if it is possible to reuse an IV.  The
    // new IV must have a stride that is a multiple of the old stride; the
    // multiple must be a number that can be encoded in the scale field of the
    // target addressing mode; and we must have a valid instruction after this 
    // substitution, including the immediate field, if any.
    RewriteFactor = CheckForIVReuse(HaveCommonExprs, AllUsesAreAddresses,
                                    AllUsesAreOutsideLoop,
                                    Stride, ReuseIV, ReplacedTy,
                                    UsersToProcess);
    if (!RewriteFactor->isZero())
      PrepareToStrengthReduceFromSmallerStride(UsersToProcess, CommonBaseV,
                                               ReuseIV, PreInsertPt);
    else {
      IVIncInsertPt = FindIVIncInsertPt(UsersToProcess, L);
      PrepareToStrengthReduceWithNewPhi(UsersToProcess, Stride, CommonExprs,
                                        CommonBaseV, IVIncInsertPt,
                                        L, PreheaderRewriter);
    }
  }

  // Process all the users now, replacing their strided uses with
  // strength-reduced forms.  This outer loop handles all bases, the inner
  // loop handles all users of a particular base.
  while (!UsersToProcess.empty()) {
    SCEVHandle Base = UsersToProcess.back().Base;
    Instruction *Inst = UsersToProcess.back().Inst;

    // Emit the code for Base into the preheader.
    Value *BaseV = 0;
    if (!Base->isZero()) {
      BaseV = PreheaderRewriter.expandCodeFor(Base, 0, PreInsertPt);

      DOUT << "  INSERTING code for BASE = " << *Base << ":";
      if (BaseV->hasName())
        DOUT << " Result value name = %" << BaseV->getNameStr();
      DOUT << "\n";

      // If BaseV is a non-zero constant, make sure that it gets inserted into
      // the preheader, instead of being forward substituted into the uses.  We
      // do this by forcing a BitCast (noop cast) to be inserted into the
      // preheader in this case.
      if (!fitsInAddressMode(Base, getAccessType(Inst), TLI, false)) {
        // We want this constant emitted into the preheader! This is just
        // using cast as a copy so BitCast (no-op cast) is appropriate
        BaseV = new BitCastInst(BaseV, BaseV->getType(), "preheaderinsert",
                                PreInsertPt);       
      }
    }

    // Emit the code to add the immediate offset to the Phi value, just before
    // the instructions that we identified as using this stride and base.
    do {
      // FIXME: Use emitted users to emit other users.
      BasedUser &User = UsersToProcess.back();

      DOUT << "    Examining ";
      if (User.isUseOfPostIncrementedValue)
        DOUT << "postinc";
      else
        DOUT << "preinc";
      DOUT << " use ";
      DEBUG(WriteAsOperand(*DOUT, UsersToProcess.back().OperandValToReplace,
                           /*PrintType=*/false));
      DOUT << " in Inst: " << *(User.Inst);

      // If this instruction wants to use the post-incremented value, move it
      // after the post-inc and use its value instead of the PHI.
      Value *RewriteOp = User.Phi;
      if (User.isUseOfPostIncrementedValue) {
        RewriteOp = User.Phi->getIncomingValueForBlock(LatchBlock);
        // If this user is in the loop, make sure it is the last thing in the
        // loop to ensure it is dominated by the increment. In case it's the
        // only use of the iv, the increment instruction is already before the
        // use.
        if (L->contains(User.Inst->getParent()) && User.Inst != IVIncInsertPt)
          User.Inst->moveBefore(IVIncInsertPt);
      }

      SCEVHandle RewriteExpr = SE->getUnknown(RewriteOp);

      if (SE->getEffectiveSCEVType(RewriteOp->getType()) !=
          SE->getEffectiveSCEVType(ReplacedTy)) {
        assert(SE->getTypeSizeInBits(RewriteOp->getType()) >
               SE->getTypeSizeInBits(ReplacedTy) &&
               "Unexpected widening cast!");
        RewriteExpr = SE->getTruncateExpr(RewriteExpr, ReplacedTy);
      }

      // If we had to insert new instructions for RewriteOp, we have to
      // consider that they may not have been able to end up immediately
      // next to RewriteOp, because non-PHI instructions may never precede
      // PHI instructions in a block. In this case, remember where the last
      // instruction was inserted so that if we're replacing a different
      // PHI node, we can use the later point to expand the final
      // RewriteExpr.
      Instruction *NewBasePt = dyn_cast<Instruction>(RewriteOp);
      if (RewriteOp == User.Phi) NewBasePt = 0;

      // Clear the SCEVExpander's expression map so that we are guaranteed
      // to have the code emitted where we expect it.
      Rewriter.clear();

