aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Transforms/Scalar/PRE.cpp
blob: 3a1239f4e67d0465db8a56244b580eec952d8389 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
//===- PRE.cpp - Partial Redundancy Elimination ---------------------------===//
//
// This file implements the well known Partial Redundancy Elimination
// optimization, using an SSA formulation based on e-paths.  See this paper for
// more information:
//
//  E-path_PRE: partial redundancy elimination made easy
//  By: Dhananjay M. Dhamdhere   In: ACM SIGPLAN Notices. Vol 37, #8, 2002
//    http://doi.acm.org/10.1145/596992.597004
//
// This file actually implements a sparse version of the algorithm, using SSA
// and CFG properties instead of bit-vectors.
//
//===----------------------------------------------------------------------===//

#include "llvm/Pass.h"
#include "llvm/Function.h"
#include "llvm/Type.h"
#include "llvm/iPHINode.h"
#include "llvm/iMemory.h"
#include "llvm/Support/CFG.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/Analysis/ValueNumbering.h"
#include "llvm/Transforms/Scalar.h"
#include "Support/DepthFirstIterator.h"
#include "Support/PostOrderIterator.h"
#include "Support/Statistic.h"
#include "Support/hash_set"

namespace {
  Statistic<> NumExprsEliminated("pre", "Number of expressions constantified");
  Statistic<> NumRedundant      ("pre", "Number of redundant exprs eliminated");
  Statistic<> NumInserted       ("pre", "Number of expressions inserted");

  struct PRE : public FunctionPass {
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.addRequiredID(BreakCriticalEdgesID);  // No critical edges for now!
      AU.addRequired<PostDominatorTree>();
      AU.addRequired<PostDominanceFrontier>();
      AU.addRequired<DominatorSet>();
      AU.addRequired<DominatorTree>();
      AU.addRequired<DominanceFrontier>();
      AU.addRequired<ValueNumbering>();
    }
    virtual bool runOnFunction(Function &F);

  private:
    // Block information - Map basic blocks in a function back and forth to
    // unsigned integers.
    std::vector<BasicBlock*> BlockMapping;
    hash_map<BasicBlock*, unsigned> BlockNumbering;

    // ProcessedExpressions - Keep track of which expressions have already been
    // processed.
    hash_set<Instruction*> ProcessedExpressions;

    // Provide access to the various analyses used...
    DominatorSet      *DS;
    DominatorTree     *DT; PostDominatorTree *PDT;
    DominanceFrontier *DF; PostDominanceFrontier *PDF;
    ValueNumbering    *VN;

    // AvailableBlocks - Contain a mapping of blocks with available expression
    // values to the expression value itself.  This can be used as an efficient
    // way to find out if the expression is available in the block, and if so,
    // which version to use.  This map is only used while processing a single
    // expression.
    //
    typedef hash_map<BasicBlock*, Instruction*> AvailableBlocksTy;
    AvailableBlocksTy AvailableBlocks;

    bool ProcessBlock(BasicBlock *BB);
    
    // Anticipatibility calculation...
    void MarkPostDominatingBlocksAnticipatible(PostDominatorTree::Node *N,
                                               std::vector<char> &AntBlocks,
                                               Instruction *Occurance);
    void CalculateAnticipatiblityForOccurance(unsigned BlockNo,
                                              std::vector<char> &AntBlocks,
                                              Instruction *Occurance);
    void CalculateAnticipatibleBlocks(const std::map<unsigned, Instruction*> &D,
                                      std::vector<char> &AnticipatibleBlocks);

    // PRE for an expression
    void MarkOccuranceAvailableInAllDominatedBlocks(Instruction *Occurance,
                                                    BasicBlock *StartBlock);
    void ReplaceDominatedAvailableOccurancesWith(Instruction *NewOcc,
                                                 DominatorTree::Node *N);
    bool ProcessExpression(Instruction *I);
  };

  RegisterOpt<PRE> Z("pre", "Partial Redundancy Elimination");
}


bool PRE::runOnFunction(Function &F) {
  VN  = &getAnalysis<ValueNumbering>();
  DS  = &getAnalysis<DominatorSet>();
  DT  = &getAnalysis<DominatorTree>();
  DF  = &getAnalysis<DominanceFrontier>();
  PDT = &getAnalysis<PostDominatorTree>();
  PDF = &getAnalysis<PostDominanceFrontier>();

