aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Transforms/Scalar/NaryReassociate.cpp
blob: fea7641126faa1de727869d9c0c8a9e244e7c379 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
//===- NaryReassociate.cpp - Reassociate n-ary expressions ----------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass reassociates n-ary add expressions and eliminates the redundancy
// exposed by the reassociation.
//
// A motivating example:
//
//   void foo(int a, int b) {
//     bar(a + b);
//     bar((a + 2) + b);
//   }
//
// An ideal compiler should reassociate (a + 2) + b to (a + b) + 2 and simplify
// the above code to
//
//   int t = a + b;
//   bar(t);
//   bar(t + 2);
//
// However, the Reassociate pass is unable to do that because it processes each
// instruction individually and believes (a + 2) + b is the best form according
// to its rank system.
//
// To address this limitation, NaryReassociate reassociates an expression in a
// form that reuses existing instructions. As a result, NaryReassociate can
// reassociate (a + 2) + b in the example to (a + b) + 2 because it detects that
// (a + b) is computed before.
//
// NaryReassociate works as follows. For every instruction in the form of (a +
// b) + c, it checks whether a + c or b + c is already computed by a dominating
// instruction. If so, it then reassociates (a + b) + c into (a + c) + b or (b +
// c) + a and removes the redundancy accordingly. To efficiently look up whether
// an expression is computed before, we store each instruction seen and its SCEV
// into an SCEV-to-instruction map.
//
// Although the algorithm pattern-matches only ternary additions, it
// automatically handles many >3-ary expressions by walking through the function
// in the depth-first order. For example, given
//
//   (a + c) + d
//   ((a + b) + c) + d
//
// NaryReassociate first rewrites (a + b) + c to (a + c) + b, and then rewrites
// ((a + c) + b) + d into ((a + c) + d) + b.
//
// Finally, the above dominator-based algorithm may need to be run multiple
// iterations before emitting optimal code. One source of this need is that we
// only split an operand when it is used only once. The above algorithm can
// eliminate an instruction and decrease the usage count of its operands. As a
// result, an instruction that previously had multiple uses may become a
// single-use instruction and thus eligible for split consideration. For
// example,
//
//   ac = a + c
//   ab = a + b
//   abc = ab + c
//   ab2 = ab + b
//   ab2c = ab2 + c
//
// In the first iteration, we cannot reassociate abc to ac+b because ab is used
// twice. However, we can reassociate ab2c to abc+b in the first iteration. As a
// result, ab2 becomes dead and ab will be used only once in the second
// iteration.
//
// Limitations and TODO items:
//
// 1) We only considers n-ary adds for now. This should be extended and
// generalized.
//
// 2) Besides arithmetic operations, similar reassociation can be applied to
// GEPs. For example, if
//   X = &arr[a]
// dominates
//   Y = &arr[a + b]
// we may rewrite Y into X + b.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
using namespace PatternMatch;

#define DEBUG_TYPE "nary-reassociate"

namespace {
class NaryReassociate : public FunctionPass {
public:
  static char ID;

  NaryReassociate(): FunctionPass(ID) {
    initializeNaryReassociatePass(*PassRegistry::getPassRegistry());
  }

  bool runOnFunction(Function &F) override;

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addPreserved<DominatorTreeWrapperPass>();
    AU.addPreserved<ScalarEvolution>();
    AU.addPreserved<TargetLibraryInfoWrapperPass>();
    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addRequired<ScalarEvolution>();
    AU.addRequired<TargetLibraryInfoWrapperPass>();
    AU.setPreservesCFG();
  }

private:
  // Runs only one iteration of the dominator-based algorithm. See the header
  // comments for why we need multiple iterations.
  bool doOneIteration(Function &F);
  // Reasssociates I to a better form.
  Instruction *tryReassociateAdd(Instruction *I);
  // A helper function for tryReassociateAdd. LHS and RHS are explicitly passed.
  Instruction *tryReassociateAdd(Value *LHS, Value *RHS, Instruction *I);
  // Rewrites I to LHS + RHS if LHS is computed already.
  Instruction *tryReassociatedAdd(const SCEV *LHS, Value *RHS, Instruction *I);