      // If we are reusing the iv, then it must be multiplied by a constant
      // factor to take advantage of the addressing mode scale component.
      if (!RewriteFactor->isZero()) {
        // If we're reusing an IV with a nonzero base (currently this happens
        // only when all reuses are outside the loop) subtract that base here.
        // The base has been used to initialize the PHI node but we don't want
        // it here.
        if (!ReuseIV.Base->isZero()) {
          SCEVHandle typedBase = ReuseIV.Base;
          if (SE->getEffectiveSCEVType(RewriteExpr->getType()) !=
              SE->getEffectiveSCEVType(ReuseIV.Base->getType())) {
            // It's possible the original IV is a larger type than the new IV,
            // in which case we have to truncate the Base.  We checked in
            // RequiresTypeConversion that this is valid.
            assert(SE->getTypeSizeInBits(RewriteExpr->getType()) <
                   SE->getTypeSizeInBits(ReuseIV.Base->getType()) &&
                   "Unexpected lengthening conversion!");
            typedBase = SE->getTruncateExpr(ReuseIV.Base, 
                                            RewriteExpr->getType());
          }
          RewriteExpr = SE->getMinusSCEV(RewriteExpr, typedBase);
        }

        // Multiply old variable, with base removed, by new scale factor.
        RewriteExpr = SE->getMulExpr(RewriteFactor,
                                     RewriteExpr);

        // The common base is emitted in the loop preheader. But since we
        // are reusing an IV, it has not been used to initialize the PHI node.
        // Add it to the expression used to rewrite the uses.
        // When this use is outside the loop, we earlier subtracted the
        // common base, and are adding it back here.  Use the same expression
        // as before, rather than CommonBaseV, so DAGCombiner will zap it.
        if (!CommonExprs->isZero()) {
          if (L->contains(User.Inst->getParent()))
            RewriteExpr = SE->getAddExpr(RewriteExpr,
                                       SE->getUnknown(CommonBaseV));
          else
            RewriteExpr = SE->getAddExpr(RewriteExpr, CommonExprs);
        }
      }

      // Now that we know what we need to do, insert code before User for the
      // immediate and any loop-variant expressions.
      if (BaseV)
        // Add BaseV to the PHI value if needed.
        RewriteExpr = SE->getAddExpr(RewriteExpr, SE->getUnknown(BaseV));

      User.RewriteInstructionToUseNewBase(RewriteExpr, NewBasePt,
                                          Rewriter, L, this, *LI,
                                          DeadInsts);

      // Mark old value we replaced as possibly dead, so that it is eliminated
      // if we just replaced the last use of that value.
      DeadInsts.push_back(User.OperandValToReplace);

      UsersToProcess.pop_back();
      ++NumReduced;

      // If there are any more users to process with the same base, process them
      // now.  We sorted by base above, so we just have to check the last elt.
    } while (!UsersToProcess.empty() && UsersToProcess.back().Base == Base);
    // TODO: Next, find out which base index is the most common, pull it out.
  }

  // IMPORTANT TODO: Figure out how to partition the IV's with this stride, but
  // different starting values, into different PHIs.
}

/// FindIVUserForCond - If Cond has an operand that is an expression of an IV,
/// set the IV user and stride information and return true, otherwise return
/// false.
bool LoopStrengthReduce::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse,
                                       const SCEVHandle *&CondStride) {
  for (unsigned Stride = 0, e = IU->StrideOrder.size();
       Stride != e && !CondUse; ++Stride) {
    std::map<SCEVHandle, IVUsersOfOneStride *>::iterator SI =
      IU->IVUsesByStride.find(IU->StrideOrder[Stride]);
    assert(SI != IU->IVUsesByStride.end() && "Stride doesn't exist!");

    for (ilist<IVStrideUse>::iterator UI = SI->second->Users.begin(),
         E = SI->second->Users.end(); UI != E; ++UI)
      if (UI->getUser() == Cond) {
        // NOTE: we could handle setcc instructions with multiple uses here, but
        // InstCombine does it as well for simple uses, it's not clear that it
        // occurs enough in real life to handle.
        CondUse = UI;
        CondStride = &SI->first;
        return true;
      }
  }
  return false;
}    

namespace {
  // Constant strides come first which in turns are sorted by their absolute
  // values. If absolute values are the same, then positive strides comes first.
  // e.g.
  // 4, -1, X, 1, 2 ==> 1, -1, 2, 4, X
  struct StrideCompare {
    const ScalarEvolution *SE;
    explicit StrideCompare(const ScalarEvolution *se) : SE(se) {}

    bool operator()(const SCEVHandle &LHS, const SCEVHandle &RHS) {
      const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS);
      const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS);
      if (LHSC && RHSC) {
        int64_t  LV = LHSC->getValue()->getSExtValue();
        int64_t  RV = RHSC->getValue()->getSExtValue();
        uint64_t ALV = (LV < 0) ? -LV : LV;
        uint64_t ARV = (RV < 0) ? -RV : RV;
        if (ALV == ARV) {
          if (LV != RV)
            return LV > RV;
        } else {
          return ALV < ARV;
        }

        // If it's the same value but different type, sort by bit width so
        // that we emit larger induction variables before smaller
        // ones, letting the smaller be re-written in terms of larger ones.
        return SE->getTypeSizeInBits(RHS->getType()) <
               SE->getTypeSizeInBits(LHS->getType());
      }
      return LHSC && !RHSC;
    }
  };
}

