aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Transforms/Scalar/PredicateSimplifier.cpp
blob: c4ffa4e990e42ee92a2a487d00d3c4a21e7b591f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
//===-- PredicateSimplifier.cpp - Path Sensitive Simplifier -----------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by Nick Lewycky and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===------------------------------------------------------------------===//
//
// Path-sensitive optimizer. In a branch where x == y, replace uses of
// x with y. Permits further optimization, such as the elimination of
// the unreachable call:
//
// void test(int *p, int *q)
// {
//   if (p != q)
//     return;
// 
//   if (*p != *q)
//     foo(); // unreachable
// }
//
//===------------------------------------------------------------------===//
//
// This optimization works by substituting %q for %p when protected by a
// conditional that assures us of that fact. Properties are stored as
// relationships between two values.
//
//===------------------------------------------------------------------===//

#define DEBUG_TYPE "predsimplify"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Instructions.h"
#include "llvm/Pass.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/InstVisitor.h"
#include <iostream>
#include <list>
using namespace llvm;

typedef DominatorTree::Node DTNodeType;

namespace {
  Statistic<>
  NumVarsReplaced("predsimplify", "Number of argument substitutions");
  Statistic<>
  NumInstruction("predsimplify", "Number of instructions removed");

  class PropertySet;

  /// Similar to EquivalenceClasses, this stores the set of equivalent
  /// types. Beyond EquivalenceClasses, it allows us to specify which
  /// element will act as leader.
  template<typename ElemTy>
  class VISIBILITY_HIDDEN Synonyms {
    std::map<ElemTy, unsigned> mapping;
    std::vector<ElemTy> leaders;
    PropertySet *PS;

  public:
    typedef unsigned iterator;
    typedef const unsigned const_iterator;

    Synonyms(PropertySet *PS) : PS(PS) {}

    // Inspection

    bool empty() const {
      return leaders.empty();
    }

    iterator findLeader(ElemTy &e) {
      typename std::map<ElemTy, unsigned>::iterator MI = mapping.find(e);
      if (MI == mapping.end()) return 0;

      return MI->second;
    }

    const_iterator findLeader(ElemTy &e) const {
      typename std::map<ElemTy, unsigned>::const_iterator MI =
          mapping.find(e);
      if (MI == mapping.end()) return 0;

      return MI->second;
    }

    ElemTy &getLeader(iterator I) {
      assert(I && I <= leaders.size() && "Illegal leader to get.");
      return leaders[I-1];
    }

    const ElemTy &getLeader(const_iterator I) const {
      assert(I && I <= leaders.size() && "Illegal leaders to get.");
      return leaders[I-1];
    }

#ifdef DEBUG
    void debug(std::ostream &os) const {
      for (unsigned i = 1, e = leaders.size()+1; i != e; ++i) {
        os << i << ". " << *getLeader(i) << ": [";
        for (std::map<Value *, unsigned>::const_iterator
             I = mapping.begin(), E = mapping.end(); I != E; ++I) {
          if ((*I).second == i && (*I).first != leaders[i-1]) {
            os << *(*I).first << "  ";
          }
        }
        os << "]\n";
      }
    }
#endif

    // Mutators

    void remove(ElemTy &e) {
      ElemTy E = e;      // The parameter to erase must not be a reference to
      mapping.erase(E);  // an element contained in the map.
    }

    /// Combine two sets referring to the same element, inserting the
    /// elements as needed. Returns a valid iterator iff two already
    /// existing disjoint synonym sets were combined. The iterator
    /// points to the no longer existing element.
    iterator unionSets(ElemTy E1, ElemTy E2);

    /// Returns an iterator pointing to the synonym set containing
    /// element e. If none exists, a new one is created and returned.
    iterator findOrInsert(ElemTy &e) {
      iterator I = findLeader(e);
      if (I) return I;

      leaders.push_back(e);
      I = leaders.size();
      mapping[e] = I;
      return I;
    }
  };