  DominatorTree *DT;
  ScalarEvolution *SE;
  TargetLibraryInfo *TLI;
  // A lookup table quickly telling which instructions compute the given SCEV.
  // Note that there can be multiple instructions at different locations
  // computing to the same SCEV, so we map a SCEV to an instruction list.  For
  // example,
  //
  //   if (p1)
  //     foo(a + b);
  //   if (p2)
  //     bar(a + b);
  DenseMap<const SCEV *, SmallVector<Instruction *, 2>> SeenExprs;
};
} // anonymous namespace

char NaryReassociate::ID = 0;
INITIALIZE_PASS_BEGIN(NaryReassociate, "nary-reassociate", "Nary reassociation",
                      false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_END(NaryReassociate, "nary-reassociate", "Nary reassociation",
                    false, false)

FunctionPass *llvm::createNaryReassociatePass() {
  return new NaryReassociate();
}

bool NaryReassociate::runOnFunction(Function &F) {
  if (skipOptnoneFunction(F))
    return false;

  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
  SE = &getAnalysis<ScalarEvolution>();
  TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();

  bool Changed = false, ChangedInThisIteration;
  do {
    ChangedInThisIteration = doOneIteration(F);
    Changed |= ChangedInThisIteration;
  } while (ChangedInThisIteration);
  return Changed;
}

bool NaryReassociate::doOneIteration(Function &F) {
  bool Changed = false;
  SeenExprs.clear();
  // Traverse the dominator tree in the depth-first order. This order makes sure
  // all bases of a candidate are in Candidates when we process it.
  for (auto Node = GraphTraits<DominatorTree *>::nodes_begin(DT);
       Node != GraphTraits<DominatorTree *>::nodes_end(DT); ++Node) {
    BasicBlock *BB = Node->getBlock();
    for (auto I = BB->begin(); I != BB->end(); ++I) {
      if (I->getOpcode() == Instruction::Add) {
        if (Instruction *NewI = tryReassociateAdd(I)) {
          Changed = true;
          SE->forgetValue(I);
          I->replaceAllUsesWith(NewI);
          RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
          I = NewI;
        }
        // We should add the rewritten instruction because tryReassociateAdd may
        // have invalidated the original one.
        SeenExprs[SE->getSCEV(I)].push_back(I);
      }
    }
  }
  return Changed;
}

Instruction *NaryReassociate::tryReassociateAdd(Instruction *I) {
  Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
  if (auto *NewI = tryReassociateAdd(LHS, RHS, I))
    return NewI;
  if (auto *NewI = tryReassociateAdd(RHS, LHS, I))
    return NewI;
  return nullptr;
}

Instruction *NaryReassociate::tryReassociateAdd(Value *LHS, Value *RHS,
                                                Instruction *I) {
  Value *A = nullptr, *B = nullptr;
  // To be conservative, we reassociate I only when it is the only user of A+B.
  if (LHS->hasOneUse() && match(LHS, m_Add(m_Value(A), m_Value(B)))) {
    // I = (A + B) + RHS
    //   = (A + RHS) + B or (B + RHS) + A
    const SCEV *AExpr = SE->getSCEV(A), *BExpr = SE->getSCEV(B);
    const SCEV *RHSExpr = SE->getSCEV(RHS);
    if (auto *NewI = tryReassociatedAdd(SE->getAddExpr(AExpr, RHSExpr), B, I))
      return NewI;
    if (auto *NewI = tryReassociatedAdd(SE->getAddExpr(BExpr, RHSExpr), A, I))
      return NewI;
  }
  return nullptr;
}

Instruction *NaryReassociate::tryReassociatedAdd(const SCEV *LHSExpr,
                                                 Value *RHS, Instruction *I) {
  auto Pos = SeenExprs.find(LHSExpr);
  // Bail out if LHSExpr is not previously seen.
  if (Pos == SeenExprs.end())
    return nullptr;

  auto &LHSCandidates = Pos->second;
  // Look for the closest dominator LHS of I that computes LHSExpr, and replace
  // I with LHS + RHS.
  //
  // Because we traverse the dominator tree in the pre-order, a
  // candidate that doesn't dominate the current instruction won't dominate any
  // future instruction either. Therefore, we pop it out of the stack. This
  // optimization makes the algorithm O(n).
  while (!LHSCandidates.empty()) {
    Instruction *LHS = LHSCandidates.back();
    if (DT->dominates(LHS, I)) {
      Instruction *NewI = BinaryOperator::CreateAdd(LHS, RHS, "", I);
      NewI->takeName(I);
      return NewI;
    }
    LHSCandidates.pop_back();
  }
  return nullptr;
}