  DEBUG(std::cerr << "\n*** Running PRE on func '" << F.getName() << "'...\n");

  // Number the basic blocks based on a reverse post-order traversal of the CFG
  // so that all predecessors of a block (ignoring back edges) are visited
  // before a block is visited.
  //
  BlockMapping.reserve(F.size());
  {
    ReversePostOrderTraversal<Function*> RPOT(&F);
    DEBUG(std::cerr << "Block order: ");
    for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
           E = RPOT.end(); I != E; ++I) {
      // Keep track of mapping...
      BasicBlock *BB = *I;
      BlockNumbering.insert(std::make_pair(BB, BlockMapping.size()));
      BlockMapping.push_back(BB);
      DEBUG(std::cerr << BB->getName() << " ");
    }
    DEBUG(std::cerr << "\n");
  }

  // Traverse the current function depth-first in dominator-tree order.  This
  // ensures that we see all definitions before their uses (except for PHI
  // nodes), allowing us to hoist dependent expressions correctly.
  bool Changed = false;
  for (unsigned i = 0, e = BlockMapping.size(); i != e; ++i)
    Changed |= ProcessBlock(BlockMapping[i]);

  // Free memory
  BlockMapping.clear();
  BlockNumbering.clear();
  ProcessedExpressions.clear();
  return Changed;
}


// ProcessBlock - Process any expressions first seen in this block...
//
bool PRE::ProcessBlock(BasicBlock *BB) {
  bool Changed = false;

  // PRE expressions first defined in this block...
  Instruction *PrevInst = 0;
  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); )
    if (ProcessExpression(I)) {
      // The current instruction may have been deleted, make sure to back up to
      // PrevInst instead.
      if (PrevInst)
        I = PrevInst;
      else
        I = BB->begin();
      Changed = true;
    } else {
      PrevInst = I++;
    }

  return Changed;
}

void PRE::MarkPostDominatingBlocksAnticipatible(PostDominatorTree::Node *N,
                                                std::vector<char> &AntBlocks,
                                                Instruction *Occurance) {
  unsigned BlockNo = BlockNumbering[N->getNode()];

  if (AntBlocks[BlockNo]) return;  // Already known to be anticipatible??

  // Check to see if any of the operands are defined in this block, if so, the
  // entry of this block does not anticipate the expression.  This computes
  // "transparency".
  for (unsigned i = 0, e = Occurance->getNumOperands(); i != e; ++i)
    if (Instruction *I = dyn_cast<Instruction>(Occurance->getOperand(i)))
      if (I->getParent() == N->getNode())  // Operand is defined in this block!
        return;

  if (isa<LoadInst>(Occurance))
    return;        // FIXME: compute transparency for load instructions using AA

  // Insert block into AntBlocks list...
  AntBlocks[BlockNo] = true;

  for (PostDominatorTree::Node::iterator I = N->begin(), E = N->end(); I != E;
       ++I)
    MarkPostDominatingBlocksAnticipatible(*I, AntBlocks, Occurance);
}

void PRE::CalculateAnticipatiblityForOccurance(unsigned BlockNo,
                                               std::vector<char> &AntBlocks,
                                               Instruction *Occurance) {
  if (AntBlocks[BlockNo]) return;  // Block already anticipatible!

  BasicBlock *BB = BlockMapping[BlockNo];

  // For each occurance, mark all post-dominated blocks as anticipatible...
  MarkPostDominatingBlocksAnticipatible(PDT->getNode(BB), AntBlocks,
                                        Occurance);

  // Next, mark any blocks in the post-dominance frontier as anticipatible iff
  // all successors are anticipatible.
  //
  PostDominanceFrontier::iterator PDFI = PDF->find(BB);
  if (PDFI != DF->end())
    for (std::set<BasicBlock*>::iterator DI = PDFI->second.begin();
         DI != PDFI->second.end(); ++DI) {
      BasicBlock *PDFBlock = *DI;
      bool AllSuccessorsAnticipatible = true;
      for (succ_iterator SI = succ_begin(PDFBlock), SE = succ_end(PDFBlock);
           SI != SE; ++SI)
        if (!AntBlocks[BlockNumbering[*SI]]) {
          AllSuccessorsAnticipatible = false;
          break;
        }

      if (AllSuccessorsAnticipatible)
        CalculateAnticipatiblityForOccurance(BlockNumbering[PDFBlock],
                                             AntBlocks, Occurance);
    }
}


void PRE::CalculateAnticipatibleBlocks(const std::map<unsigned,
                                                      Instruction*> &Defs,
                                       std::vector<char> &AntBlocks) {
  // Initialize to zeros...
  AntBlocks.resize(BlockMapping.size());