  /// Represents the set of equivalent Value*s and provides insertion
  /// and fast lookup. Also stores the set of inequality relationships.
  class PropertySet {
    /// Returns true if V1 is a better choice than V2.
    bool compare(Value *V1, Value *V2) const {
      if (isa<Constant>(V1)) {
        if (!isa<Constant>(V2)) {
          return true;
        }
      } else if (isa<Argument>(V1)) {
        if (!isa<Constant>(V2) && !isa<Argument>(V2)) {
          return true;
        }
      }
      if (Instruction *I1 = dyn_cast<Instruction>(V1)) {
        if (Instruction *I2 = dyn_cast<Instruction>(V2)) {
          BasicBlock *BB1 = I1->getParent(),
                     *BB2 = I2->getParent();
          if (BB1 == BB2) {
            for (BasicBlock::const_iterator I = BB1->begin(), E = BB1->end();
                 I != E; ++I) {
              if (&*I == I1) return true;
              if (&*I == I2) return false;
            }
            assert(0 && "Instructions not found in parent BasicBlock?");
          } else
            return DT->getNode(BB1)->properlyDominates(DT->getNode(BB2));
        }
      }
      return false;
    }

    struct Property;
  public:
    /// Choose the canonical Value in a synonym set.
    /// Leaves the more canonical choice in V1.
    void order(Value *&V1, Value *&V2) const {
      if (compare(V2, V1)) std::swap(V1, V2);
    }

    PropertySet(DominatorTree *DT) : union_find(this), DT(DT) {}

    Synonyms<Value *> union_find;

    typedef std::vector<Property>::iterator       PropertyIterator;
    typedef std::vector<Property>::const_iterator ConstPropertyIterator;
    typedef Synonyms<Value *>::iterator  SynonymIterator;

    enum Ops {
      EQ,
      NE
    };

    Value *canonicalize(Value *V) const {
      Value *C = lookup(V);
      return C ? C : V;
    }

    Value *lookup(Value *V) const {
      SynonymIterator SI = union_find.findLeader(V);
      if (!SI) return NULL;
      return union_find.getLeader(SI);
    }

    bool empty() const {
      return union_find.empty();
    }

    void remove(Value *V) {
      SynonymIterator I = union_find.findLeader(V);
      if (!I) return;

      union_find.remove(V);

      for (PropertyIterator PI = Properties.begin(), PE = Properties.end();
           PI != PE;) {
        Property &P = *PI++;
        if (P.I1 == I || P.I2 == I) Properties.erase(PI);
      }
    }

    void addEqual(Value *V1, Value *V2) {
      // If %x = 0. and %y = -0., seteq %x, %y is true, but
      // copysign(%x) is not the same as copysign(%y).
      if (V1->getType()->isFloatingPoint()) return;

      order(V1, V2);
      if (isa<Constant>(V2)) return; // refuse to set false == true.

      if (union_find.findLeader(V1) &&
          union_find.findLeader(V1) == union_find.findLeader(V2))
        return; // no-op

      SynonymIterator deleted = union_find.unionSets(V1, V2);
      if (deleted) {
        SynonymIterator replacement = union_find.findLeader(V1);
        // Move Properties
        for (PropertyIterator I = Properties.begin(), E = Properties.end();
             I != E; ++I) {
          if (I->I1 == deleted) I->I1 = replacement;
          else if (I->I1 > deleted) --I->I1;
          if (I->I2 == deleted) I->I2 = replacement;
          else if (I->I2 > deleted) --I->I2;
        }
      }
      addImpliedProperties(EQ, V1, V2);
    }

    void addNotEqual(Value *V1, Value *V2) {
      // If %x = NAN then seteq %x, %x is false.
      if (V1->getType()->isFloatingPoint()) return;

      // For example, %x = setne int 0, 0 causes "0 != 0".
      if (isa<Constant>(V1) && isa<Constant>(V2)) return;

      if (findProperty(NE, V1, V2) != Properties.end())
        return; // no-op.