/// ChangeCompareStride - If a loop termination compare instruction is the
/// only use of its stride, and the compaison is against a constant value,
/// try eliminate the stride by moving the compare instruction to another
/// stride and change its constant operand accordingly. e.g.
///
/// loop:
/// ...
/// v1 = v1 + 3
/// v2 = v2 + 1
/// if (v2 < 10) goto loop
/// =>
/// loop:
/// ...
/// v1 = v1 + 3
/// if (v1 < 30) goto loop
ICmpInst *LoopStrengthReduce::ChangeCompareStride(Loop *L, ICmpInst *Cond,
                                                IVStrideUse* &CondUse,
                                                const SCEVHandle* &CondStride) {
  // If there's only one stride in the loop, there's nothing to do here.
  if (IU->StrideOrder.size() < 2)
    return Cond;
  // If there are other users of the condition's stride, don't bother
  // trying to change the condition because the stride will still
  // remain.
  std::map<SCEVHandle, IVUsersOfOneStride *>::iterator I =
    IU->IVUsesByStride.find(*CondStride);
  if (I == IU->IVUsesByStride.end() ||
      I->second->Users.size() != 1)
    return Cond;
  // Only handle constant strides for now.
  const SCEVConstant *SC = dyn_cast<SCEVConstant>(*CondStride);
  if (!SC) return Cond;

  ICmpInst::Predicate Predicate = Cond->getPredicate();
  int64_t CmpSSInt = SC->getValue()->getSExtValue();
  unsigned BitWidth = SE->getTypeSizeInBits((*CondStride)->getType());
  uint64_t SignBit = 1ULL << (BitWidth-1);
  const Type *CmpTy = Cond->getOperand(0)->getType();
  const Type *NewCmpTy = NULL;
  unsigned TyBits = SE->getTypeSizeInBits(CmpTy);
  unsigned NewTyBits = 0;
  SCEVHandle *NewStride = NULL;
  Value *NewCmpLHS = NULL;
  Value *NewCmpRHS = NULL;
  int64_t Scale = 1;
  SCEVHandle NewOffset = SE->getIntegerSCEV(0, CmpTy);

  if (ConstantInt *C = dyn_cast<ConstantInt>(Cond->getOperand(1))) {
    int64_t CmpVal = C->getValue().getSExtValue();

    // Check stride constant and the comparision constant signs to detect
    // overflow.
    if ((CmpVal & SignBit) != (CmpSSInt & SignBit))
      return Cond;

    // Look for a suitable stride / iv as replacement.
    for (unsigned i = 0, e = IU->StrideOrder.size(); i != e; ++i) {
      std::map<SCEVHandle, IVUsersOfOneStride *>::iterator SI =
        IU->IVUsesByStride.find(IU->StrideOrder[i]);
      if (!isa<SCEVConstant>(SI->first))
        continue;
      int64_t SSInt = cast<SCEVConstant>(SI->first)->getValue()->getSExtValue();
      if (SSInt == CmpSSInt ||
          abs64(SSInt) < abs64(CmpSSInt) ||
          (SSInt % CmpSSInt) != 0)
        continue;

      Scale = SSInt / CmpSSInt;
      int64_t NewCmpVal = CmpVal * Scale;
      APInt Mul = APInt(BitWidth*2, CmpVal, true);
      Mul = Mul * APInt(BitWidth*2, Scale, true);
      // Check for overflow.
      if (!Mul.isSignedIntN(BitWidth))
        continue;
      // Check for overflow in the stride's type too.
      if (!Mul.isSignedIntN(SE->getTypeSizeInBits(SI->first->getType())))
        continue;

      // Watch out for overflow.
      if (ICmpInst::isSignedPredicate(Predicate) &&
          (CmpVal & SignBit) != (NewCmpVal & SignBit))
        continue;

      if (NewCmpVal == CmpVal)
        continue;
      // Pick the best iv to use trying to avoid a cast.
      NewCmpLHS = NULL;
      for (ilist<IVStrideUse>::iterator UI = SI->second->Users.begin(),
             E = SI->second->Users.end(); UI != E; ++UI) {
        Value *Op = UI->getOperandValToReplace();

        // If the IVStrideUse implies a cast, check for an actual cast which
        // can be used to find the original IV expression.
        if (SE->getEffectiveSCEVType(Op->getType()) !=
            SE->getEffectiveSCEVType(SI->first->getType())) {
          CastInst *CI = dyn_cast<CastInst>(Op);
          // If it's not a simple cast, it's complicated.
          if (!CI)
            continue;
          // If it's a cast from a type other than the stride type,
          // it's complicated.
          if (CI->getOperand(0)->getType() != SI->first->getType())
            continue;
          // Ok, we found the IV expression in the stride's type.
          Op = CI->getOperand(0);
        }

        NewCmpLHS = Op;
        if (NewCmpLHS->getType() == CmpTy)
          break;
      }
      if (!NewCmpLHS)
        continue;