  // Loop over all of the expressions...
  for (std::map<unsigned, Instruction*>::const_iterator I = Defs.begin(),
         E = Defs.end(); I != E; ++I)
    CalculateAnticipatiblityForOccurance(I->first, AntBlocks, I->second);
}

/// MarkOccuranceAvailableInAllDominatedBlocks - Add entries to AvailableBlocks
/// for all nodes dominated by the occurance to indicate that it is now the
/// available occurance to use in any of these blocks.
///
void PRE::MarkOccuranceAvailableInAllDominatedBlocks(Instruction *Occurance,
                                                     BasicBlock *BB) {
  // FIXME: There are much more efficient ways to get the blocks dominated
  // by a block.  Use them.
  //
  DominatorTree::Node *N = DT->getNode(Occurance->getParent());
  for (df_iterator<DominatorTree::Node*> DI = df_begin(N), E = df_end(N);
       DI != E; ++DI)
    AvailableBlocks[(*DI)->getNode()] = Occurance;
}

/// ReplaceDominatedAvailableOccurancesWith - This loops over the region
/// dominated by N, replacing any available expressions with NewOcc.
void PRE::ReplaceDominatedAvailableOccurancesWith(Instruction *NewOcc,
                                                  DominatorTree::Node *N) {
  BasicBlock *BB = N->getNode();
  Instruction *&ExistingAvailableVal = AvailableBlocks[BB];

  // If there isn't a definition already active in this node, make this the new
  // active definition...
  if (ExistingAvailableVal == 0) {
    ExistingAvailableVal = NewOcc;
    
    for (DominatorTree::Node::iterator I = N->begin(), E = N->end(); I != E;++I)
      ReplaceDominatedAvailableOccurancesWith(NewOcc, *I);
  } else {
    // If there is already an active definition in this block, replace it with
    // NewOcc, and force it into all dominated blocks.
    DEBUG(std::cerr << "  Replacing dominated occ %"
          << ExistingAvailableVal->getName() << " with %" << NewOcc->getName()
          << "\n");
    assert(ExistingAvailableVal != NewOcc && "NewOcc already inserted??");
    ExistingAvailableVal->replaceAllUsesWith(NewOcc);
    ++NumRedundant;

    assert(ExistingAvailableVal->getParent() == BB &&
           "OldOcc not defined in current block?");
    BB->getInstList().erase(ExistingAvailableVal);

    // Mark NewOCC as the Available expression in all blocks dominated by BB
    for (df_iterator<DominatorTree::Node*> DI = df_begin(N), E = df_end(N);
         DI != E; ++DI)
      AvailableBlocks[(*DI)->getNode()] = NewOcc;
  }  
}


/// ProcessExpression - Given an expression (instruction) process the
/// instruction to remove any partial redundancies induced by equivalent
/// computations.  Note that we only need to PRE each expression once, so we
/// keep track of whether an expression has been PRE'd already, and don't PRE an
/// expression again.  Expressions may be seen multiple times because process
/// the entire equivalence class at once, which may leave expressions later in
/// the control path.
///
bool PRE::ProcessExpression(Instruction *Expr) {
  if (Expr->mayWriteToMemory() || Expr->getType() == Type::VoidTy ||
      isa<PHINode>(Expr))
    return false;         // Cannot move expression
  if (ProcessedExpressions.count(Expr)) return false; // Already processed.