      // Add the property.
      SynonymIterator I1 = union_find.findOrInsert(V1),
                      I2 = union_find.findOrInsert(V2);

      // Technically this means that the block is unreachable.
      if (I1 == I2) return;

      Properties.push_back(Property(NE, I1, I2));
      addImpliedProperties(NE, V1, V2);
    }

    PropertyIterator findProperty(Ops Opcode, Value *V1, Value *V2) {
      assert(Opcode != EQ && "Can't findProperty on EQ."
             "Use the lookup method instead.");

      SynonymIterator I1 = union_find.findLeader(V1),
                      I2 = union_find.findLeader(V2);
      if (!I1 || !I2) return Properties.end();

      return
      find(Properties.begin(), Properties.end(), Property(Opcode, I1, I2));
    }

    ConstPropertyIterator
    findProperty(Ops Opcode, Value *V1, Value *V2) const {
      assert(Opcode != EQ && "Can't findProperty on EQ."
             "Use the lookup method instead.");

      SynonymIterator I1 = union_find.findLeader(V1),
                      I2 = union_find.findLeader(V2);
      if (!I1 || !I2) return Properties.end();

      return
      find(Properties.begin(), Properties.end(), Property(Opcode, I1, I2));
    }

  private:
    // Represents Head OP [Tail1, Tail2, ...]
    // For example: %x != %a, %x != %b.
    struct VISIBILITY_HIDDEN Property {
      typedef SynonymIterator Iter;

      Property(Ops opcode, Iter i1, Iter i2)
        : Opcode(opcode), I1(i1), I2(i2)
      { assert(opcode != EQ && "Equality belongs in the synonym set, "
                               "not a property."); }

      bool operator==(const Property &P) const {
        return (Opcode == P.Opcode) &&
               ((I1 == P.I1 && I2 == P.I2) ||
                (I1 == P.I2 && I2 == P.I1));
      }

      Ops Opcode;
      Iter I1, I2;
    };

    void addToResolve(Value *V, std::list<Value *> &WorkList) {
      if (!isa<Constant>(V) && !isa<BasicBlock>(V)) {
        for (Value::use_iterator UI = V->use_begin(), UE = V->use_end();
             UI != UE; ++UI) {
          if (!isa<Constant>(*UI) && !isa<BasicBlock>(*UI)) {
            WorkList.push_back(*UI);
          }
        }
      }
    }

    void resolve(std::list<Value *> &WorkList) {
      if (WorkList.empty()) return;

      Value *V = WorkList.front();
      WorkList.pop_front();

      if (empty()) return;

      Instruction *I = dyn_cast<Instruction>(V);
      if (!I) return;

      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
        Value *lhs = canonicalize(BO->getOperand(0)),
              *rhs = canonicalize(BO->getOperand(1));

        ConstantIntegral *CI1 = dyn_cast<ConstantIntegral>(lhs),
                         *CI2 = dyn_cast<ConstantIntegral>(rhs);

        if (CI1 && CI2) {
          addToResolve(BO, WorkList);
          addEqual(BO, ConstantExpr::get(BO->getOpcode(), CI1, CI2));
        } else if (SetCondInst *SCI = dyn_cast<SetCondInst>(BO)) {
          PropertySet::ConstPropertyIterator NE =
             findProperty(PropertySet::NE, lhs, rhs);

          if (NE != Properties.end()) {
            switch (SCI->getOpcode()) {
            case Instruction::SetEQ:
              addToResolve(SCI, WorkList);
              addEqual(SCI, ConstantBool::getFalse());
              break;
            case Instruction::SetNE:
              addToResolve(SCI, WorkList);
              addEqual(SCI, ConstantBool::getTrue());
              break;
            case Instruction::SetLE:
            case Instruction::SetGE:
            case Instruction::SetLT:
            case Instruction::SetGT:
              break;
            default:
              assert(0 && "Unknown opcode in SetCondInst.");
              break;
            }
          }
        }
      } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
        Value *Condition = canonicalize(SI->getCondition());
        if (ConstantBool *CB = dyn_cast<ConstantBool>(Condition)) {
          addToResolve(SI, WorkList);
          addEqual(SI, CB->getValue() ? SI->getTrueValue() : SI->getFalseValue());
        }
      }
      if (!WorkList.empty()) resolve(WorkList);
    }

    void add(Ops Opcode, Value *V1, Value *V2, bool invert) {
      switch (Opcode) {
        case EQ:
          if (invert) addNotEqual(V1, V2);
          else        addEqual(V1, V2);
          break;
        case NE:
          if (invert) addEqual(V1, V2);
          else        addNotEqual(V1, V2);
          break;
        default:
          assert(0 && "Unknown property opcode.");
      }
    }