      NewCmpTy = NewCmpLHS->getType();
      NewTyBits = SE->getTypeSizeInBits(NewCmpTy);
      const Type *NewCmpIntTy = IntegerType::get(NewTyBits);
      if (RequiresTypeConversion(NewCmpTy, CmpTy)) {
        // Check if it is possible to rewrite it using
        // an iv / stride of a smaller integer type.
        unsigned Bits = NewTyBits;
        if (ICmpInst::isSignedPredicate(Predicate))
          --Bits;
        uint64_t Mask = (1ULL << Bits) - 1;
        if (((uint64_t)NewCmpVal & Mask) != (uint64_t)NewCmpVal)
          continue;
      }

      // Don't rewrite if use offset is non-constant and the new type is
      // of a different type.
      // FIXME: too conservative?
      if (NewTyBits != TyBits && !isa<SCEVConstant>(CondUse->getOffset()))
        continue;

      bool AllUsesAreAddresses = true;
      bool AllUsesAreOutsideLoop = true;
      std::vector<BasedUser> UsersToProcess;
      SCEVHandle CommonExprs = CollectIVUsers(SI->first, *SI->second, L,
                                              AllUsesAreAddresses,
                                              AllUsesAreOutsideLoop,
                                              UsersToProcess);
      // Avoid rewriting the compare instruction with an iv of new stride
      // if it's likely the new stride uses will be rewritten using the
      // stride of the compare instruction.
      if (AllUsesAreAddresses &&
          ValidScale(!CommonExprs->isZero(), Scale, UsersToProcess))
        continue;

      // Avoid rewriting the compare instruction with an iv which has
      // implicit extension or truncation built into it.
      // TODO: This is over-conservative.
      if (SE->getTypeSizeInBits(CondUse->getOffset()->getType()) != TyBits)
        continue;

      // If scale is negative, use swapped predicate unless it's testing
      // for equality.
      if (Scale < 0 && !Cond->isEquality())
        Predicate = ICmpInst::getSwappedPredicate(Predicate);

      NewStride = &IU->StrideOrder[i];
      if (!isa<PointerType>(NewCmpTy))
        NewCmpRHS = ConstantInt::get(NewCmpTy, NewCmpVal);
      else {
        ConstantInt *CI = ConstantInt::get(NewCmpIntTy, NewCmpVal);
        NewCmpRHS = ConstantExpr::getIntToPtr(CI, NewCmpTy);
      }
      NewOffset = TyBits == NewTyBits
        ? SE->getMulExpr(CondUse->getOffset(),
                         SE->getConstant(ConstantInt::get(CmpTy, Scale)))
        : SE->getConstant(ConstantInt::get(NewCmpIntTy,
          cast<SCEVConstant>(CondUse->getOffset())->getValue()
            ->getSExtValue()*Scale));
      break;
    }
  }

  // Forgo this transformation if it the increment happens to be
  // unfortunately positioned after the condition, and the condition
  // has multiple uses which prevent it from being moved immediately
  // before the branch. See
  // test/Transforms/LoopStrengthReduce/change-compare-stride-trickiness-*.ll
  // for an example of this situation.
  if (!Cond->hasOneUse()) {
    for (BasicBlock::iterator I = Cond, E = Cond->getParent()->end();
         I != E; ++I)
      if (I == NewCmpLHS)
        return Cond;
  }

  if (NewCmpRHS) {
    // Create a new compare instruction using new stride / iv.
    ICmpInst *OldCond = Cond;
    // Insert new compare instruction.
    Cond = new ICmpInst(Predicate, NewCmpLHS, NewCmpRHS,
                        L->getHeader()->getName() + ".termcond",
                        OldCond);

    // Remove the old compare instruction. The old indvar is probably dead too.
    DeadInsts.push_back(CondUse->getOperandValToReplace());
    OldCond->replaceAllUsesWith(Cond);
    OldCond->eraseFromParent();

    IU->IVUsesByStride[*NewStride]->addUser(NewOffset, Cond, NewCmpLHS, false);
    CondUse = &IU->IVUsesByStride[*NewStride]->Users.back();
    CondStride = NewStride;
    ++NumEliminated;
    Changed = true;
  }

  return Cond;
}

/// OptimizeSMax - Rewrite the loop's terminating condition if it uses
/// an smax computation.
///
/// This is a narrow solution to a specific, but acute, problem. For loops
/// like this:
///
///   i = 0;
///   do {
///     p[i] = 0.0;
///   } while (++i < n);
///
/// where the comparison is signed, the trip count isn't just 'n', because
/// 'n' could be negative. And unfortunately this can come up even for loops
/// where the user didn't use a C do-while loop. For example, seemingly
/// well-behaved top-test loops will commonly be lowered like this:
//
///   if (n > 0) {
///     i = 0;
///     do {
///       p[i] = 0.0;
///     } while (++i < n);
///   }
///
/// and then it's possible for subsequent optimization to obscure the if
/// test in such a way that indvars can't find it.
///
/// When indvars can't find the if test in loops like this, it creates a
/// signed-max expression, which allows it to give the loop a canonical
/// induction variable:
///
///   i = 0;
///   smax = n < 1 ? 1 : n;
///   do {
///     p[i] = 0.0;
///   } while (++i != smax);
///
/// Canonical induction variables are necessary because the loop passes
/// are designed around them. The most obvious example of this is the
/// LoopInfo analysis, which doesn't remember trip count values. It
/// expects to be able to rediscover the trip count each time it is
/// needed, and it does this using a simple analyis that only succeeds if
/// the loop has a canonical induction variable.
///
/// However, when it comes time to generate code, the maximum operation
/// can be quite costly, especially if it's inside of an outer loop.
///
/// This function solves this problem by detecting this type of loop and
/// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
/// the instructions for the maximum computation.
///
ICmpInst *LoopStrengthReduce::OptimizeSMax(Loop *L, ICmpInst *Cond,
                                           IVStrideUse* &CondUse) {
  // Check that the loop matches the pattern we're looking for.
  if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
      Cond->getPredicate() != CmpInst::ICMP_NE)
    return Cond;

  SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
  if (!Sel || !Sel->hasOneUse()) return Cond;

  SCEVHandle BackedgeTakenCount = SE->getBackedgeTakenCount(L);
  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
    return Cond;
  SCEVHandle One = SE->getIntegerSCEV(1, BackedgeTakenCount->getType());

  // Add one to the backedge-taken count to get the trip count.
  SCEVHandle IterationCount = SE->getAddExpr(BackedgeTakenCount, One);

  // Check for a max calculation that matches the pattern.
  const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(IterationCount);
  if (!SMax || SMax != SE->getSCEV(Sel)) return Cond;

  SCEVHandle SMaxLHS = SMax->getOperand(0);
  SCEVHandle SMaxRHS = SMax->getOperand(1);
  if (!SMaxLHS || SMaxLHS != One) return Cond;

  // Check the relevant induction variable for conformance to
  // the pattern.
  SCEVHandle IV = SE->getSCEV(Cond->getOperand(0));
  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
  if (!AR || !AR->isAffine() ||
      AR->getStart() != One ||
      AR->getStepRecurrence(*SE) != One)
    return Cond;

  assert(AR->getLoop() == L &&
         "Loop condition operand is an addrec in a different loop!");

  // Check the right operand of the select, and remember it, as it will
  // be used in the new comparison instruction.
  Value *NewRHS = 0;
  if (SE->getSCEV(Sel->getOperand(1)) == SMaxRHS)
    NewRHS = Sel->getOperand(1);
  else if (SE->getSCEV(Sel->getOperand(2)) == SMaxRHS)
    NewRHS = Sel->getOperand(2);
  if (!NewRHS) return Cond;

  // Ok, everything looks ok to change the condition into an SLT or SGE and
  // delete the max calculation.
  ICmpInst *NewCond =
    new ICmpInst(Cond->getPredicate() == CmpInst::ICMP_NE ?
                   CmpInst::ICMP_SLT :
                   CmpInst::ICMP_SGE,
                 Cond->getOperand(0), NewRHS, "scmp", Cond);

  // Delete the max calculation instructions.
  Cond->replaceAllUsesWith(NewCond);
  CondUse->setUser(NewCond);
  Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
  Cond->eraseFromParent();
  Sel->eraseFromParent();
  if (Cmp->use_empty())
    Cmp->eraseFromParent();
  return NewCond;
}

/// OptimizeShadowIV - If IV is used in a int-to-float cast
/// inside the loop then try to eliminate the cast opeation.
void LoopStrengthReduce::OptimizeShadowIV(Loop *L) {

  SCEVHandle BackedgeTakenCount = SE->getBackedgeTakenCount(L);
  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
    return;

  for (unsigned Stride = 0, e = IU->StrideOrder.size(); Stride != e;
       ++Stride) {
    std::map<SCEVHandle, IVUsersOfOneStride *>::iterator SI =
      IU->IVUsesByStride.find(IU->StrideOrder[Stride]);
    assert(SI != IU->IVUsesByStride.end() && "Stride doesn't exist!");
    if (!isa<SCEVConstant>(SI->first))
      continue;

    for (ilist<IVStrideUse>::iterator UI = SI->second->Users.begin(),
           E = SI->second->Users.end(); UI != E; /* empty */) {
      ilist<IVStrideUse>::iterator CandidateUI = UI;
      ++UI;
      Instruction *ShadowUse = CandidateUI->getUser();
      const Type *DestTy = NULL;

      /* If shadow use is a int->float cast then insert a second IV
         to eliminate this cast.

           for (unsigned i = 0; i < n; ++i) 
             foo((double)i);

         is transformed into

           double d = 0.0;
           for (unsigned i = 0; i < n; ++i, ++d) 
             foo(d);
      */
      if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser()))
        DestTy = UCast->getDestTy();
      else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser()))
        DestTy = SCast->getDestTy();
      if (!DestTy) continue;

      if (TLI) {
        // If target does not support DestTy natively then do not apply
        // this transformation.
        MVT DVT = TLI->getValueType(DestTy);
        if (!TLI->isTypeLegal(DVT)) continue;
      }

      PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
      if (!PH) continue;
      if (PH->getNumIncomingValues() != 2) continue;

      const Type *SrcTy = PH->getType();
      int Mantissa = DestTy->getFPMantissaWidth();
      if (Mantissa == -1) continue; 
      if ((int)SE->getTypeSizeInBits(SrcTy) > Mantissa)
        continue;

      unsigned Entry, Latch;
      if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
        Entry = 0;
        Latch = 1;
      } else {
        Entry = 1;
        Latch = 0;
      }
        
      ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
      if (!Init) continue;
      ConstantFP *NewInit = ConstantFP::get(DestTy, Init->getZExtValue());

      BinaryOperator *Incr = 
        dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
      if (!Incr) continue;
      if (Incr->getOpcode() != Instruction::Add
          && Incr->getOpcode() != Instruction::Sub)
        continue;

      /* Initialize new IV, double d = 0.0 in above example. */
      ConstantInt *C = NULL;
      if (Incr->getOperand(0) == PH)
        C = dyn_cast<ConstantInt>(Incr->getOperand(1));
      else if (Incr->getOperand(1) == PH)
        C = dyn_cast<ConstantInt>(Incr->getOperand(0));
      else
        continue;

      if (!C) continue;

      /* Add new PHINode. */
      PHINode *NewPH = PHINode::Create(DestTy, "IV.S.", PH);

      /* create new increment. '++d' in above example. */
      ConstantFP *CFP = ConstantFP::get(DestTy, C->getZExtValue());
      BinaryOperator *NewIncr = 
        BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
                                 Instruction::FAdd : Instruction::FSub,
                               NewPH, CFP, "IV.S.next.", Incr);

      NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
      NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));

      /* Remove cast operation */
      ShadowUse->replaceAllUsesWith(NewPH);
      ShadowUse->eraseFromParent();
      NumShadow++;
      break;
    }
  }
}

// OptimizeIndvars - Now that IVUsesByStride is set up with all of the indvar
// uses in the loop, look to see if we can eliminate some, in favor of using
// common indvars for the different uses.
void LoopStrengthReduce::OptimizeIndvars(Loop *L) {
  // TODO: implement optzns here.

  OptimizeShadowIV(L);
}

/// OptimizeLoopTermCond - Change loop terminating condition to use the 
/// postinc iv when possible.
void LoopStrengthReduce::OptimizeLoopTermCond(Loop *L) {
  // Finally, get the terminating condition for the loop if possible.  If we
  // can, we want to change it to use a post-incremented version of its
  // induction variable, to allow coalescing the live ranges for the IV into
  // one register value.
  BasicBlock *LatchBlock = L->getLoopLatch();
  BasicBlock *ExitBlock = L->getExitingBlock();
  if (!ExitBlock)
    // Multiple exits, just look at the exit in the latch block if there is one.
    ExitBlock = LatchBlock;
  BranchInst *TermBr = dyn_cast<BranchInst>(ExitBlock->getTerminator());
  if (!TermBr)
    return;
  if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
    return;

  // Search IVUsesByStride to find Cond's IVUse if there is one.
  IVStrideUse *CondUse = 0;
  const SCEVHandle *CondStride = 0;
  ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
  if (!FindIVUserForCond(Cond, CondUse, CondStride))
    return; // setcc doesn't use the IV.

  if (ExitBlock != LatchBlock) {
    if (!Cond->hasOneUse())
      // See below, we don't want the condition to be cloned.
      return;

    // If exiting block is the latch block, we know it's safe and profitable to
    // transform the icmp to use post-inc iv. Otherwise do so only if it would
    // not reuse another iv and its iv would be reused by other uses. We are
    // optimizing for the case where the icmp is the only use of the iv.
    IVUsersOfOneStride &StrideUses = *IU->IVUsesByStride[*CondStride];
    for (ilist<IVStrideUse>::iterator I = StrideUses.Users.begin(),
         E = StrideUses.Users.end(); I != E; ++I) {
      if (I->getUser() == Cond)
        continue;
      if (!I->isUseOfPostIncrementedValue())
        return;
    }

    // FIXME: This is expensive, and worse still ChangeCompareStride does a
    // similar check. Can we perform all the icmp related transformations after
    // StrengthReduceStridedIVUsers?
    if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(*CondStride)) {
      int64_t SInt = SC->getValue()->getSExtValue();
      for (unsigned NewStride = 0, ee = IU->StrideOrder.size(); NewStride != ee;
           ++NewStride) {
        std::map<SCEVHandle, IVUsersOfOneStride *>::iterator SI =
          IU->IVUsesByStride.find(IU->StrideOrder[NewStride]);
        if (!isa<SCEVConstant>(SI->first) || SI->first == *CondStride)
          continue;
        int64_t SSInt =
          cast<SCEVConstant>(SI->first)->getValue()->getSExtValue();
        if (SSInt == SInt)
          return; // This can definitely be reused.
        if (unsigned(abs64(SSInt)) < SInt || (SSInt % SInt) != 0)
          continue;
        int64_t Scale = SSInt / SInt;
        bool AllUsesAreAddresses = true;
        bool AllUsesAreOutsideLoop = true;
        std::vector<BasedUser> UsersToProcess;
        SCEVHandle CommonExprs = CollectIVUsers(SI->first, *SI->second, L,
                                                AllUsesAreAddresses,
                                                AllUsesAreOutsideLoop,
                                                UsersToProcess);
        // Avoid rewriting the compare instruction with an iv of new stride
        // if it's likely the new stride uses will be rewritten using the
        // stride of the compare instruction.
        if (AllUsesAreAddresses &&
            ValidScale(!CommonExprs->isZero(), Scale, UsersToProcess))
          return;
      }
    }

