aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Transforms/Scalar/LoopUnroll.cpp
blob: 1b807873e6a4e35a1c9032ecb487533834b184f7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
//===-- LoopUnroll.cpp - Loop unroller pass -------------------------------===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
//
// This pass implements a simple loop unroller.  It works best when loops have
// been canonicalized by the -indvars pass, allowing it to determine the trip
// counts of loops easily.
//
// This pass is currently extremely limited.  It only currently only unrolls
// single basic block loops that execute a constant number of times.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "loop-unroll"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Constants.h"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/IntrinsicInst.h"
#include <cstdio>
#include <set>
#include <algorithm>

using namespace llvm;

namespace {
  Statistic<> NumUnrolled("loop-unroll", "Number of loops completely unrolled");

  cl::opt<unsigned>
  UnrollThreshold("unroll-threshold", cl::init(100), cl::Hidden,
                  cl::desc("The cut-off point for loop unrolling"));

  class LoopUnroll : public FunctionPass {
    LoopInfo *LI;  // The current loop information
  public:
    virtual bool runOnFunction(Function &F);
    bool visitLoop(Loop *L);

    /// This transformation requires natural loop information & requires that
    /// loop preheaders be inserted into the CFG...
    ///
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.addRequiredID(LoopSimplifyID);
      AU.addRequired<LoopInfo>();
      AU.addPreserved<LoopInfo>();
    }
  };
  RegisterOpt<LoopUnroll> X("loop-unroll", "Unroll loops");
}

FunctionPass *llvm::createLoopUnrollPass() { return new LoopUnroll(); }

bool LoopUnroll::runOnFunction(Function &F) {
  bool Changed = false;
  LI = &getAnalysis<LoopInfo>();

  // Transform all the top-level loops.  Copy the loop list so that the child
  // can update the loop tree if it needs to delete the loop.
  std::vector<Loop*> SubLoops(LI->begin(), LI->end());
  for (unsigned i = 0, e = SubLoops.size(); i != e; ++i)
    Changed |= visitLoop(SubLoops[i]);

  return Changed;
}

/// ApproximateLoopSize - Approximate the size of the loop after it has been
/// unrolled.
static unsigned ApproximateLoopSize(const Loop *L) {
  unsigned Size = 0;
  for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i) {
    BasicBlock *BB = L->getBlocks()[i];
    Instruction *Term = BB->getTerminator();
    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
      if (isa<PHINode>(I) && BB == L->getHeader()) {
        // Ignore PHI nodes in the header.
      } else if (I->hasOneUse() && I->use_back() == Term) {
        // Ignore instructions only used by the loop terminator.
      } else if (DbgInfoIntrinsic *DbgI = dyn_cast<DbgInfoIntrinsic>(I)) {
	// Ignore debug instructions 
      } else {
        ++Size;
      }

      // TODO: Ignore expressions derived from PHI and constants if inval of phi
      // is a constant, or if operation is associative.  This will get induction
      // variables.
    }
  }

  return Size;
}

// RemapInstruction - Convert the instruction operands from referencing the 
// current values into those specified by ValueMap.
//
static inline void RemapInstruction(Instruction *I, 
                                    std::map<const Value *, Value*> &ValueMap) {
  for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
    Value *Op = I->getOperand(op);
    std::map<const Value *, Value*>::iterator It = ValueMap.find(Op);
    if (It != ValueMap.end()) Op = It->second;
    I->setOperand(op, Op);
  }
}

bool LoopUnroll::visitLoop(Loop *L) {
  bool Changed = false;

  // Recurse through all subloops before we process this loop.  Copy the loop
  // list so that the child can update the loop tree if it needs to delete the
  // loop.
  std::vector<Loop*> SubLoops(L->begin(), L->end());
  for (unsigned i = 0, e = SubLoops.size(); i != e; ++i)
    Changed |= visitLoop(SubLoops[i]);

  // We only handle single basic block loops right now.
  if (L->getBlocks().size() != 1)
    return Changed;

  BasicBlock *BB = L->getHeader();
  BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
  if (BI == 0) return Changed;  // Must end in a conditional branch

  ConstantInt *TripCountC = dyn_cast_or_null<ConstantInt>(L->getTripCount());
  if (!TripCountC) return Changed;  // Must have constant trip count!

  unsigned TripCount = TripCountC->getRawValue();
  if (TripCount != TripCountC->getRawValue() || TripCount == 0)
    return Changed; // More than 2^32 iterations???

  unsigned LoopSize = ApproximateLoopSize(L);
  DEBUG(std::cerr << "Loop Unroll: F[" << BB->getParent()->getName()
        << "] Loop %" << BB->getName() << " Loop Size = " << LoopSize
        << " Trip Count = " << TripCount << " - ");
  uint64_t Size = (uint64_t)LoopSize*(uint64_t)TripCount;
  if (Size > UnrollThreshold) {
    DEBUG(std::cerr << "TOO LARGE: " << Size << ">" << UnrollThreshold << "\n");
    return Changed;
  }
  DEBUG(std::cerr << "UNROLLING!\n");
  
  BasicBlock *LoopExit = BI->getSuccessor(L->contains(BI->getSuccessor(0)));

  // Create a new basic block to temporarily hold all of the cloned code.
  BasicBlock *NewBlock = new BasicBlock();