    /// Finds the properties implied by an equivalence and adds them too.
    /// Example: ("seteq %a, %b", true,  EQ) --> (%a, %b, EQ)
    ///          ("seteq %a, %b", false, EQ) --> (%a, %b, NE)
    void addImpliedProperties(Ops Opcode, Value *V1, Value *V2) {
      order(V1, V2);

      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V2)) {
        switch (BO->getOpcode()) {
        case Instruction::SetEQ:
          // "seteq int %a, %b" EQ true  then %a EQ %b
          // "seteq int %a, %b" EQ false then %a NE %b
          // "seteq int %a, %b" NE true  then %a NE %b
          // "seteq int %a, %b" NE false then %a EQ %b
          if (ConstantBool *V1CB = dyn_cast<ConstantBool>(V1))
            add(Opcode, BO->getOperand(0), BO->getOperand(1),!V1CB->getValue());
          break;
        case Instruction::SetNE:
          // "setne int %a, %b" EQ true  then %a NE %b
          // "setne int %a, %b" EQ false then %a EQ %b
          // "setne int %a, %b" NE true  then %a EQ %b
          // "setne int %a, %b" NE false then %a NE %b
          if (ConstantBool *V1CB = dyn_cast<ConstantBool>(V1))
            add(Opcode, BO->getOperand(0), BO->getOperand(1), V1CB->getValue());
          break;
        case Instruction::SetLT:
        case Instruction::SetGT:
          // "setlt/gt int %a, %b" EQ true  then %a NE %b
          // "setlt/gt int %a, %b" NE false then %a NE %b

          // "setlt int %a, %b" NE true then %a EQ %b

          if (ConstantBool *CB = dyn_cast<ConstantBool>(V1)) {
            if (CB->getValue() ^ Opcode==NE)
              addNotEqual(BO->getOperand(0), BO->getOperand(1));
	  }
          break;
        case Instruction::SetLE:
        case Instruction::SetGE:
          // "setle/ge int %a, %b" EQ false then %a NE %b
          // "setle/ge int %a, %b" NE true  then %a NE %b
          if (ConstantBool *CB = dyn_cast<ConstantBool>(V1)) {
            if (CB->getValue() ^ Opcode==EQ)
              addNotEqual(BO->getOperand(0), BO->getOperand(1));
	  }
          break;
        case Instruction::And: {
          // "and int %a, %b"  EQ 0xff  then %a EQ 0xff and %b EQ 0xff
          // "and bool %a, %b" EQ true  then %a EQ true and %b EQ true
          // "and bool %a, %b" NE false then %a EQ true and %b EQ true
          if (ConstantIntegral *CI = dyn_cast<ConstantIntegral>(V1)) {
            if (Opcode == EQ && CI->isAllOnesValue()) {
              addEqual(CI, BO->getOperand(0));
              addEqual(CI, BO->getOperand(1));
            } else if (Opcode == NE && CI == ConstantBool::getFalse()) {
              addEqual(ConstantBool::getTrue(), BO->getOperand(0));
              addEqual(ConstantBool::getTrue(), BO->getOperand(1));
            }
          }
        } break;
        case Instruction::Or: {
          // "or int %a, %b"  EQ 0     then %a EQ 0     and %b EQ 0
          // "or bool %a, %b" EQ false then %a EQ false and %b EQ false
          // "or bool %a, %b" NE true  then %a EQ false and %b EQ false
          if (ConstantIntegral *CI = dyn_cast<ConstantIntegral>(V1)) {
            if (Opcode == EQ && CI->isNullValue()) {
              addEqual(CI, BO->getOperand(0));
              addEqual(CI, BO->getOperand(1));
            } else if (Opcode == NE && CI == ConstantBool::getTrue()) {
              addEqual(ConstantBool::getFalse(), BO->getOperand(0));
              addEqual(ConstantBool::getFalse(), BO->getOperand(1));
            }
          }
        } break;
        case Instruction::Xor: {
          // "xor bool true,  %a" EQ true  then %a = false
          // "xor bool true,  %a" EQ false then %a = true
          // "xor bool false, %a" EQ true  then %a = true
          // "xor bool false, %a" EQ false then %a = false
          // 1. Repeat all of the above, with "NE false" in place of
          //    "EQ true" and "NE true" in place of "EQ false".
          // "xor int %c, %a" EQ %c then %a = 0
          // "xor int %c, %a" NE %c then %a != 0
          // 2. Repeat all of the above, with order of operands reversed.