    StrideNoReuse.insert(*CondStride);
  }

  // If the trip count is computed in terms of an smax (due to ScalarEvolution
  // being unable to find a sufficient guard, for example), change the loop
  // comparison to use SLT instead of NE.
  Cond = OptimizeSMax(L, Cond, CondUse);

  // If possible, change stride and operands of the compare instruction to
  // eliminate one stride.
  if (ExitBlock == LatchBlock)
    Cond = ChangeCompareStride(L, Cond, CondUse, CondStride);

  // It's possible for the setcc instruction to be anywhere in the loop, and
  // possible for it to have multiple users.  If it is not immediately before
  // the latch block branch, move it.
  if (&*++BasicBlock::iterator(Cond) != (Instruction*)TermBr) {
    if (Cond->hasOneUse()) {   // Condition has a single use, just move it.
      Cond->moveBefore(TermBr);
    } else {
      // Otherwise, clone the terminating condition and insert into the loopend.
      Cond = cast<ICmpInst>(Cond->clone());
      Cond->setName(L->getHeader()->getName() + ".termcond");
      LatchBlock->getInstList().insert(TermBr, Cond);
      
      // Clone the IVUse, as the old use still exists!
      IU->IVUsesByStride[*CondStride]->addUser(CondUse->getOffset(), Cond,
                                              CondUse->getOperandValToReplace(),
                                               false);
      CondUse = &IU->IVUsesByStride[*CondStride]->Users.back();
    }
  }

  // If we get to here, we know that we can transform the setcc instruction to
  // use the post-incremented version of the IV, allowing us to coalesce the
  // live ranges for the IV correctly.
  CondUse->setOffset(SE->getMinusSCEV(CondUse->getOffset(), *CondStride));
  CondUse->setIsUseOfPostIncrementedValue(true);
  Changed = true;

  ++NumLoopCond;
}

// OptimizeLoopCountIV - If, after all sharing of IVs, the IV used for deciding
// when to exit the loop is used only for that purpose, try to rearrange things
// so it counts down to a test against zero.
void LoopStrengthReduce::OptimizeLoopCountIV(Loop *L) {

  // If the number of times the loop is executed isn't computable, give up.
  SCEVHandle BackedgeTakenCount = SE->getBackedgeTakenCount(L);
  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
    return;

  // Get the terminating condition for the loop if possible (this isn't
  // necessarily in the latch, or a block that's a predecessor of the header).
  if (!L->getExitBlock())
    return; // More than one loop exit blocks.

  // Okay, there is one exit block.  Try to find the condition that causes the
  // loop to be exited.
  BasicBlock *ExitingBlock = L->getExitingBlock();
  if (!ExitingBlock)
    return; // More than one block exiting!

  // Okay, we've computed the exiting block.  See what condition causes us to
  // exit.
  //
  // FIXME: we should be able to handle switch instructions (with a single exit)
  BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
  if (TermBr == 0) return;
  assert(TermBr->isConditional() && "If unconditional, it can't be in loop!");
  if (!isa<ICmpInst>(TermBr->getCondition()))
    return;
  ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());

  // Handle only tests for equality for the moment, and only stride 1.
  if (Cond->getPredicate() != CmpInst::ICMP_EQ)
    return;
  SCEVHandle IV = SE->getSCEV(Cond->getOperand(0));
  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
  SCEVHandle One = SE->getIntegerSCEV(1, BackedgeTakenCount->getType());
  if (!AR || !AR->isAffine() || AR->getStepRecurrence(*SE) != One)
    return;
  // If the RHS of the comparison is defined inside the loop, the rewrite
  // cannot be done.
  if (Instruction *CR = dyn_cast<Instruction>(Cond->getOperand(1)))
    if (L->contains(CR->getParent()))
      return;

  // Make sure the IV is only used for counting.  Value may be preinc or
  // postinc; 2 uses in either case.
  if (!Cond->getOperand(0)->hasNUses(2))
    return;
  PHINode *phi = dyn_cast<PHINode>(Cond->getOperand(0));
  Instruction *incr;
  if (phi && phi->getParent()==L->getHeader()) {
    // value tested is preinc.  Find the increment.
    // A CmpInst is not a BinaryOperator; we depend on this.
    Instruction::use_iterator UI = phi->use_begin();
    incr = dyn_cast<BinaryOperator>(UI);
    if (!incr)
      incr = dyn_cast<BinaryOperator>(++UI);
    // 1 use for postinc value, the phi.  Unnecessarily conservative?
    if (!incr || !incr->hasOneUse() || incr->getOpcode()!=Instruction::Add)
      return;
  } else {
    // Value tested is postinc.  Find the phi node.
    incr = dyn_cast<BinaryOperator>(Cond->getOperand(0));
    if (!incr || incr->getOpcode()!=Instruction::Add)
      return;