  // For the first iteration of the loop, we should use the precloned values for
  // PHI nodes.  Insert associations now.
  std::map<const Value*, Value*> LastValueMap;
  std::vector<PHINode*> OrigPHINode;
  for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I) {
    PHINode *PN = cast<PHINode>(I);
    OrigPHINode.push_back(PN);
    if (Instruction *I =dyn_cast<Instruction>(PN->getIncomingValueForBlock(BB)))
      if (I->getParent() == BB)
        LastValueMap[I] = I;
  }

  // Remove the exit branch from the loop
  BB->getInstList().erase(BI);

  assert(TripCount != 0 && "Trip count of 0 is impossible!");
  for (unsigned It = 1; It != TripCount; ++It) {
    char SuffixBuffer[100];
    sprintf(SuffixBuffer, ".%d", It);
    std::map<const Value*, Value*> ValueMap;
    BasicBlock *New = CloneBasicBlock(BB, ValueMap, SuffixBuffer);

    // Loop over all of the PHI nodes in the block, changing them to use the
    // incoming values from the previous block.
    for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
      PHINode *NewPHI = cast<PHINode>(ValueMap[OrigPHINode[i]]);
      Value *InVal = NewPHI->getIncomingValueForBlock(BB);
      if (Instruction *InValI = dyn_cast<Instruction>(InVal))
        if (InValI->getParent() == BB)
          InVal = LastValueMap[InValI];
      ValueMap[OrigPHINode[i]] = InVal;
      New->getInstList().erase(NewPHI);
    }

    for (BasicBlock::iterator I = New->begin(), E = New->end(); I != E; ++I)
      RemapInstruction(I, ValueMap);

    // Now that all of the instructions are remapped, splice them into the end
    // of the NewBlock.
    NewBlock->getInstList().splice(NewBlock->end(), New->getInstList());
    delete New;

    // LastValue map now contains values from this iteration.
    std::swap(LastValueMap, ValueMap);
  }

  // If there was more than one iteration, replace any uses of values computed
  // in the loop with values computed during the last iteration of the loop.
  if (TripCount != 1) {
    std::set<User*> Users;
    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
      Users.insert(I->use_begin(), I->use_end());

    // We don't want to reprocess entries with PHI nodes in them.  For this
    // reason, we look at each operand of each user exactly once, performing the
    // stubstitution exactly once.
    for (std::set<User*>::iterator UI = Users.begin(), E = Users.end(); UI != E;
         ++UI) {
      Instruction *I = cast<Instruction>(*UI);
      if (I->getParent() != BB && I->getParent() != NewBlock)
        RemapInstruction(I, LastValueMap);
    }
  }

  // Now that we cloned the block as many times as we needed, stitch the new
  // code into the original block and delete the temporary block.
  BB->getInstList().splice(BB->end(), NewBlock->getInstList());
  delete NewBlock;

  // Now loop over the PHI nodes in the original block, setting them to their
  // incoming values.
  BasicBlock *Preheader = L->getLoopPreheader();
  for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
    PHINode *PN = OrigPHINode[i];
    PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
    BB->getInstList().erase(PN);
  }
 
  // Finally, add an unconditional branch to the block to continue into the exit
  // block.
  new BranchInst(LoopExit, BB);

  // At this point, the code is well formed.  We now do a quick sweep over the
  // inserted code, doing constant propagation and dead code elimination as we
  // go.
  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
    Instruction *Inst = I++;
    
    if (isInstructionTriviallyDead(Inst))
      BB->getInstList().erase(Inst);
    else if (Constant *C = ConstantFoldInstruction(Inst)) {
      Inst->replaceAllUsesWith(C);
      BB->getInstList().erase(Inst);
    }
  }

  // Update the loop information for this loop.
  Loop *Parent = L->getParentLoop();

  // Move all of the basic blocks in the loop into the parent loop.
  LI->changeLoopFor(BB, Parent);

  // Remove the loop from the parent.
  if (Parent)
    delete Parent->removeChildLoop(std::find(Parent->begin(), Parent->end(),L));
  else
    delete LI->removeLoop(std::find(LI->begin(), LI->end(), L));


  // FIXME: Should update dominator analyses


  // Now that everything is up-to-date that will be, we fold the loop block into
  // the preheader and exit block, updating our analyses as we go.
  LoopExit->getInstList().splice(LoopExit->begin(), BB->getInstList(),
                                 BB->getInstList().begin(),
                                 prior(BB->getInstList().end()));
  LoopExit->getInstList().splice(LoopExit->begin(), Preheader->getInstList(),
                                 Preheader->getInstList().begin(),
                                 prior(Preheader->getInstList().end()));

  // Make all other blocks in the program branch to LoopExit now instead of
  // Preheader.
  Preheader->replaceAllUsesWith(LoopExit);

  // Remove BB and LoopExit from our analyses.
  LI->removeBlock(Preheader);
  LI->removeBlock(BB);

  // If the preheader was the entry block of this function, move the exit block
  // to be the new entry of the loop.
  Function *F = LoopExit->getParent();
  if (Preheader == &F->front())
    F->getBasicBlockList().splice(F->begin(), F->getBasicBlockList(), LoopExit);

  // Actually delete the blocks now.
  F->getBasicBlockList().erase(Preheader);
  F->getBasicBlockList().erase(BB);

  ++NumUnrolled;
  return true;
}