          Value *LHS = BO->getOperand(0), *RHS = BO->getOperand(1);
          if (!isa<Constant>(LHS)) std::swap(LHS, RHS);

          if (ConstantBool *CB = dyn_cast<ConstantBool>(V1)) {
            if (ConstantBool *A = dyn_cast<ConstantBool>(LHS)) {
              addEqual(RHS, ConstantBool::get(A->getValue() ^ CB->getValue()
                                              ^ Opcode==NE));
            }
          }
          else if (ConstantIntegral *CI = dyn_cast<ConstantIntegral>(V1)) {
            if (ConstantIntegral *A = dyn_cast<ConstantIntegral>(LHS)) {
              if (A == CI)
                add(Opcode, RHS, Constant::getNullValue(A->getType()), false);
            }
          }
        } break;
        default:
          break;
        }
      } else if (SelectInst *SI = dyn_cast<SelectInst>(V2)) {
        ConstantBool *True  = ConstantBool::get(Opcode==EQ),
                     *False = ConstantBool::get(Opcode!=EQ);

        if (V1 == canonicalize(SI->getTrueValue()))
          addEqual(SI->getCondition(), True);
        else if (V1 == canonicalize(SI->getFalseValue()))
          addEqual(SI->getCondition(), False);
      }

      std::list<Value *> WorkList;
      addToResolve(V1, WorkList);
      addToResolve(V2, WorkList);
      resolve(WorkList);
    }

    DominatorTree *DT;
  public:
#ifdef DEBUG
    void debug(std::ostream &os) const {
      static const char *OpcodeTable[] = { "EQ", "NE" };

      union_find.debug(os);
      for (std::vector<Property>::const_iterator I = Properties.begin(),
           E = Properties.end(); I != E; ++I) {
        os << (*I).I1 << " " << OpcodeTable[(*I).Opcode] << " "
           << (*I).I2 << "\n";
      }
      os << "\n";
    }
#endif

    std::vector<Property> Properties;
  };

  /// PredicateSimplifier - This class is a simplifier that replaces
  /// one equivalent variable with another. It also tracks what
  /// can't be equal and will solve setcc instructions when possible.
  class PredicateSimplifier : public FunctionPass {
  public:
    bool runOnFunction(Function &F);
    virtual void getAnalysisUsage(AnalysisUsage &AU) const;

  private:
    /// Forwards - Adds new properties into PropertySet and uses them to
    /// simplify instructions. Because new properties sometimes apply to
    /// a transition from one BasicBlock to another, this will use the
    /// PredicateSimplifier::proceedToSuccessor(s) interface to enter the
    /// basic block with the new PropertySet.
    class Forwards : public InstVisitor<Forwards> {
      friend class InstVisitor<Forwards>;
      PredicateSimplifier *PS;
    public:
      PropertySet &KP;

      Forwards(PredicateSimplifier *PS, PropertySet &KP) : PS(PS), KP(KP) {}

      // Tries to simplify each Instruction and add new properties to
      // the PropertySet. Returns true if it erase the instruction.
      //void visitInstruction(Instruction *I);

      void visitTerminatorInst(TerminatorInst &TI);
      void visitBranchInst(BranchInst &BI);
      void visitSwitchInst(SwitchInst &SI);

      void visitAllocaInst(AllocaInst &AI);
      void visitLoadInst(LoadInst &LI);
      void visitStoreInst(StoreInst &SI);
      void visitBinaryOperator(BinaryOperator &BO);
    };