    Instruction::use_iterator UI = Cond->getOperand(0)->use_begin();
    phi = dyn_cast<PHINode>(UI);
    if (!phi)
      phi = dyn_cast<PHINode>(++UI);
    // 1 use for preinc value, the increment.
    if (!phi || phi->getParent()!=L->getHeader() || !phi->hasOneUse())
      return;
  }

  // Replace the increment with a decrement.
  BinaryOperator *decr = 
    BinaryOperator::Create(Instruction::Sub, incr->getOperand(0),
                           incr->getOperand(1), "tmp", incr);
  incr->replaceAllUsesWith(decr);
  incr->eraseFromParent();

  // Substitute endval-startval for the original startval, and 0 for the
  // original endval.  Since we're only testing for equality this is OK even 
  // if the computation wraps around.
  BasicBlock  *Preheader = L->getLoopPreheader();
  Instruction *PreInsertPt = Preheader->getTerminator();
  int inBlock = L->contains(phi->getIncomingBlock(0)) ? 1 : 0;
  Value *startVal = phi->getIncomingValue(inBlock);
  Value *endVal = Cond->getOperand(1);
  // FIXME check for case where both are constant
  ConstantInt* Zero = ConstantInt::get(Cond->getOperand(1)->getType(), 0);
  BinaryOperator *NewStartVal = 
    BinaryOperator::Create(Instruction::Sub, endVal, startVal,
                           "tmp", PreInsertPt);
  phi->setIncomingValue(inBlock, NewStartVal);
  Cond->setOperand(1, Zero);

  Changed = true;
}

bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager &LPM) {

  IU = &getAnalysis<IVUsers>();
  LI = &getAnalysis<LoopInfo>();
  DT = &getAnalysis<DominatorTree>();
  SE = &getAnalysis<ScalarEvolution>();
  Changed = false;

  if (!IU->IVUsesByStride.empty()) {
#ifndef NDEBUG
    DOUT << "\nLSR on \"" << L->getHeader()->getParent()->getNameStart()
         << "\" ";
    DEBUG(L->dump());
#endif

    // Sort the StrideOrder so we process larger strides first.
    std::stable_sort(IU->StrideOrder.begin(), IU->StrideOrder.end(),
                     StrideCompare(SE));

    // Optimize induction variables.  Some indvar uses can be transformed to use
    // strides that will be needed for other purposes.  A common example of this
    // is the exit test for the loop, which can often be rewritten to use the
    // computation of some other indvar to decide when to terminate the loop.
    OptimizeIndvars(L);

    // Change loop terminating condition to use the postinc iv when possible
    // and optimize loop terminating compare. FIXME: Move this after
    // StrengthReduceStridedIVUsers?
    OptimizeLoopTermCond(L);

    // FIXME: We can shrink overlarge IV's here.  e.g. if the code has
    // computation in i64 values and the target doesn't support i64, demote
    // the computation to 32-bit if safe.

    // FIXME: Attempt to reuse values across multiple IV's.  In particular, we
    // could have something like "for(i) { foo(i*8); bar(i*16) }", which should
    // be codegened as "for (j = 0;; j+=8) { foo(j); bar(j+j); }" on X86/PPC.
    // Need to be careful that IV's are all the same type.  Only works for
    // intptr_t indvars.

    // IVsByStride keeps IVs for one particular loop.
    assert(IVsByStride.empty() && "Stale entries in IVsByStride?");

    // Note: this processes each stride/type pair individually.  All users
    // passed into StrengthReduceStridedIVUsers have the same type AND stride.
    // Also, note that we iterate over IVUsesByStride indirectly by using
    // StrideOrder. This extra layer of indirection makes the ordering of
    // strides deterministic - not dependent on map order.
    for (unsigned Stride = 0, e = IU->StrideOrder.size();
         Stride != e; ++Stride) {
      std::map<SCEVHandle, IVUsersOfOneStride *>::iterator SI =
        IU->IVUsesByStride.find(IU->StrideOrder[Stride]);
      assert(SI != IU->IVUsesByStride.end() && "Stride doesn't exist!");
      // FIXME: Generalize to non-affine IV's.
      if (!SI->first->isLoopInvariant(L))
        continue;
      StrengthReduceStridedIVUsers(SI->first, *SI->second, L);
    }
  }

  // After all sharing is done, see if we can adjust the loop to test against
  // zero instead of counting up to a maximum.  This is usually faster.
  OptimizeLoopCountIV(L);

  // We're done analyzing this loop; release all the state we built up for it.
  IVsByStride.clear();
  StrideNoReuse.clear();

  // Clean up after ourselves
  if (!DeadInsts.empty())
    DeleteTriviallyDeadInstructions();

  // At this point, it is worth checking to see if any recurrence PHIs are also
  // dead, so that we can remove them as well.
  DeleteDeadPHIs(L->getHeader());

  return Changed;
}