  // Ok, this is the first time we have seen the expression.  Build a set of
  // equivalent expressions using SSA def/use information.  We consider
  // expressions to be equivalent if they are the same opcode and have
  // equivalent operands.  As a special case for SSA, values produced by PHI
  // nodes are considered to be equivalent to all of their operands.
  //
  std::vector<Value*> Values;
  VN->getEqualNumberNodes(Expr, Values);

#if 0
  // FIXME: This should handle PHI nodes correctly.  To do this, we need to
  // consider expressions of the following form equivalent to this set of
  // expressions:
  //
  // If an operand is a PHI node, add any occurances of the expression with the
  // PHI operand replaced with the PHI node operands.  This is only valid if the
  // PHI operand occurances exist in blocks post-dominated by the incoming edge
  // of the PHI node.
#endif

  // We have to be careful to handle expression definitions which dominated by
  // other expressions.  These can be directly eliminated in favor of their
  // dominating value.  Keep track of which blocks contain definitions (the key)
  // and if a block contains a definition, which instruction it is.
  //
  std::map<unsigned, Instruction*> Definitions;
  Definitions.insert(std::make_pair(BlockNumbering[Expr->getParent()], Expr));

  bool Changed = false;

  // Look at all of the equal values.  If any of the values is not an
  // instruction, replace all other expressions immediately with it (it must be
  // an argument or a constant or something). Otherwise, convert the list of
  // values into a list of expression (instruction) definitions ordering
  // according to their dominator tree ordering.
  //
  Value *NonInstValue = 0;
  for (unsigned i = 0, e = Values.size(); i != e; ++i)
    if (Instruction *I = dyn_cast<Instruction>(Values[i])) {
      Instruction *&BlockInst = Definitions[BlockNumbering[I->getParent()]];
      if (BlockInst && BlockInst != I) {    // Eliminate direct redundancy
        if (DS->dominates(I, BlockInst)) {  // I dom BlockInst
          BlockInst->replaceAllUsesWith(I);
          BlockInst->getParent()->getInstList().erase(BlockInst);
        } else {                            // BlockInst dom I
          I->replaceAllUsesWith(BlockInst);
          I->getParent()->getInstList().erase(I);
          I = BlockInst;
        }
        ++NumRedundant;
      }
      BlockInst = I;
    } else {
      NonInstValue = Values[i];
    }

  std::vector<Value*>().swap(Values);  // Done with the values list

  if (NonInstValue) {
    // This is the good, though unlikely, case where we find out that this
    // expression is equal to a constant or argument directly.  We can replace
    // this and all of the other equivalent instructions with the value
    // directly.
    //
    for (std::map<unsigned, Instruction*>::iterator I = Definitions.begin(),
           E = Definitions.end(); I != E; ++I) {
      Instruction *Inst = I->second;
      // Replace the value with the specified non-instruction value.
      Inst->replaceAllUsesWith(NonInstValue);       // Fixup any uses
      Inst->getParent()->getInstList().erase(Inst); // Erase the instruction
    }
    NumExprsEliminated += Definitions.size();
    return true;   // Program modified!
  }

  // There are no expressions equal to this one.  Exit early.
  assert(!Definitions.empty() && "no equal expressions??");
#if 0
  if (Definitions.size() == 1) {
    ProcessedExpressions.insert(Definitions.begin()->second);
    return Changed;
  }
#endif
  DEBUG(std::cerr << "\n====--- Expression: " << Expr);
  const Type *ExprType = Expr->getType();

  // AnticipatibleBlocks - Blocks where the current expression is anticipatible.
  // This is logically std::vector<bool> but using 'char' for performance.
  std::vector<char> AnticipatibleBlocks;

  // Calculate all of the blocks which the current expression is anticipatible.
  CalculateAnticipatibleBlocks(Definitions, AnticipatibleBlocks);

  // Print out anticipatible blocks...
  DEBUG(std::cerr << "AntBlocks: ";
        for (unsigned i = 0, e = AnticipatibleBlocks.size(); i != e; ++i)
          if (AnticipatibleBlocks[i])
            std::cerr << BlockMapping[i]->getName() <<" ";
        std::cerr << "\n";);
  


  // AvailabilityFrontier - Calculates the availability frontier for the current
  // expression.  The availability frontier contains the blocks on the dominance
  // frontier of the current available expressions, iff they anticipate a
  // definition of the expression.
  hash_set<unsigned> AvailabilityFrontier;

  Instruction *NonPHIOccurance = 0;

  while (!Definitions.empty() || !AvailabilityFrontier.empty()) {
    if (!Definitions.empty() &&
        (AvailabilityFrontier.empty() ||
         Definitions.begin()->first < *AvailabilityFrontier.begin())) {
      Instruction *Occurance = Definitions.begin()->second;
      BasicBlock *BB = Occurance->getParent();
      Definitions.erase(Definitions.begin());