    // Used by terminator instructions to proceed from the current basic
    // block to the next. Verifies that "current" dominates "next",
    // then calls visitBasicBlock.
    void proceedToSuccessors(PropertySet &CurrentPS, BasicBlock *Current);
    void proceedToSuccessor(PropertySet &Properties, BasicBlock *Next);

    // Visits each instruction in the basic block.
    void visitBasicBlock(BasicBlock *Block, PropertySet &KnownProperties);

    // Tries to simplify each Instruction and add new properties to
    // the PropertySet.
    void visitInstruction(Instruction *I, PropertySet &);

    DominatorTree *DT;
    bool modified;
  };

  RegisterPass<PredicateSimplifier> X("predsimplify",
                                      "Predicate Simplifier");

  template <typename ElemTy>
  typename Synonyms<ElemTy>::iterator
  Synonyms<ElemTy>::unionSets(ElemTy E1, ElemTy E2) {
    PS->order(E1, E2);

    iterator I1 = findLeader(E1),
             I2 = findLeader(E2);

    if (!I1 && !I2) { // neither entry is in yet
      leaders.push_back(E1);
      I1 = leaders.size();
      mapping[E1] = I1;
      mapping[E2] = I1;
      return 0;
    }

    if (!I1 && I2) {
      mapping[E1] = I2;
      std::swap(getLeader(I2), E1);
      return 0;
    }

    if (I1 && !I2) {
      mapping[E2] = I1;
      return 0;
    }

    if (I1 == I2) return 0;

    // This is the case where we have two sets, [%a1, %a2, %a3] and
    // [%p1, %p2, %p3] and someone says that %a2 == %p3. We need to
    // combine the two synsets.

    if (I1 > I2) --I1;

    for (std::map<Value *, unsigned>::iterator I = mapping.begin(),
         E = mapping.end(); I != E; ++I) {
      if (I->second == I2) I->second = I1;
      else if (I->second > I2) --I->second;
    }

    leaders.erase(leaders.begin() + I2 - 1);

    return I2;
  }
}

FunctionPass *llvm::createPredicateSimplifierPass() {
  return new PredicateSimplifier();
}

bool PredicateSimplifier::runOnFunction(Function &F) {
  DT = &getAnalysis<DominatorTree>();

  modified = false;
  PropertySet KnownProperties(DT);
  visitBasicBlock(DT->getRootNode()->getBlock(), KnownProperties);
  return modified;
}

void PredicateSimplifier::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.addRequiredID(BreakCriticalEdgesID);
  AU.addRequired<DominatorTree>();
  AU.setPreservesCFG();
  AU.addPreservedID(BreakCriticalEdgesID);
}

void PredicateSimplifier::visitBasicBlock(BasicBlock *BB,
                                          PropertySet &KnownProperties) {
  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
    visitInstruction(I++, KnownProperties);
  }
}

void PredicateSimplifier::visitInstruction(Instruction *I,
                                           PropertySet &KnownProperties) {
  // Try to replace the whole instruction.
  Value *V = KnownProperties.canonicalize(I);
  if (V != I) {
    modified = true;
    ++NumInstruction;
    DEBUG(std::cerr << "Removing " << *I);
    KnownProperties.remove(I);
    I->replaceAllUsesWith(V);
    I->eraseFromParent();
    return;
  }

  // Try to substitute operands.
  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
    Value *Oper = I->getOperand(i);
    Value *V = KnownProperties.canonicalize(Oper);
    if (V != Oper) {
      modified = true;
      ++NumVarsReplaced;
      DEBUG(std::cerr << "Resolving " << *I);
      I->setOperand(i, V);
      DEBUG(std::cerr << "into " << *I);
    }
  }

  Forwards visit(this, KnownProperties);
  visit.visit(*I);
}

void PredicateSimplifier::proceedToSuccessors(PropertySet &KP,
                                              BasicBlock *BBCurrent) {
  DTNodeType *Current = DT->getNode(BBCurrent);
  for (DTNodeType::iterator I = Current->begin(), E = Current->end();
       I != E; ++I) {
    PropertySet Copy(KP);
    visitBasicBlock((*I)->getBlock(), Copy);
  }
}

void PredicateSimplifier::proceedToSuccessor(PropertySet &KP, BasicBlock *BB) {
  visitBasicBlock(BB, KP);
}

void PredicateSimplifier::Forwards::visitTerminatorInst(TerminatorInst &TI) {
  PS->proceedToSuccessors(KP, TI.getParent());
}

void PredicateSimplifier::Forwards::visitBranchInst(BranchInst &BI) {
  BasicBlock *BB = BI.getParent();

  if (BI.isUnconditional()) {
    PS->proceedToSuccessors(KP, BB);
    return;
  }

  Value *Condition = BI.getCondition();

  BasicBlock *TrueDest  = BI.getSuccessor(0),
             *FalseDest = BI.getSuccessor(1);

  if (isa<ConstantBool>(Condition) || TrueDest == FalseDest) {
    PS->proceedToSuccessors(KP, BB);
    return;
  }

  DTNodeType *Node = PS->DT->getNode(BB);
  for (DTNodeType::iterator I = Node->begin(), E = Node->end(); I != E; ++I) {
    BasicBlock *Dest = (*I)->getBlock();
    PropertySet DestProperties(KP);

    if (Dest == TrueDest)
      DestProperties.addEqual(ConstantBool::getTrue(), Condition);
    else if (Dest == FalseDest)
      DestProperties.addEqual(ConstantBool::getFalse(), Condition);

    PS->proceedToSuccessor(DestProperties, Dest);
  }
}

void PredicateSimplifier::Forwards::visitSwitchInst(SwitchInst &SI) {
  Value *Condition = SI.getCondition();

  // Set the EQProperty in each of the cases BBs,
  // and the NEProperties in the default BB.
  PropertySet DefaultProperties(KP);

  DTNodeType *Node = PS->DT->getNode(SI.getParent());
  for (DTNodeType::iterator I = Node->begin(), E = Node->end(); I != E; ++I) {
    BasicBlock *BB = (*I)->getBlock();

    PropertySet BBProperties(KP);
    if (BB == SI.getDefaultDest()) {
      for (unsigned i = 1, e = SI.getNumCases(); i < e; ++i)
        if (SI.getSuccessor(i) != BB)
          BBProperties.addNotEqual(Condition, SI.getCaseValue(i));
    } else if (ConstantInt *CI = SI.findCaseDest(BB)) {
      BBProperties.addEqual(Condition, CI);
    }
    PS->proceedToSuccessor(BBProperties, BB);
  }
}

void PredicateSimplifier::Forwards::visitAllocaInst(AllocaInst &AI) {
  KP.addNotEqual(Constant::getNullValue(AI.getType()), &AI);
}

void PredicateSimplifier::Forwards::visitLoadInst(LoadInst &LI) {
  Value *Ptr = LI.getPointerOperand();
  KP.addNotEqual(Constant::getNullValue(Ptr->getType()), Ptr);
}

void PredicateSimplifier::Forwards::visitStoreInst(StoreInst &SI) {
  Value *Ptr = SI.getPointerOperand();
  KP.addNotEqual(Constant::getNullValue(Ptr->getType()), Ptr);
}

void PredicateSimplifier::Forwards::visitBinaryOperator(BinaryOperator &BO) {
  Instruction::BinaryOps ops = BO.getOpcode();

  switch (ops) {
    case Instruction::UDiv:
    case Instruction::SDiv:
    case Instruction::FDiv:
    case Instruction::Rem: {
      Value *Divisor = BO.getOperand(1);
      KP.addNotEqual(Constant::getNullValue(Divisor->getType()), Divisor);
      break;
    }
    default:
      break;
  }
}