      DEBUG(std::cerr << "PROCESSING Occurance: " << Occurance);

      // Check to see if there is already an incoming value for this block...
      AvailableBlocksTy::iterator LBI = AvailableBlocks.find(BB);
      if (LBI != AvailableBlocks.end()) {
        // Yes, there is a dominating definition for this block.  Replace this
        // occurance with the incoming value.
        if (LBI->second != Occurance) {
          DEBUG(std::cerr << "  replacing with: " << LBI->second);
          Occurance->replaceAllUsesWith(LBI->second);
          BB->getInstList().erase(Occurance);   // Delete instruction
          ++NumRedundant;
        }

      } else {
        ProcessedExpressions.insert(Occurance);
        if (!isa<PHINode>(Occurance))
          NonPHIOccurance = Occurance;  // Keep an occurance of this expr

        // Okay, there is no incoming value for this block, so this expression
        // is a new definition that is good for this block and all blocks
        // dominated by it.  Add this information to the AvailableBlocks map.
        //
        MarkOccuranceAvailableInAllDominatedBlocks(Occurance, BB);

        // Update the dominance frontier for the definitions so far... if a node
        // in the dominator frontier now has all of its predecessors available,
        // and the block is in an anticipatible region, we can insert a PHI node
        // in that block.
        DominanceFrontier::iterator DFI = DF->find(BB);
        if (DFI != DF->end()) {
          for (std::set<BasicBlock*>::iterator DI = DFI->second.begin();
               DI != DFI->second.end(); ++DI) {
            BasicBlock *DFBlock = *DI;
            unsigned DFBlockID = BlockNumbering[DFBlock];
            if (AnticipatibleBlocks[DFBlockID]) {
              // Check to see if any of the predecessors of this block on the
              // frontier are not available...
              bool AnyNotAvailable = false;
              for (pred_iterator PI = pred_begin(DFBlock),
                     PE = pred_end(DFBlock); PI != PE; ++PI)
                if (!AvailableBlocks.count(*PI)) {
                  AnyNotAvailable = true;
                  break;
                }
            
              // If any predecessor blocks are not available, add the node to
              // the current expression dominance frontier.
              if (AnyNotAvailable) {
                AvailabilityFrontier.insert(DFBlockID);
              } else {
                // This block is no longer in the availability frontier, it IS
                // available.
                AvailabilityFrontier.erase(DFBlockID);

                // If all of the predecessor blocks are available (and the block
                // anticipates a definition along the path to the exit), we need
                // to insert a new PHI node in this block.  This block serves as
                // a new definition for the expression, extending the available
                // region.
                //
                PHINode *PN = new PHINode(ExprType, Expr->getName()+".pre",
                                          DFBlock->begin());
                ProcessedExpressions.insert(PN);

                DEBUG(std::cerr << "  INSERTING PHI on frontier: " << PN);

                // Add the incoming blocks for the PHI node
                for (pred_iterator PI = pred_begin(DFBlock),
                       PE = pred_end(DFBlock); PI != PE; ++PI)
                  if (*PI != DFBlock)
                    PN->addIncoming(AvailableBlocks[*PI], *PI);
                  else                          // edge from the current block
                    PN->addIncoming(PN, DFBlock);

                Instruction *&BlockOcc = Definitions[DFBlockID];
                if (BlockOcc) {
                  DEBUG(std::cerr <<"    PHI superceeds occurance: "<<BlockOcc);
                  BlockOcc->replaceAllUsesWith(PN);
                  BlockOcc->getParent()->getInstList().erase(BlockOcc);
                  ++NumRedundant;
                }
                BlockOcc = PN;
              }
            }
          }
        }
      }

    } else {
      // Otherwise we must be looking at a node in the availability frontier!
      unsigned AFBlockID = *AvailabilityFrontier.begin();
      AvailabilityFrontier.erase(AvailabilityFrontier.begin());
      BasicBlock *AFBlock = BlockMapping[AFBlockID];

      // We eliminate the partial redundancy on this frontier by inserting a PHI
      // node into this block, merging any incoming available versions into the
      // PHI and inserting a new computation into predecessors without an
      // incoming value.  Note that we would have to insert the expression on
      // the edge if the predecessor didn't anticipate the expression and we
      // didn't break critical edges.
      //
      PHINode *PN = new PHINode(ExprType, Expr->getName()+".PRE",
                                AFBlock->begin());
      DEBUG(std::cerr << "INSERTING PHI for PR: " << PN);

      // If there is a pending occurance in this block, make sure to replace it
      // with the PHI node...
      std::map<unsigned, Instruction*>::iterator EDFI =
        Definitions.find(AFBlockID);
      if (EDFI != Definitions.end()) {
        // There is already an occurance in this block.  Replace it with PN and
        // remove it.
        Instruction *OldOcc = EDFI->second;
        DEBUG(std::cerr << "  Replaces occurance: " << OldOcc);
        OldOcc->replaceAllUsesWith(PN);
        AFBlock->getInstList().erase(OldOcc);
        Definitions.erase(EDFI);
        ++NumRedundant;
      }

      for (pred_iterator PI = pred_begin(AFBlock), PE = pred_end(AFBlock);
           PI != PE; ++PI) {
        BasicBlock *Pred = *PI;
        AvailableBlocksTy::iterator LBI = AvailableBlocks.find(Pred);
        if (LBI != AvailableBlocks.end()) {    // If there is a available value
          PN->addIncoming(LBI->second, Pred);  // for this pred, use it.
        } else {                         // No available value yet...
          unsigned PredID = BlockNumbering[Pred];

          // Is the predecessor the same block that we inserted the PHI into?
          // (self loop)
          if (Pred == AFBlock) {
            // Yes, reuse the incoming value here...
            PN->addIncoming(PN, Pred);
          } else {
            // No, we must insert a new computation into this block and add it
            // to the definitions list...
            assert(NonPHIOccurance && "No non-phi occurances seen so far???");
            Instruction *New = NonPHIOccurance->clone();
            New->setName(NonPHIOccurance->getName() + ".PRE-inserted");
            ProcessedExpressions.insert(New);

            DEBUG(std::cerr << "  INSERTING OCCURANCE: " << New);

            // Insert it into the bottom of the predecessor, right before the
            // terminator instruction...
            Pred->getInstList().insert(Pred->getTerminator(), New);

            // Make this block be the available definition for any blocks it
            // dominates.  The ONLY case that this can affect more than just the
            // block itself is when we are moving a computation to a loop
            // header.  In all other cases, because we don't have critical
            // edges, the node is guaranteed to only dominate itself.
            //
            ReplaceDominatedAvailableOccurancesWith(New, DT->getNode(Pred));

            // Add it as an incoming value on this edge to the PHI node
            PN->addIncoming(New, Pred);
            NonPHIOccurance = New;
            NumInserted++;
          }
        }
      }

      // Find out if there is already an available value in this block.  If so,
      // we need to replace the available value with the PHI node.  This can
      // only happen when we just inserted a PHI node on a backedge.
      //
      AvailableBlocksTy::iterator LBBlockAvailableValIt =
        AvailableBlocks.find(AFBlock);
      if (LBBlockAvailableValIt != AvailableBlocks.end()) {
        if (LBBlockAvailableValIt->second->getParent() == AFBlock) {
          Instruction *OldVal = LBBlockAvailableValIt->second;
          OldVal->replaceAllUsesWith(PN);        // Use the new PHI node now
          ++NumRedundant;
          DEBUG(std::cerr << "  PHI replaces available value: %"
                << OldVal->getName() << "\n");
          
          // Loop over all of the blocks dominated by this PHI node, and change
          // the AvailableBlocks entries to be the PHI node instead of the old
          // instruction.
          MarkOccuranceAvailableInAllDominatedBlocks(PN, AFBlock);
          
          AFBlock->getInstList().erase(OldVal);  // Delete old instruction!

          // The resultant PHI node is a new definition of the value!
          Definitions.insert(std::make_pair(AFBlockID, PN));
        } else {
          // If the value is not defined in this block, that means that an
          // inserted occurance in a predecessor is now the live value for the
          // region (occurs when hoisting loop invariants, f.e.).  In this case,
          // the PHI node should actually just be removed.
          assert(PN->use_empty() && "No uses should exist for dead PHI node!");
          PN->getParent()->getInstList().erase(PN);            
        }
      } else {
        // The resultant PHI node is a new definition of the value!
        Definitions.insert(std::make_pair(AFBlockID, PN));
      }
    }
  }

  AvailableBlocks.clear();

  return Changed;
}